Skip to main content

Fully Automated Subdivision Surface Parametrization for Topology Optimized Structures and Frame Structures Using Euclidean Distance Transformation and Homotopic Thinning

  • Conference paper
  • First Online:
Proceedings of the Munich Symposium on Lightweight Design 2020

Abstract

Polygon meshes and particularly triangulated meshes can be used to describe the shape of different types of geometry such as bicycles, bridges, or runways. In engineering, such polygon meshes can be supplied as finite element meshes, resulting from topology optimization or from laser scanning. Especially from topology optimization with low member size settings, frame-like polygon meshes with slender parts are typical and often have to be converted into a CAD (Computer-Aided Design) format, e.g., for further geometrical detailing or performing additional shape optimization. Especially for such frame-like geometries, CAD designs are constructed as beams with cross-sections and beam-lines, whereby the cross-section is extruded along the beam-lines or beam skeleton. In our research, automatic parameterization of polygon meshes into a subdivision surface representation is tried out. For this purpose, the beam-lines are approximated by computation of curved skeletons, which are determined by a homotopic thinning method. These skeleton lines are transformed into a subdivision surface control grid by using the Euclidean distance transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bénière, G. Subsol, G. Gesquière, F. Le Breton, and W. Puech, ‘A comprehensive process of reverse engineering from 3D meshes to CAD models’, Comput.-Aided Des., vol. 45, no. 11, pp. 1382–1393, Nov. 2013, doi: https://doi.org/10.1016/j.cad.2013.06.004.

  2. V. Vidal, C. Wolf, and F. Dupont, ‘Mechanical Mesh Segmentation and Global 3D Shape Extraction’, 2014.

    Google Scholar 

  3. 3. S. Gauthier, W. Puech, R. Bénière, and G. Subsol, ‘Analysis of digitized 3D mesh curvature histograms for reverse engineering’, Comput. Ind., vol. 92–93, pp. 67–83, Nov. 2017, doi: https://doi.org/10.1016/j.compind.2017.06.008.

  4. A. Ben Makhlouf, B. Louhichi, M. A. Mahjoub, and D. Deneux, ‘Reconstruction of a CAD model from the deformed mesh using B-spline surfaces’, Int. J. Comput. Integr. Manuf., vol. 32, no. 7, pp. 669–681, Jul. 2019, doi: https://doi.org/10.1080/0951192X.2019.1599442.

  5. 5. B. Louhichi, G. N. Abenhaim, and A. S. Tahan, ‘CAD/CAE integration: updating the CAD model after a FEM analysis’, Int. J. Adv. Manuf. Technol., vol. 76, no. 1, pp. 391–400, Jan. 2015, doi: https://doi.org/10.1007/s00170-014-6248-y.

  6. 6. Y. M. Yoely, O. Amir, and I. Hanniel, ‘Topology and shape optimization with explicit geometric constraints using a spline-based representation and a fixed grid’, Procedia Manuf., vol. 21, pp. 189–196, Jan. 2018, doi: https://doi.org/10.1016/j.promfg.2018.02.110.

  7. 7. M. Bremicker, M. Chirehdast, N. Kikuchi, and P. Y. Papalambros, ‘Integrated Topology and Shape Optimization in Structural Design∗’, Mech. Struct. Mach., vol. 19, no. 4, pp. 551–587, Jan. 1991, doi: https://doi.org/10.1080/08905459108905156.

  8. A. Agathos, I. Pratikakis, S. Perantonis, N. Sapidis, and P. Azariadis, ‘3D Mesh Segmentation Methodologies for CAD applications’, Comput.-Aided Des. Appl., vol. 4, no. 6, pp. 827–841, Jan. 2007, doi: https://doi.org/10.1080/16864360.2007.10738515.

  9. 9. D. Reniers and A. Telea, ‘Part-type Segmentation of Articulated Voxel-Shapes using the Junction Rule’, Comput. Graph. Forum, vol. 27, no. 7, pp. 1845–1852, 2008, doi: https://doi.org/10.1111/j.1467-8659.2008.01331.x.

  10. C. Feng, A. C. Jalba, and A. C. Telea, ‘Part-Based Segmentation by Skeleton Cut Space Analysis’, in Mathematical Morphology and Its Applications to Signal and Image Processing, Cham, 2015, pp. 607–618, doi: https://doi.org/10.1007/978-3-319-18720-4_51.

  11. 11. A. Nana, J.-C. Cuillière, and V. Francois, ‘Automatic reconstruction of beam structures from 3D topology optimization results’, Comput. Struct., vol. 189, pp. 62–82, Sep. 2017, doi: https://doi.org/10.1016/j.compstruc.2017.04.018.

  12. T. Stangl and S. Wartzack, ‘Feature based interpretation and reconstruction of structural topology optimization results’, in Proceedings of the 20th International Conference on Engineering Design (ICED15), Jul. 2015, p. Vol. 6, 235–245.

    Google Scholar 

  13. 13. A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea, ‘3D Skeletons: A State-of-the-Art Report’, Comput. Graph. Forum, vol. 35, no. 2, pp. 573–597, May 2016, doi: https://doi.org/10.1111/cgf.12865.

  14. M. Denk, K. Rother, and K. Paetzold, ‘Multi-Objective Topology Optimization of Heat Conduction and Linear Elastostatic using Weighted Global Criteria Method’, in Proceedings of the 31st Symposium Design for X (DFX2020), Bamberg, Sep. 2020, pp. 91–100, doi: https://doi.org/10.35199/dfx2020.10.

  15. 15. T. C. Lee, R. L. Kashyap, and C. N. Chu, ‘Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms’, CVGIP Graph. Models Image Process., vol. 56, no. 6, pp. 462–478, Nov. 1994, doi: https://doi.org/10.1006/cgip.1994.1042.

  16. 16. P.-S. Tang and K.-H. Chang, ‘Integration of topology and shape optimization for design of structural components’, Struct. Multidiscip. Optim., vol. 22, no. 1, pp. 65–82, Aug. 2001, doi: https://doi.org/10.1007/PL00013282.

  17. 17. H. Blum, A Transformation for Extracting New Descriptors of Shape. M.I.T. Press, 1967.

    Google Scholar 

  18. 18. K. Siddiqi and S. Pizer, Eds., Medial Representations: Mathematics, Algorithms and Applications. Springer Netherlands, 2008.

    Google Scholar 

  19. 19. P. Keller, M. Bertram, and H. Hagen, ‘Reverse engineering with subdivision surfaces’, Computing, vol. 79, no. 2, pp. 119–129, Apr. 2007, doi: https://doi.org/10.1007/s00607-006-0191-1.

  20. 20. K. Bandara, T. Rüberg, and F. Cirak, ‘Shape optimisation with multiresolution subdivision surfaces and immersed finite elements’, Comput. Methods Appl. Mech. Eng., vol. 300, pp. 510–539, Mar. 2016, doi: https://doi.org/10.1016/j.cma.2015.11.015.

  21. V. Estellers, F. Schmidt, and D. Cremers, ‘Robust Fitting of Subdivision Surfaces for Smooth Shape Analysis’, in 2018 International Conference on 3D Vision (3DV), Sep. 2018, pp. 277–285, doi: https://doi.org/10.1109/3DV.2018.00040.

  22. M. Denk, K. Paetzold, and K. Rother, ‘Feature line detection of noisy triangulated CSGbased objects using deep learning’, in Proceedings of the 30th Symposium Design for X, Jesteburg, Germany, Sep. 2019, vol. 30, pp. 239–250, doi: https://doi.org/10.35199/dfx2019.21.

  23. 23. P. Wang et al., ‘3D shape segmentation via shape fully convolutional networks’, Comput. Graph., vol. 76, pp. 182–192, Nov. 2018, doi: https://doi.org/10.1016/j.cag.2018.07.011.

  24. M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and J. Rossignac, ‘Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies’, 2004.

    Google Scholar 

  25. H. Xu, M. Dong, and Z. Zhong, ‘Directionally Convolutional Networks for 3D Shape Segmentation’, in 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Oct. 2017, pp. 2717–2726, doi: https://doi.org/10.1109/ICCV.2017.294.

  26. A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang, ‘Mean Curvature Skeletons’, Comput. Graph. Forum, vol. 31, no. 5, Art. no. 5, 2012, doi: https://doi.org/10.1111/j.1467-8659.2012.03178.x.

  27. A. Sobiecki, H. C. Yasan, A. C. Jalba, and A. C. Telea, ‘Qualitative Comparison of Contraction- Based Curve Skeletonization Methods’, in Mathematical Morphology and Its Applications to Signal and Image Processing, 2013, pp. 425–439.

    Google Scholar 

  28. J. Mayer and S. Wartzack, ‘Ermittlung eines Skelettierungsverfahrens zur Konvertierung von Topologieoptimierungsergebnissen’, in Proceedings of the 31st Symposium Design for X (DFX2020), Bamberg, Sep. 2020, pp. 111–120, doi: https://doi.org/https://doi.org/10.35199/dfx2020.12.

  29. 29. G. Yin, X. Xiao, and F. Cirak, ‘Topologically robust CAD model generation for structural optimisation’, Comput. Methods Appl. Mech. Eng., vol. 369, p. 113102, Sep. 2020, doi: https://doi.org/10.1016/j.cma.2020.113102.

  30. J.-C. Cuillière, V. François, and A. Nana, ‘Automatic construction of structural CAD models from 3D topology optimization’, Comput.-Aided Des. Appl., vol. 15, no. 1, pp. 107–121, Jan. 2018, doi: https://doi.org/10.1080/16864360.2017.1353726.

  31. 31. K. Müller, L. Reusche, and D. Fellner, ‘Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces’, ACM Trans. Graph., vol. 25, no. 2, pp. 268–292, Apr. 2006, doi: https://doi.org/10.1145/1138450.1138455.

  32. P. Min, binvox. 2004.

    Google Scholar 

  33. F. S. Nooruddin and G. Turk, ‘Simplification and Repair of Polygonal Models Using Volumetric Techniques’, IEEE Trans. Vis. Comput. Graph., vol. 9, no. 2, Art. no. 2, 2003.

    Google Scholar 

  34. 34. P. Dierckx, ‘Algorithms for smoothing data with periodic and parametric splines’, Comput. Graph. Image Process., vol. 20, no. 2, pp. 171–184, Oct. 1982, doi: https://doi.org/10.1016/0146-664X(82)90043-0.

  35. 35. P. Dierckx, Curve and Surface Fitting with Splines. USA: Oxford University Press, Inc.,1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Denk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denk, M., Rother, K., Paetzold, K. (2021). Fully Automated Subdivision Surface Parametrization for Topology Optimized Structures and Frame Structures Using Euclidean Distance Transformation and Homotopic Thinning. In: Pfingstl, S., Horoschenkoff, A., Höfer, P., Zimmermann, M. (eds) Proceedings of the Munich Symposium on Lightweight Design 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63143-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63143-0_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63142-3

  • Online ISBN: 978-3-662-63143-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics