Skip to main content

Parameterized Complexity for Uniform Operators on Multidimensional Analytic Functions and ODE Solving

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10944))

Abstract

Real complexity theory is a resource-bounded refinement of computable analysis and provides a realistic notion of running time of computations over real numbers, sequences, and functions by relying on Turing machines to handle approximations of arbitrary but guaranteed absolute error. Classical results in real complexity show that important numerical operators can map polynomial time computable functions to functions that are hard for some higher complexity class like \(\mathsf {NP}\) or \(\mathsf {\# P}\). Restricted to analytic functions, however, those operators map polynomial time computable functions again to polynomial time computable functions. Recent work by Kawamura, Müller, Rösnick and Ziegler discusses how to extend this to uniform algorithms on one-dimensional analytic functions over simple compact domains using second-order and parameterized complexity. In this paper, we extend some of their results to the case of multidimensional analytic functions. We further use this to show that the operator mapping an analytic ordinary differential equations to its solution is computable in parameterized polynomial time. Finally, we discuss how the theory can be used as a basis for verified exact numerical computation with analytic functions and provide a prototypical implementation in the iRRAM C++ framework for exact real arithmetic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The complete source code for our implementation including some test functions is publicly available on GitHub: https://www.github.com/holgerthies/iRRAM-analytic.

References

  1. Boehm, H.J., Cartwright, R., Riggle, M., O’Donnell, M.J.: Exact real arithmetic: a case study in higher order programming. In: Proceedings of the 1986 ACM Conference on LISP and Functional Programming, pp. 162–173. ACM (1986)

    Google Scholar 

  2. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value problems. In: ISSAC 2012-Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pp. 115–121. ACM, New York (2012). https://doi.org/10.1145/2442829.2442849

  3. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18

    Chapter  MATH  Google Scholar 

  4. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J. ACM (JACM) 25(4), 581–595 (1978)

    Article  MathSciNet  Google Scholar 

  5. Chang, Y., Corliss, G.: ATOMFT: solving ODEs and DAEs using Taylor series. Comput. Math. Appl. 28(10–12), 209–233 (1994)

    Article  MathSciNet  Google Scholar 

  6. Friedman, H.: The computational complexity of maximization and integration. Adv. Math. 53(1), 80–98 (1984)

    Article  MathSciNet  Google Scholar 

  7. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and exact real numbers. Math. Struct. Comput. Sci. 17(1), 3–36 (2007)

    Article  MathSciNet  Google Scholar 

  8. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symb. Comput. 34(6), 479–542 (2002)

    Article  MathSciNet  Google Scholar 

  9. van der Hoeven, J.: On effective analytic continuation. Math. Comput. Sci. 1, 111–175 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Comput. Complex. 19(2), 305–332 (2010)

    Article  MathSciNet  Google Scholar 

  11. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans. Comput. Theory 4(2), 5:1–5:24 (2012)

    Article  Google Scholar 

  12. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ko, K.I.: On the computational complexity of ordinary differential equations. Inf. Control 58(1–3), 157–194 (1983)

    Article  MathSciNet  Google Scholar 

  14. Ko, K.I.: Complexity theory of real functions: Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston (1991)

    Book  Google Scholar 

  15. Ko, K.I., Friedman, H.: Computational complexity of real functions. Theor. Comput. Sci. 20(3), 323–352 (1982)

    Article  MathSciNet  Google Scholar 

  16. Ko, K.I., Friedman, H.: Computing power series in polynomial time. Adv. Appl. Math. 9(1), 40–50 (1988)

    Article  MathSciNet  Google Scholar 

  17. Moiske, B., Müller, N.: Solving initial value problems in polynomial time. In: Proceedings of the 22th JAIIO-PANEL, vol. 93, pp. 283–293 (1993)

    Google Scholar 

  18. Müller, N.T.: Uniform computational complexity of Taylor series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18088-5_37

    Chapter  Google Scholar 

  19. Müller, N.T.: Constructive aspects of analytic functions. In: Proceedings of Workshop on Computability and Complexity in Analysis, InformatikBerichte, vol. 190, pp. 105–114. FernUniversität Hagen (1995)

    Google Scholar 

  20. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14

    Chapter  Google Scholar 

  21. Pour-El, M.B., Richards, J.I.: Computability in analysis and physics: Perspectives in Mathematical Logic. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  22. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2(42), 230–265 (1936). https://doi.org/10.1112/plms/s2-42.1.230

    Article  MathSciNet  MATH  Google Scholar 

  23. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18H03203 and JP18J10407 and by the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawamura, A., Steinberg, F., Thies, H. (2018). Parameterized Complexity for Uniform Operators on Multidimensional Analytic Functions and ODE Solving. In: Moss, L., de Queiroz, R., Martinez, M. (eds) Logic, Language, Information, and Computation. WoLLIC 2018. Lecture Notes in Computer Science(), vol 10944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57669-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57669-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57668-7

  • Online ISBN: 978-3-662-57669-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics