Skip to main content

Growth of Crystalline Silicon for Solar Cells: Czochralski Si

  • Reference work entry
  • First Online:
Handbook of Photovoltaic Silicon

Abstract

Czochralski (CZ) silicon is widely used in the fabrication of high-efficiency solar cells in photovoltaic industry. It requires strict control of defects and impurities, which are harmful for the performances of solar cells. Therefore, the CZ silicon crystal growth aims at achieving defect-free single crystals for advanced solar cell wafers. Meanwhile, attention must be paid to the low cost of CZ silicon crystal growth. Therefore, it is necessary to develop novel crystal growth techniques suitable for practical application of photovoltaics. This chapter will review the fundamentals of CZ silicon and recent developments. The oxygen-related defects and control technologies are emphasized. Meanwhile, the novel crystal growth methods are introduced. The Ge doping in CZ silicon can not only improve the material’s mechanical strength, but also suppress the generation of boron–oxygen complexes. This will enable thinner solar cells at reduced cost and benefit the fabrication of high efficiency solar cells with low light-induced degradation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D.R. Bosomworth, W. Hayes, A.R.L. Spray, G.D. Watkins, Absorption of oxygen in silicon in the near and the far infrared. Proc. R. Soc. Lond. A Math. Phys. and Eng. Sci. 317(1528), 133–152 (1970)

    Article  CAS  Google Scholar 

  • A. Brelot, J. Charlemagne, Infrared studies of low temperature electron irradiated silicon containing germanium oxygen and carbon. Radiat. Eff. 9(1-2), 65–73 (1971)

    Article  CAS  Google Scholar 

  • A. Brelot, J. Charlemagne, Radiat. Eff. 9, 65 (1971)

    Google Scholar 

  • C.V. Budtz-Jørgensen, P. Kringhøj, A.N. Larsen, N.V. Abrosimov, Deep-level transient spectroscopy of the Ge-vacancy pair in Ge-doped n-type silicon. Phys. Rev. B 58(3), 1110 (1998)

    Article  Google Scholar 

  • P. Capper, A.W. Jones, E.J. Wallhouse, J.G. Wilkes, The effects of heat treatment on dislocation-free oxygen-containing silicon crystals. J. Appl. Phys. 48(4), 1646–1655 (1977)

    Article  CAS  Google Scholar 

  • J.R. Carruthers, A.F. Witt, R.E. Reusser, Czochralski growth of large diameter silicon crystals – convection and segregation. Semicond. Silicon 3, 61 (1977)

    Google Scholar 

  • S.N. Chakravarti, P.L. Garbarino, K. Murty, Oxygen precipitation effects on Si n+-p junction leakage behavior. Appl. Phys. Lett. 40(7), 581–583 (1982)

    Article  CAS  Google Scholar 

  • L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, D. Yang, Effect of oxygen precipitation on the performance of Czochralski silicon solar cells. Sol. Energy Mater. Sol. Cells 95(11), 3148–3151 (2011a)

    Article  CAS  Google Scholar 

  • P. Chen, X. Yu, L. Chen, D. Yang, Formation of shallow junctions in gallium and phosphorus compensated silicon for cell performance improvement. Scr. Mater. 65(10), 871–874 (2011b)

    Article  CAS  Google Scholar 

  • P. Chen, X. Yu, X. Liu, X. Chen, Y. Wu, D. Yang, Experimental evidence of staggered oxygen dimers as a component of boron–oxygen complexes in silicon. Appl. Phys. Lett. 102(8), 082107 (2013a)

    Article  CAS  Google Scholar 

  • X. Chen, X. Yu, X. Zhu, P. Chen, D. Yang, First-principles study of interstitial boron and oxygen dimer complex in silicon. Appl. Phys. Express 6, 041301 (2013b)

    Article  CAS  Google Scholar 

  • A. Chroneos, C.A. Londos, Interaction of A-centers with isovalent impurities in silicon. J. Appl. Phys. 107(9), 093518 (2010)

    Article  CAS  Google Scholar 

  • A. Chroneos, R.W. Grimes, H. Bracht, Impact of germanium on vacancy clustering in germanium-doped silicon. J. Appl. Phys. 105(1), 016102 (2009)

    Article  CAS  Google Scholar 

  • R.F. Cook, Strength and sharp contact fracture of silicon. J. Mater. Sci. 41(3), 841–872 (2006)

    Article  CAS  Google Scholar 

  • C. Cui, D. Yang, X. Ma, M. Li, D. Que, Effect of light germanium doping on thermal donors in Czochralski silicon wafers. Mater. Sci. Semicond. Process. 9(1), 110–113 (2006)

    Article  CAS  Google Scholar 

  • M. Dhamrin, T. Saitoh, Characterization of the initial rapid decay on light-induced carrier lifetime and cell performance degradation of Czochralski-grown silicon. Jpn. J. Appl. Phys. 42(5R), 2564 (2003)

    Google Scholar 

  • P. Fahey, S.S. Iyer, G.J. Scilla, Experimental evidence of both interstitial- and vacancy-assisted diffusion of Ge in Si. Appl. Phys. Lett. 54(9), 843–845 (1989)

    Article  CAS  Google Scholar 

  • T. Fukuda, A. Ohsawa, Mechanical strength of silicon crystals with oxygen and/or germanium impurities. Appl. Phys. Lett. 60(10), 1184–1186 (1992)

    Article  CAS  Google Scholar 

  • P. Gaworzewski, K. Schmalz, Oxygen-related donors formed at 600°C in silicon in dependence on oxygen and carbon content. Phys. Status Solidi A 77(2), 571–582 (1983)

    Article  CAS  Google Scholar 

  • D. W. George, Mater. Sci. Semi. Proc. 3, 227 (2000)

    Google Scholar 

  • S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, In Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 1343 (1998)

    Google Scholar 

  • S. Hao, L. Kantorovich, G. Davies, Interstitial oxygen in Si and Si 1-x Ge x. Phys. Rev. B 69(15), 155204 (2004)

    Article  CAS  Google Scholar 

  • H. Hashigami, M. Dhamrin, T. Saitoh, Performance degradation of Czochralski-grown silicon solar cells by means of current injection. Jpn. J. Appl. Phys. 41(11A), L1191 (2002)

    Article  CAS  Google Scholar 

  • D. Helda, W. Robert, M. Liaw, Melt recharge method, U.S. Patent No. 4557795, U.S. Patent and Trademark Office, Washington, DC, 1985

    Google Scholar 

  • G. Hettich, H.K. Mehrer, in Maier in Defects and Radiation Effects in Semiconductors, ed. by J.H. Albany. Institute of Physics Conference Series, vol 46 (Institute of Physics, London, 1978), p. 500

    Google Scholar 

  • E. Hild, P. Gaworzewski, M. Franz, K. Pressel, Thermal donors in silicon-rich SiGe. Appl. Phys. Lett. 72(11), 1362–1364 (1998)

    Article  CAS  Google Scholar 

  • H. Hirata, K. Hoshikawa, Silicon crystal growth in a cusp magnetic field. J. Cryst. Growth 96(4), 747–755 (1989)

    Article  CAS  Google Scholar 

  • P.B. Hirsch, S.G. Roberts, J. Samuels, The brittle–ductile transition in silicon. II. Interpretation. Proc. R. Soc. Lond. A Mat. Phys. Eng. Sci. 421(1860), 25–53 (1989)

    Article  CAS  Google Scholar 

  • K. Hoshi, T. Suzuki, Y. Okubo, N. Isawa, Cz silicon crystal grown in transverse magnetic-fields. J. Electrochem. Soc. 127(3), C113–C113 (1980)

    Google Scholar 

  • K. Hoshi, N. Isawa, T. Suzuki, Y. Ohkubo, Czochralski silicon crystals grown in a transverse magnetic field. J. Electrochem. Soc. 132(3), 693–700 (1985)

    Article  CAS  Google Scholar 

  • R. Hull, Properties of crystalline silicon, INSPEC, The institution of electrical engineers, London, United Kindom (1999)

    Google Scholar 

  • J. Humlíček, R. Štoudek, A. Dubroka, Infrared vibrations of interstitial oxygen in silicon-rich SiGe alloys. Phys. B Condens. Matter 376, 212–215 (2006)

    Article  CAS  Google Scholar 

  • J.M. Hwang, D.K. Schroder, Recombination properties of oxygen-precipitated silicon. J. Appl. Phys. 59(7), 2476–2487 (1986)

    Article  CAS  Google Scholar 

  • L.I. Khirunenko, Y.V. Pomozov, M.G. Sosnin, V.K. Shinkarenko, Oxygen in silicon doped with isovalent impurities. Phys. B Condens. Matter 273, 317–321 (1999)

    Article  Google Scholar 

  • L.I. Khirunenko, V.A. Zasuha, Y.V. Pomozov, M.G. Sosnin, Disturbance of oxygen by isovalent impurity atoms in silicon. Phys. B Condens. Matter 308, 301–304 (2001)

    Article  Google Scholar 

  • L.I. Khirunenko, O.O. Kobzar, Y.V. Pomozov, M.G. Sosnin, G. Weyer, Interstitial-related reactions in silicon doped with isovalent impurities. Phys. B Condens. Matter 340–342, 546–550 (2003)

    Article  CAS  Google Scholar 

  • E. Kuroda, S. Matsubara, T. Saitoh, Czochralski growth of square silicon single crystals. Jpn. J. Appl. Phys. 19(7), L361 (1980)

    Article  CAS  Google Scholar 

  • R.L. Lane, A.H. Kachare, Multiple Czochralski growth of silicon crystals from a single crucible. J. Cryst. Growth 50(2), 437–444 (1980)

    Article  CAS  Google Scholar 

  • H. Li, D. Yang, X. Yu, X. Ma, D. Tian, L. Li, D. Que, The effect of germanium doping on oxygen donors in Czochralski-grown silicon. J. Phys. Condens. Matter 16(32), 5745 (2004)

    Article  CAS  Google Scholar 

  • H.M. Liaw, Growth of single crystal silicon square ingots. Electrochem. Soc. Meet. Extended Abstract, 80-1, 806–807 (1980)

    Google Scholar 

  • C.A. Londos, M.J. Binns, A.R. Brown, S.A. McQuaid, R.C. Newman, Effect of oxygen concentration on the kinetics of thermal donor formation in silicon at temperatures between 350 and 500°C. Appl. Phys. Lett. 62(13), 1525–1526 (1993)

    Article  CAS  Google Scholar 

  • C.A. Londos, A. Andrianakis, V. Emtsev, H. Ohyama, Radiation effects on the behavior of carbon and oxygen impurities and the role of Ge in Czochralski grown Si upon annealing. J. Appl. Phys. 105(12), 123508 (2009)

    Article  CAS  Google Scholar 

  • R.E. Lorenzini, A. Iwata, K. Lorenz, U.S. Patent No. 4,036,595,U.S. Patent and Trademark Office, Washington, DC, 1977

    Google Scholar 

  • D. Macdonald, F. Rougieux, A. Cuevas, B. Lim, J. Schmidt, M. Di Sabatino, L.J. Geerligs, Light-induced boron–oxygen defect generation in compensated p-type Czochralski silicon. J. Appl. Phys. 105(9), 093704 (2009)

    Article  CAS  Google Scholar 

  • V.P. Markevich, A.R. Peaker, J. Coutinho, R. Jones, V.J.B. Torres, S. Öberg, et al., Structure and properties of vacancy-oxygen complexes in Si 1-x Ge x alloys. Phys. Rev. B 69(12), 125218 (2004)

    Article  CAS  Google Scholar 

  • G.L. McVay, A.R. DuCharme, The diffusion of germanium in silicon. J. Appl. Phys. 44(3), 1409–1410 (1973)

    Article  CAS  Google Scholar 

  • H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  • L.I. Murin, T. Hallberg, V.P. Markevich, J.L. Lindström, Experimental evidence of the oxygen dimer in silicon. Phys. Rev. Lett. 80(1), 93 (1998)

    Article  CAS  Google Scholar 

  • L.I. Murin, E.A. Tolkacheva, V.P. Markevich, A.R. Peaker, B. Hamilton, E. Monakhov, et al., The oxygen dimer in Si: Its relationship to the light-induced degradation of Si solar cells? Appl. Phys. Lett. 98(18), 182101 (2011)

    Article  CAS  Google Scholar 

  • X. Niu, W. Zhang, G. Lu, Z. Jiang, Distribution of Ge in high concentration Ge-doped Czochralski-Si crystal. J. Cryst. Growth 267(3), 424–428 (2004a)

    Article  CAS  Google Scholar 

  • X. Niu, W. Zhang, E. Zhang, J. Sun, G. Lu, FTIR spectroscopy of high concentration Ge-doped Czochralski-Si. J. Cryst. Growth 263(1), 167–170 (2004b)

    Article  CAS  Google Scholar 

  • W. O’Mara, R.B. Herring, L.P. Hunt, Handbook of Semiconductor Silicon Technology (Crest Publishing House, Norwich, 2007)

    Google Scholar 

  • M. Ogino, Y. Oana, M. Watanabe, The diffusion coefficient of germanium in silicon. Phys. Status Solidi A 72(2), 535–541 (1982)

    Article  CAS  Google Scholar 

  • M. Ohwa, T. Higuchi, E. Toji, M. Watanabe, K. Homma, S. Takasu, Growth of large diameter silicon single crystal under horizontal or vertical magnetic field, In Semiconductor Silicon, The Electrochemical Society, Princeton, 117–128 (1986)

    Google Scholar 

  • D.W. Palmer, K. Bothe, J. Schmidt, Kinetics of the electronically stimulated formation of a boron–oxygen complex in crystalline silicon. Phys. Rev. B 76(3), 035210 (2007)

    Article  CAS  Google Scholar 

  • A.D. Petrov, L.L. Shchukovskaya, S.I. Sadykhzade, Y.P. Egorov, The synthesis and dehydration of unsaturated silicon containing alcohols. Dokl. Akad. Nauk SSSR 115(3), 522–525 (1957)

    CAS  Google Scholar 

  • P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer, Wien, 2004)

    Book  Google Scholar 

  • S.N. Rea, J.D. Lawrence, J.M. Anthony, Effective segregation coefficient of germanium in Czochralski silicon. J. Electrochem. Soc. 134(3), 752–753 (1987)

    Article  CAS  Google Scholar 

  • S. Rein, S.W. Glunz, Electronic properties of the metastable defect in boron-doped Czochralski silicon: Unambiguous determination by advanced lifetime spectroscopy. Appl. Phys. Lett. 82(7), 1054–1056 (2003)

    Article  CAS  Google Scholar 

  • H.J. Ruiz, G.P. Pollack, High temperature annealing behavior of oxygen in silicon. J. Electrochem. Soc. 125(1), 128–130 (1978)

    Article  CAS  Google Scholar 

  • W.R. Runyan, Silicon Semiconductor Technology (McGraw-Hill, New York, 1965)

    Google Scholar 

  • K. Schmalz, V.V. Emtsev, Radiation-induced defects in Czochralski-grown silicon doped with germanium. Appl. Phys. Lett. 65(12), 1575–1577 (1994)

    Article  CAS  Google Scholar 

  • J. Schmidt, K. Bothe, Structure and transformation of the metastable boron and oxygen-related defect center in crystalline silicon. Phys. Rev. B 69(2), 024107 (2004)

    Article  CAS  Google Scholar 

  • J. Schmidt, A. G. Aberle, R. Hezel, in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, IEEE, Anaheim, 13 (1997)

    Google Scholar 

  • F. Shimura, Semiconductor Silicon Crystal Technology (Academic, San Diego, 1989), pp. 69–71

    Google Scholar 

  • F. Shimura, M. Kimura, Growth method and equipment of semiconductor single crystals, Japanese Patent 56-190318, 1981

    Google Scholar 

  • T. Taishi, X. Huang, I. Yonenaga, K. Hoshikawa, Dislocation behavior in heavily germanium-doped silicon crystal. Mater. Sci. Semicond. Process. 5(4), 409–412 (2002)

    Article  CAS  Google Scholar 

  • C.D. Thurmond, F.A. Trumbore, M. Kowalchik, Germanium solidus curves. J. Chem. Phys. 25(4), 799–800 (1956)

    Article  CAS  Google Scholar 

  • J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, C. Claeys, Impact of oxygen related extended defects on silicon diode characteristics. J. Appl. Phys. 77(11), 5669–5676 (1995)

    Article  CAS  Google Scholar 

  • J. Vanhellemont, M. Suezawa, I. Yonenaga, On the impact of germanium doping on the vacancy formation energy in Czochralski-grown silicon. J. Appl. Phys. 108, 016105 (2010)

    Article  CAS  Google Scholar 

  • V.V. Voronkov, R. Falster, Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells. J. Appl. Phys. 107(5), 053509 (2010)

    Article  CAS  Google Scholar 

  • L. Wang, D. Yang, Structure of Ge–O complexes in Czochralski silicon. Phys. B Condens. Matter 404(1), 58–60 (2009)

    Article  CAS  Google Scholar 

  • P. Wang, X. Yu, P. Chen, X. Li, D. Yang, X. Chen, Z. Huang, Germanium-doped Czochralski silicon for photovoltaic applications. Sol. Energy Mater. Sol. Cells 95(8), 2466–2470 (2011)

    Article  CAS  Google Scholar 

  • M. Watanabe, T. Usami, H. Muraoka, S. Matsuo, Y. Imanishi, H. Nagashima, Oxygen-free silicon single crystal grown from silicon nitride crucible. Semicond. Silicon 4, 126 (1981)

    Google Scholar 

  • G.D. Watkins, A microscopic view of radiation damage in semiconductors using EPR as a probe invited paper. IEEE Trans. Nucl. Sci. 16(6), 13–18 (1969)

    Article  CAS  Google Scholar 

  • G.D. Watkins, Defects in irradiated silicon: EPR of the tin-vacancy pair. Phys. Rev. B 12(10), 4383 (1975)

    Article  CAS  Google Scholar 

  • C. Xiao, D. Yang, X. Yu, X. Gu, D. Que, Influence of the compensation level on the performance of p-type crystalline silicon solar cells: Theoretical calculations and experimental study. Sol. Energy Mater. Sol. Cells 107, 263–271 (2012a)

    Article  CAS  Google Scholar 

  • C. Xiao, D. Yang, X. Yu, P. Wang, P. Chen, D. Que, Effect of dopant compensation on the performance of Czochralski silicon solar cells. Sol. Energy Mater. Sol. Cells 101, 102–106 (2012b)

    Article  CAS  Google Scholar 

  • W. Xu, J. Chen, X. Ma, D. Yang, L. Gong, D. Tian, Characterization of a Czochralski grown silicon crystal doped with 1020°cm-3 germanium. Cryst. Res. Technol. 46(1), 10–13 (2011)

    Article  CAS  Google Scholar 

  • D. Yang, J. Chen, Defects and Diffusion in Ceramics: An Annual Retrospective Vii 242244, 169 (2005)

    Google Scholar 

  • I. Yonenaga, Growth and mechanical properties of GeSi bulk crystals. J. Mater. Sci. Mater. Electron. 10(5), 329–333 (1999)

    Article  CAS  Google Scholar 

  • I. Yonenaga, T. Taishi, X. Huang, K. Hoshikawa, Dislocation–impurity interaction in Czochralski-grown Si heavily doped with B and Ge. J. Cryst. Growth 275(1), e501–e505 (2005)

    Article  CAS  Google Scholar 

  • X. Yu, P. Wang, P. Chen, X. Li, D. Yang, Suppression of boron–oxygen defects in p-type Czochralski silicon by germanium doping. Appl. Phys. Lett. 97(5), 051903 (2010)

    Article  CAS  Google Scholar 

  • X. Yu, X. Zheng, K. Hoshikawa, D. Yang, Crystal growth of indium-doped Czochralski silicon for photovoltaic application. Jpn. J. Appl. Phys. 51(10R), 105501 (2012)

    Article  Google Scholar 

  • S. Yuan, X. Yu, X. Gu, Y. Feng, J. Lu, D. Yang, Aluminum-doped crystalline silicon and its photovoltaic application. Superlattice. Microst. 99, 158–164 (2016)

    Article  CAS  Google Scholar 

  • Z. Zeng, J.D. Murphy, R.J. Falster, X. Ma, D. Yang, P.R. Wilshaw, The effect of impurity-induced lattice strain and Fermi level position on low temperature oxygen diffusion in silicon. J. Appl. Phys. 109(6), 063532 (2011a)

    Article  CAS  Google Scholar 

  • Z. Zeng, L. Wang, X. Ma, S. Qu, J. Chen, Y. Liu, D. Yang, Improvement in the mechanical performance of Czochralski silicon under indentation by germanium doping. Scr. Mater. 64(9), 832–835 (2011b)

    Article  CAS  Google Scholar 

  • W. Zhang, S. Yan, Z. Ji, Effective segregation coefficient and steady state segregation coefficient of germanium in Czochralski silicon. J. Cryst. Growth 169(3), 598–599 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegong Yu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yu, X., Yang, D. (2019). Growth of Crystalline Silicon for Solar Cells: Czochralski Si. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_12

Download citation

Publish with us

Policies and ethics