Skip to main content

Biologic Augmentation in RC Repair (Patches and Grafts): Part I

  • Chapter
Book cover Rotator Cuff Across the Life Span

Abstract

Poor healing and high failure rates after rotator cuff repair pose a significant challenge to the orthopedic surgeon. Advances in tissue engineering including the utilization of stem cells and growth factors, as well as various augmentation grafts, have been developed in the hope of improving tissue healing in rotator cuff repair. This chapter aims to discuss the clinical diagnosis, indications, and outcomes of biologic augmentation, namely, the bovine bioinductive patch augment, as well as other alternatives including human-derived allografts, xenografts, and synthetic grafts to optimize healing and provide ideal mechanical stability and growth environment to aid in the repair of rotator cuff tears.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt CC, Jarrett CD, Brown BT. Management of rotator cuff tears. J Hand Surg Am. 2015;40(2):399–408.

    PubMed  Google Scholar 

  2. Narvy SJ, Didinger TC, Lehoang D, et al. Direct cost analysis of outpatient arthroscopic rotator cuff repair in medicare and non-medicare populations. Orthop J Sports Med. 2016;4(10):2325967116668829.

    PubMed  PubMed Central  Google Scholar 

  3. Mather RC III, Koenig L, Acevedo D, et al. The societal and economic value of rotator cuff repair. J Bone Joint Surg (Am Vol). 2013;95(22):1993–2000.

    Google Scholar 

  4. Sengodan VC, Kurian S, Ramasamy R. Treatment of partial rotator cuff tear with ultrasound-guided platelet-rich plasma. J Clin Imaging Sci. 2017;7:32.

    PubMed  PubMed Central  Google Scholar 

  5. Miller BS, Downie BK, Kohen RB, et al. When do rotator cuff repairs fail? Serial ultrasound examination after arthroscopic repair of large and massive rotator cuff tears. Am J Sports Med. 2011;39(10):2064–70.

    PubMed  Google Scholar 

  6. Gamradt SC, Gallo RA, Adler RS, et al. Vascularity of the supraspinatus tendon three months after repair: characterization using contrast-enhanced ultrasound. J Shoulder Elb Surg. 2010;19(1):73–80.

    Google Scholar 

  7. Franceschi F, Ruzzini L, Longo UG, et al. Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med. 2007;35(8):1254–60.

    PubMed  Google Scholar 

  8. Moraiti C, Valle P, Maqdes A, et al. Comparison of functional gains after arthroscopic rotator cuff repair in patients over 70 years of age versus patients under 50 years of age: a prospective multicenter study. Arthroscopy. 2015;31(2):184–90.

    PubMed  Google Scholar 

  9. Park JS, Park HJ, Kim SH, Oh JH. Prognostic factors affecting rotator cuff healing after arthroscopic repair in small to medium-sized tears. Am J Sports Med. 2015;43(10):2386–92.

    PubMed  Google Scholar 

  10. Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35(5):719–28.

    PubMed  Google Scholar 

  11. Sano H, Wakabayashi I, Itoi E. Stress distribution in the supraspinatus tendon with partial-thickness tears: an analysis using two-dimensional finite element model. J Shoulder Elb Surg. 2006;15(1):100–5.

    Google Scholar 

  12. Strauss EJ, Salata MJ, Kercher J, et al. Multimedia article. The arthroscopic management of partial-thickness rotator cuff tears: a systematic review of the literature. Arthroscopy. 2011;27(4):568–80.

    PubMed  Google Scholar 

  13. Sanchez G, Chahla J, Moatshe G, Ferrari MB, Kennedy NI, Provencher MT. Superior capsular reconstruction with superimposition of rotator cuff repair for massive rotator cuff tear. Arthrosc Tech. 2017;6(5):e1775–9.

    PubMed  PubMed Central  Google Scholar 

  14. Kany J, Grimberg J, Amaravathi RS, Sekaran P, Scorpie D, Werthel JD. Arthroscopically-assisted latissimus dorsi transfer for irreparable rotator cuff insufficiency: modes of failure and clinical correlation. Arthroscopy. 2018;34(4):1139–50.

    PubMed  Google Scholar 

  15. Consigliere P, Polyzois I, Sarkhel T, Gupta R, Levy O, Narvani AA. Preliminary results of a consecutive series of large & massive rotator cuff tears treated with arthroscopic rotator cuff repairs augmented with extracellular matrix. Arch Bone Joint Surg. 2017;5(1):14–21.

    PubMed  Google Scholar 

  16. Khair MM, Gulotta LV. Treatment of irreparable rotator cuff tears. Curr Rev Musculoskelet Med. 2011;4(4):208–13.

    PubMed  PubMed Central  Google Scholar 

  17. Paloneva J, Lepola V, Aarimaa V, Joukainen A, Ylinen J, Mattila VM. Increasing incidence of rotator cuff repairs—a nationwide registry study in Finland. BMC Musculoskelet Disord. 2015;16:189.

    PubMed  PubMed Central  Google Scholar 

  18. Colvin AC, Egorova N, Harrison AK, Moskowitz A, Flatow EL. National trends in rotator cuff repair. J Bone Joint Surg Am. 2012;94(3):227–33.

    PubMed  PubMed Central  Google Scholar 

  19. Agout C, Berhouet J, Bouju Y, et al. Clinical and anatomic results of rotator cuff repair at 10 years depend on tear type. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2490–7.

    PubMed  Google Scholar 

  20. Bollier M, Shea K. Systematic review: what surgical technique provides the best outcome for symptomatic partial articular-sided rotator cuff tears? Iowa Orthop J. 2012;32:164–72.

    PubMed  PubMed Central  Google Scholar 

  21. Ellman H. Diagnosis and treatment of incomplete rotator cuff tears. Clin Orthop Relat Res. 1990;254:64–74.

    Google Scholar 

  22. Matthewson G, Beach CJ, Nelson AA, et al. Partial thickness rotator cuff tears: current concepts. Advances in orthopedics. 2015;2015:458786.

    PubMed  PubMed Central  Google Scholar 

  23. Fukuta S, Tsutsui T, Amari R, Wada K, Sairyo K. Tendon retraction with rotator cuff tear causes a decrease in cross-sectional area of the supraspinatus muscle on magnetic resonance imaging. J Shoulder Elb Surg. 2016;25(7):1069–75.

    Google Scholar 

  24. DeOrio JK, Cofield RH. Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. J Bone Joint Surg (Am Vol). 1984;66(4):563–7.

    CAS  Google Scholar 

  25. Randelli P, Randelli F, Ragone V, et al. Regenerative medicine in rotator cuff injuries. Biomed Res Int. 2014;2014:129515.

    PubMed  PubMed Central  Google Scholar 

  26. Sarukhan A, Zanotti L, Viola A. Mesenchymal stem cells: myths and reality. Swiss Med Wkly. 2015;145:w14229.

    PubMed  Google Scholar 

  27. Walschot LH, Aquarius R, Schreurs BW, Buma P, Verdonschot N. Better primary stability with porous titanium particles than with bone particles in cemented impaction grafting: an in vitro study in synthetic acetabula. J Biomed Mater Res B Appl Biomater. 2013;101(7):1243–50.

    PubMed  Google Scholar 

  28. Henry J, Konarski AJ, Joseph L, Pillai A. Foreign body reaction with granuloma following Achilles tendon reconstruction with the LARS ligament. J Surg Case Rep. 2018;2018(1):rjx258.

    PubMed  PubMed Central  Google Scholar 

  29. Bernabe-Garcia A, Liarte S, Moraleda JM, Castellanos G, Nicolas FJ. Amniotic membrane promotes focal adhesion remodeling to stimulate cell migration. Sci Rep. 2017;7(1):15262.

    PubMed  PubMed Central  Google Scholar 

  30. Yang JD, Choi DS, Cho YK, et al. Effect of amniotic fluid stem cells and amniotic fluid cells on the wound healing process in a white rat model. Arch Plastic Surg. 2013;40(5):496–504.

    Google Scholar 

  31. Chen Q. Technical report from the material and structural testing core. Two-dimensional finite element proof-of-concept modeling on rotator cuff tear scaffold efficacy. Rochester, MN: Mayo Clinic; 2011.. http://www.rotationmedical.com/wp-content/uploads/2015/05/fea-white-paper-4-9-15.pdf

    Google Scholar 

  32. Snyder SJ, Arnoczky SP, Bond JL, Dopirak R. Histologic evaluation of a biopsy specimen obtained 3 months after rotator cuff augmentation with GraftJacket Matrix. Arthroscopy. 2009;25(3):329–33.

    PubMed  Google Scholar 

  33. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Kampen C, Arnoczky S, Parks P, et al. Tissue-engineered augmentation of a rotator cuff tendon using a reconstituted collagen scaffold: a histological evaluation in sheep. Muscles Ligaments Tendons J. 2013;3(3):229–35.

    PubMed  PubMed Central  Google Scholar 

  35. Wolf EM, Agrawal V. Transdeltoid palpation (the rent test) in the diagnosis of rotator cuff tears. J Shoulder Elb Surg. 2001;10(5):470–3.

    CAS  Google Scholar 

  36. Murrell GA, Walton JR. Diagnosis of rotator cuff tears. Lancet. 2001;357(9258):769–70.

    CAS  PubMed  Google Scholar 

  37. Lenza M, Buchbinder R, Takwoingi Y, Johnston RV, Hanchard NC, Faloppa F. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst Rev. 2013;9:CD009020.

    Google Scholar 

  38. Gilat R, Atoun E, Cohen O, et al. Recurrent rotator cuff tear: is ultrasound imaging reliable? J Shoulder Elb Surg. 2018;27(7):1263–7.

    Google Scholar 

  39. Bailey JR, Kim C, Alentorn-Geli E, et al. Rotator cuff matrix augmentation and interposition: a systematic review and meta-analysis. Am J Sports Med. 2018:363546518774762. https://doi.org/10.1177/0363546518774762.

  40. Bokor DJ, Sonnabend D, Deady L, et al. Evidence of healing of partial-thickness rotator cuff tears following arthroscopic augmentation with a collagen implant: a 2-year MRI follow-up. Muscles Ligaments Tendons J. 2016;6(1):16–25.

    PubMed  PubMed Central  Google Scholar 

  41. Schlegel TF, Abrams JS, Bushnell BD, Brock JL, Ho CP. Radiologic and clinical evaluation of a bioabsorbable collagen implant to treat partial-thickness tears: a prospective multicenter study. J Shoulder Elb Surg. 2018;27(2):242–51.

    Google Scholar 

  42. Cai YZ, Zhang C, Jin RL, et al. Arthroscopic rotator cuff repair with graft augmentation of 3-dimensional biological collagen for moderate to large tears: a randomized controlled study. Am J Sports Med. 2018;46(6):1424–31.

    PubMed  Google Scholar 

  43. Barber FA, Burns JP, Deutsch A, Labbe MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15.

    PubMed  Google Scholar 

  44. Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ. Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy. 2008;24(4):403–9.e1. https://doi.org/10.1016/j.arthro.2007.07.033.

    Article  PubMed  Google Scholar 

  45. Gupta AK, Hug K, Berkoff DJ. Dermal tissue allograft for the repair of massive irreparable rotator cuff tears. Am J Sports Med. 2012;40:141–7.

    PubMed  Google Scholar 

  46. Pandey R, Tafazal S, Shyamsundar S, Modi A, Singh HP. Outcome of partial repair of massive rotator cuff tears with and without human tissue allograft bridging repair. Should Elb. 2016;9(1):23–30.

    Google Scholar 

  47. Wong I, Burns J, Snyder S. Arthroscopic GraftJacket repair of rotator cuff tears. J Shoulder Elbow Surg. 2010;19(Suppl):104–9.

    PubMed  Google Scholar 

  48. Agrawal V. Healing rates for challenging rotator cuff tears utilizing an acellular human dermal reinforcement graft. Int J Shoulder Surg. 2012;6(2):36–44. https://doi.org/10.4103/0973-6042.96992.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Petri M, Warth RJ, Horan MP, Greenspoon JA, Millett PJ. Outcomes after open revision repair of massive rotator cuff ters with biologic patch augmentation. Arthroscopy. 2016;32(9):1752–60.

    PubMed  Google Scholar 

  50. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg (Am Vol). 2006;88(6):1238–44.

    Google Scholar 

  51. Phipatanakul WP, Petersen SA. Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears. Am J Orthop. 2009;38(11):572–5.

    PubMed  Google Scholar 

  52. Flury M, Rickenbacher D, Jung C, Schneider MM, Endell D, Audige L. Porcine dermis patch augmentation of supraspinatus tendon repairs: a pilot study assessing tendon integrity and shoulder function 2 years after arthroscopic repair in patients aged 60 years or older. Arthroscopy. 2018;34(1):24–37.

    PubMed  Google Scholar 

  53. Badylak SF, Kropp B, McPherson T, Liang H, Snyder PW. Small intestinal submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng. 1998;4(4):379–87.

    CAS  PubMed  Google Scholar 

  54. Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elb Surg. 2008;17(1 Suppl):35S–9S.

    Google Scholar 

  55. Vitali M, Cusumano A, Pedretti A, Naim Rodriguez N, Fraschini G. Employment of synthetic patch with augmentation of the long head of the biceps tendon in irreparable lesions of the rotator cuff: our technique applied to 60 patients. Tech Hand Up Extrem Surg. 2015;19(1):32–9.

    PubMed  Google Scholar 

  56. Ciampi P, Scotti C, Nonis A, et al. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: a 3-year follow-up study. Am J Sports Med. 2014;42(5):1169–75.

    PubMed  Google Scholar 

  57. Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up. J Shoulder Elb Surg. 2011;20(5):788–94.

    Google Scholar 

  58. Lenart BA, Martens KA, Kearns KA, Gillespie RJ, Zoga AC, Williams GR. Treatment of massive and recurrent rotator cuff tears augmented with a poly-l-lactide graft, a preliminary study. J Shoulder Elb Surg. 2015;24(6):915–21.

    Google Scholar 

  59. Proctor CS. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device. J Shoulder Elb Surg. 2014;23(10):1508–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Plancher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ISAKOS

About this chapter

Cite this chapter

Plancher, K.D., McCormick, B., Murphy, J., Petterson, S.C. (2019). Biologic Augmentation in RC Repair (Patches and Grafts): Part I. In: Imhoff, A.B., Savoie, F.H. (eds) Rotator Cuff Across the Life Span. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58729-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58729-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58728-7

  • Online ISBN: 978-3-662-58729-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics