Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides an up-to-date overview of research on inorganic nanowires, particularly metallic and semiconducting nanowires. Nanowires are one-dimensional, anisotropic structures, small in diameter, and large in surface-to-volume ratio. Their physical properties are different than those of structures of other scales and dimensionality. While the study of nanowires is particularly challenging, scientists have made immense progress in developing synthetic methodologies for the fabrication of nanowires, developing instrumentation for their characterization, and incorporating nanowires as functional elements in advanced materials and devices. The chapter is divided into three main sections addressing the synthesis, the physical properties, and the applications of nanowires. Yet, the reader will discover many links that make these aspects of nanoscience intimately interdependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Feynman: There’s plenty of room at the bottom, Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  2. M.S. Dresselhaus, Y.-M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, G.G. Samsonidze, G. Dresselhaus: Nanowires and nanotubes, Mater. Sci. Eng. C 23, 129–140 (2003), also in: Current trends in nanotechnologies: From materials to systems, Eur. Mater. Res. Soc. Symp. Proc., Vol. 140, ed. by W. Jantsch, H. Grimmeiss, G. Marietta (Elsevier, Amsterdam 2002)

    Google Scholar 

  3. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer Ser. Top. Appl. Phys., Vol. 80 (Springer, Berlin, Heidelberg 2001) pp. 1–447

    Google Scholar 

  5. R.C. Haddon: Special issue on carbon nanotubes, Acc. Chem. Res. 35, 997–1113 (2002)

    Google Scholar 

  6. Y. Mao, S.S. Wong: General, room-temperature method for the synthesis of isolated as well as arrays of single-crystalline ABO4-type nanorods, J. Am. Chem. Soc. 126, 15245–15252 (2004)

    Google Scholar 

  7. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph: DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391, 775–778 (1998)

    Google Scholar 

  8. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, U. Gösele: Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys. 91, 3243–3247 (2002)

    Google Scholar 

  9. K.E. Korte, S.E. Skrabalak, Y. Xia: Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, J. Mater. Chem. 18, 437–441 (2008)

    Google Scholar 

  10. S. Zhu, Y. Gao, B. Hu, J. Li, J. Su, Z. Fan, J. Zhou: Transferable self-welding silver nanowire network as high performance transparent flexible electrode, Nanotechnology 24, 335202 (2013)

    Google Scholar 

  11. L.J. Andrés, M.F. Menéndez, D. Gómez, A.L. Martínez, N. Bristow, J.P. Kettle, A. Menéndez, B. Ruiz: Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: Proof of concept in organic solar cells, Nanotechnology 26, 265201 (2015)

    Google Scholar 

  12. G.L. Hornyak, C.J. Patrissi, C.M. Martin: Fabrication, characterization and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell–Garnett limit, J. Phys. Chem. B 101, 1548–1555 (1997)

    Google Scholar 

  13. X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, Y.Q. Mao: Fabrication and characterization of highly ordered Au nanowire arrays, J. Mater. Chem. 11, 1732–1734 (2001)

    Google Scholar 

  14. F. Kim, K. Sohn, J. Wu, J. Huang: Chemical synthesis of gold nanowires in acidic solutions, J. Am. Chem. Soc. 130(44), 14442–14443 (2008) doi:10.1021/ja806759v

    Article  Google Scholar 

  15. Y.-T. Cheng, A.M. Weiner, C.A. Wong, M.P. Balogh, M.J. Lukitsch: Stress-induced growth of bismuth nanowires, Appl. Phys. Lett. 81, 3248–3250 (2002)

    Google Scholar 

  16. W. Shim, J. Ham, K.-I. Lee, W.Y. Jeung, M. Johnson, W. Lee: On-film formation of bi nanowires with extraordinary electron mobility, Nano Lett. 9, 18–22 (2009) doi:10.1021/nl8016829

    Article  Google Scholar 

  17. J. Heremans, C.M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield: Bismuth nanowire arrays: Synthesis, galvanomagnetic properties, Phys. Rev. B 61, 2921–2930 (2000)

    Google Scholar 

  18. L. Piraux, S. Dubois, J.L. Duvail, A. Radulescu, S. Demoustier-Champagne, E. Ferain, R. Legras: Fabrication and properties of organic, metal nanocylinders in nanoporous membranes, J. Mater. Res. 14, 3042–3050 (1999)

    Google Scholar 

  19. K. Hong, F.Y. Yang, K. Liu, D.H. Reich, P.C. Searson, C.L. Chien, F.F. Balakirev, G.S. Boebinger: Giant positive magnetoresistance of Bi nanowire arrays in high magnetic fields, J. Appl. Phys. 85, 6184–6186 (1999)

    Google Scholar 

  20. A.J. Yin, J. Li, W. Jian, A.J. Bennett, J.M. Xu: Fabrication of highly ordered metallic nanowire arrays by electrodeposition, Appl. Phys. Lett. 79, 1039–1041 (2001)

    Google Scholar 

  21. Z. Zhang, J.Y. Ying, M.S. Dresselhaus: Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, J. Mater. Res. 13, 1745–1748 (1998)

    Google Scholar 

  22. Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying: Processing and characterization of single-crystalline ultrafine bismuth nanowires, Chem. Mater. 11, 1659–1665 (1999)

    Google Scholar 

  23. T.E. Huber, M.J. Graf, C.A. Foss, P. Constant: Processing and characterization of high-conductance bismuth wire array composites, J. Mater. Res. 15, 1816–1821 (2000)

    Google Scholar 

  24. L. Li, G. Li, Y. Zhang, Y. Yang, L. Zhang: Pulsed electrodeposition of large-area, ordered Bi1−xSbx nanowire arrays from aqueous solutions, J. Phys. Chem. B 108, 19380–19383 (2004)

    Google Scholar 

  25. M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy: Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates, Adv. Mater. 14, 665–667 (2002)

    Google Scholar 

  26. M. Chen, Y. Xie, J. Lu, Y.J. Xiong, S.Y. Zhang, Y.T. Qian, X.M. Liu: Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique, J. Mater. Chem. 12, 748–753 (2002)

    Google Scholar 

  27. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang: Preparation of CdS single-crystal nanowires by electrochemically induced deposition, Adv. Mater. 12, 520–522 (2000)

    Google Scholar 

  28. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu: Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates, J. Phys. Chem. 100, 14037–14047 (1996)

    Google Scholar 

  29. L. Manna, E.C. Scher, A.P. Alivisatos: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc. 122, 12700–12706 (2000)

    Google Scholar 

  30. D. Routkevitch, A.A. Tager, J. Haruyama, D. Al-Mawlawi, M. Moskovits, J.M. Xu: Nonlithographic nano-wire arrays: fabrication, physics, and device applications, IEEE Trans. Electron. Dev. 43, 1646–1658 (1996)

    Google Scholar 

  31. D.S. Xu, D.P. Chen, Y.J. Xu, X.S. Shi, G.L. Guo, L.L. Gui, Y.Q. Tang: Preparation of II–VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates, Pure Appl. Chem. 72, 127–135 (2000)

    Google Scholar 

  32. R. Adelung, F. Ernst, A. Scott, M. Tabib-Azar, L. Kipp, M. Skibowski, S. Hollensteiner, E. Spiecker, W. Jäger, S. Gunst, A. Klein, W. Jägermann, V. Zaporojtchenko, F. Faupel: Self-assembled nanowire networks by deposition of copper onto layered-crystal surfaces, Adv. Mater. 14, 1056–1061 (2002)

    Google Scholar 

  33. T. Gao, G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J.C. Fan, L.D. Zhang: Template synthesis of single-crystal Cu nanowire arrays by electrodeposition, Appl. Phys. A 73, 251–254 (2001)

    Google Scholar 

  34. D. Al-Mawlawi, N. Coombs, M. Moskovits: Magnetic-properties of Fe deposited into anodic aluminum-oxide pores as a function of particle-size, J. Appl. Phys. 70, 4421–4425 (1991)

    Google Scholar 

  35. F. Li, R.M. Metzger: Activation volume of α-Fe particles in alumite films, J. Appl. Phys. 81, 3806–3808 (1997)

    Google Scholar 

  36. A. Sugawara, T. Coyle, G.G. Hembree, M.R. Scheinfein: Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates, Appl. Phys. Lett. 70, 1043–1045 (1997)

    Google Scholar 

  37. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, Y.Q. Mao: Large-scale synthesis of single crystalline gallium nitride nanowires, Appl. Phys. Lett. 75, 2455–2457 (1999)

    Google Scholar 

  38. G.S. Cheng, L.D. Zhang, S.H. Chen, Y. Li, L. Li, X.G. Zhu, Y. Zhu, G.T. Fei, Y.Q. Mao: Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina, J. Mater. Res. 15, 347–350 (2000)

    Google Scholar 

  39. Y. Huang, X. Duan, Y. Cui, C.M. Lieber: Gallium nitride nanowire nanodevices, Nano Lett. 2, 101–104 (2002)

    Google Scholar 

  40. X. Duan, C.M. Lieber: Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. Soc. 122, 188–189 (2000)

    Google Scholar 

  41. A.D. Berry, R.J. Tonucci, M. Fatemi: Fabrication of GaAs and InAs wires in nanochannel glass, Appl. Phys. Lett. 69, 2846–2848 (1996)

    Google Scholar 

  42. J.R. Heath, F.K. LeGoues: A liquid solution synthesis of single-crystal germanium quantum wires, Chem. Phys. Lett. 208, 263–268 (1993)

    Google Scholar 

  43. Y. Wu, P. Yang: Germanium nanowire growth via simple vapor transport, Chem. Mater. 12, 605–607 (2000)

    Google Scholar 

  44. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee: Germanium nanowires sheathed with an oxide layer, Phys. Rev. B 61, 4518–4521 (2000)

    Google Scholar 

  45. S.J. May, J.-G. Zheng, B.W. Wessels, L.J. Lauhon: Dendritic nanowire growth mediated by a self-assembled catalyst, Adv. Mater. 17, 598–602 (2005)

    Google Scholar 

  46. S. Han, C. Li, Z. Liu, B. Lei, D. Zhang, W. Jin, X. Liu, T. Tang, C. Zhou: Transition metal oxide core-shell nanowires: Generic synthesis and transport studies, Nano Lett. 4, 1241–1246 (2004)

    Google Scholar 

  47. M.P. Zach, K.H. Ng, R.M. Penner: Molybdenum nanowires by electrodeposition, Science 290, 2120–2123 (2000)

    Google Scholar 

  48. L. Sun, P.C. Searson, L. Chien: Electrochemical deposition of nickel nanowire arrays in single-crystal mica films, Appl. Phys. Lett. 74, 2803–2805 (1999)

    Google Scholar 

  49. K. Nielsch, R. Wehrspohn, S. Fischer, H. Kronmüller, J. Barthel, J. Kirschner, U. Gösele: Magnetic properties of 100 nm nickel nanowire arrays obtained from ordered porous alumina templates, MRS Symp. Proc. 636, D1.9-1–D1.9-6 (2001)

    Google Scholar 

  50. Y. Wang, X. Jiang, T. Herricks, Y. Xia: Single crystalline nanowires of lead: Large-scale synthesis, mechanistic studies, and transport measurements, J. Phys. Chem. B 108, 8631–8640 (2004)

    Google Scholar 

  51. E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S. Berger: Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, cubes, Nano Lett. 3, 857–862 (2003)

    Google Scholar 

  52. W. Lu, P. Gao, W.B. Jian, Z.L. Wang, J. Fang: Perfect orientation ordered in-situ one-dimensional self-assembly of Mn-doped PbSe nanocrystals, J. Am. Chem. Soc. 126, 14816–14821 (2004)

    Google Scholar 

  53. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 293, 2227–2231 (2001)

    Google Scholar 

  54. X. Huang, N. Zheng: One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods, J. Am. Chem. Soc. 131, 4602–4603 (2009) doi:10.1021/ja9009343

    Article  Google Scholar 

  55. B. Gates, B. Mayers, B. Cattle, Y. Xia: Synthesis, characterization of uniform nanowires of trigonal selenium, Adv. Funct. Mater. 12, 219–227 (2002)

    Google Scholar 

  56. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, C.B. Prater: Nanowire array composites, Science 263, 800–802 (1994)

    Google Scholar 

  57. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber: Diameter-controlled synthesis of single crystal silicon nanowires, Appl. Phys. Lett. 78, 2214–2216 (2001)

    Google Scholar 

  58. A.M. Morales, C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208–211 (1998)

    Google Scholar 

  59. N. Wang, Y.F. Zhang, Y.H. Tang, C.S. Lee, S.T. Lee: SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys. Lett. 73, 3902–3904 (1998)

    Google Scholar 

  60. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey: Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method, Appl. Phys. Lett. 79, 1546–1548 (2001)

    Google Scholar 

  61. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, S.-T. Lee: Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching, Appl. Phys. Lett. 90, 163123 (2007)

    Google Scholar 

  62. S. Vaddiraju, H. Chandrasekaran, M.K. Sunkara: Vapor phase synthesis of tungsten nanowires, J. Am. Chem. Soc. 125, 10792–10793 (2003)

    Google Scholar 

  63. J.P. Heremans, C.M. Thrush, D.T. Morelli, M.-C. Wu: Thermoelectric power of bismuth nanocomposites, Phys. Rev. Lett. 88, 216801-1–216801-4 (2002)

    Google Scholar 

  64. Y. Li, G.S. Cheng, L.D. Zhang: Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes, J. Mater. Res. 15, 2305–2308 (2000)

    Google Scholar 

  65. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi: Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater. 12, 323–331 (2002)

    Google Scholar 

  66. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 363, 123–128 (2002)

    Google Scholar 

  67. G.A. Ozin: Nanochemistry: Synthesis in diminishing dimensions, Adv. Mater. 4, 612–649 (1992)

    Google Scholar 

  68. R.J. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford: Nanochannel array glass, Science 258, 783–785 (1992)

    Google Scholar 

  69. J.Y. Ying: Nanoporous systems and templates, Sci. Spec. 18, 56–63 (1999)

    Google Scholar 

  70. J.W. Diggle, T.C. Downie, C.W. Goulding: Anodic oxide films on aluminum, Chem. Rev. 69, 365–405 (1969)

    Google Scholar 

  71. J.P. O’Sullivan, G.C. Wood: The morphology and mechanism of formation of porous anodic films on aluminum, Proc. R. Soc. A 317, 511–543 (1970)

    Google Scholar 

  72. A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84, 6023–6026 (1998)

    Google Scholar 

  73. J.P. Sullivan, G.C. Wood: The morphology, mechanism of formation of porous anodic films on aluminum, Proc. R. Soc. A 317, 511–543 (1970)

    Google Scholar 

  74. O. Jessensky, F. Müller, U. Gösele: Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72, 1173–1175 (1998)

    Google Scholar 

  75. Y.-M. Lin, X. Sun, S. Cronin, Z. Zhang, J.Y. Ying, M.S. Dresselhaus: Fabrication, transport properties of Te-doped bismuth nanowire arrays. In: Molecular Electronics: MRS Symposium Proceedings, Vol. 582, ed. by S.T. Pantelides, M.A. Reed, J. Murday, A. Aviran (Materials Research Society Press, Pittsburgh 2000), pp. 1–6, Chap. H10.3

    Google Scholar 

  76. F. Li, L. Zhang, R.M. Metzger: On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10, 2470–2480 (1998)

    Google Scholar 

  77. H. Masuda, M. Satoh: Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Jpn. J. Appl. Phys. 35, L126–L129 (1996)

    Google Scholar 

  78. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura: Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997)

    Google Scholar 

  79. W. Lee, R. Ji, C.A. Ross, U. Gösele, K. Nielsch: Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography, Small 2, 978–982 (2006)

    Google Scholar 

  80. C.R. Martin: Nanomaterials: A membrane-based synthetic approach, Science 266, 1961–1966 (1994)

    Google Scholar 

  81. P. Apel: Track etching technique in membrane technology, Radiat. Meas. 34, 559–566 (2001)

    Google Scholar 

  82. E. Ferain, R. Legras: Track-etched membrane: Dynamics of pore formation, Nucl. Instrum. Methods B 84, 331–336 (1993)

    Google Scholar 

  83. A. Blondel, J.P. Meier, B. Doudin, J.-P. Ansermet: Giant magnetoresistance of nanowires of multilayers, Appl. Phys. Lett. 65, 3019–3021 (1994)

    Google Scholar 

  84. K. Liu, C.L. Chien, P.C. Searson, Y.Z. Kui: Structural and magneto-transport properties of electrodeposited bismuth nanowires, Appl. Phys. Lett. 73, 1436–1438 (1998)

    Google Scholar 

  85. C.A. Huber, T.E. Huber: A novel microstructure: semiconductor-impregnated porous Vycor glass, J. Appl. Phys. 64, 6588–6590 (1988)

    Google Scholar 

  86. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker: A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Google Scholar 

  87. C.-G. Wu, T. Bein: Conducting polyaniline filaments in a mesoporous channel host, Science 264, 1757–1759 (1994)

    Google Scholar 

  88. T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell: Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates, Science 290, 2126–2129 (2000)

    Google Scholar 

  89. P.-Y. Chen, X. Dang, M.T. Klug, N.M. Dorval Courchesne, J. Qi, M.N. Hyder, A.M. Belcher, P.T. Hammond: M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks, Chem. Mater. 27, 1531–1540 (2015) doi:10.1021/cm503803u

    Article  Google Scholar 

  90. J.C. Zhou, C.M. Soto, M.-S. Chen, M.A. Bruckman, M.H. Moore, E. Barry, B.R. Ratna, P.E. Pehrsson, B.R. Spies, T.S. Confer: Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires, J. Nanobiotechnol. 10, 18 (2012) doi:10.1186/1477-3155-10-18

    Article  Google Scholar 

  91. M. Knez, M. Sumser, A.M. Bittner, C. Wege, H. Jeske, T.P. Martin, K. Kern: Spatially selective nucleation of metal clusters on the tobacco mosaic virus, Adv. Funct. Mater. 14, 116–124 (2004) doi:10.1002/adfm.200304376

    Article  Google Scholar 

  92. X.Z. Fan, E. Pomerantseva, M. Gnerlich, A. Brown, K. Gerasopoulos, M. McCarthy, J. Culver, R. Ghodssi: Tobacco mosaic virus: A biological building block for micro/nano systems, J. Vac. Sci. Technol. A 31, 050815-1–05081524 (2013)

    Google Scholar 

  93. Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, J.P. Heremans: Transport properties of Bi nanowire arrays, Appl. Phys. Lett. 76, 3944–3946 (2000)

    Google Scholar 

  94. A.W. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1982) p. 338

    Google Scholar 

  95. R. Ferré, K. Ounadjela, J.M. George, L. Piraux, S. Dubois: Magnetization processes in nickel and cobalt electrodeposited nanowires, Phys. Rev. B 56, 14066–14075 (1997)

    Google Scholar 

  96. H. Zeng, M. Zheng, R. Skomski, D.J. Sellmyer, Y. Liu, L. Menon, S. Bandyopadhyay: Magnetic properties of self-assembled Co nanowires of varying length and diameter, J. Appl. Phys. 87, 4718–4720 (2000)

    Google Scholar 

  97. Y. Peng, H.L. Zhang, S.-L. Pan, H.-L. Li: Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film, J. Appl. Phys. 87, 7405–7408 (2000)

    Google Scholar 

  98. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert: Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett. 65, 2484–2486 (1994)

    Google Scholar 

  99. S. Bhattacharrya, S.K. Saha, D. Chakravorty: Nanowire formation in a polymeric film, Appl. Phys. Lett. 76, 3896–3898 (2000)

    Google Scholar 

  100. G. Yi, W. Schwarzacher: Single crystal superconductor nanowires by electrodeposition, Appl. Phys. Lett. 74, 1746–1748 (1999)

    Google Scholar 

  101. D. Al-Mawlawi, C.Z. Liu, M. Moskovits: Nanowires formed in anodic oxide nanotemplates, J. Mater. Res. 9, 1014–1018 (1994)

    Google Scholar 

  102. Z. Yao, C. Wang, Y. Li, N.-Y. Kim: AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition, Nanoscale Res. Lett. 10, 166 (2015) doi:10.1186/s11671-015-0872-9

    Article  Google Scholar 

  103. J.W. Elam, D. Routkevitch, P.P. Mardilovich, S.M. George: Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem. Mater. 15, 3507–3517 (2003) doi:10.1021/cm0303080

    Article  Google Scholar 

  104. M. Daub, M. Knez, U. Goesele, K. Nielsch: Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes, J. Appl. Phys. 101, 09J111 (2007) doi:10.1063/1.2712057

    Article  Google Scholar 

  105. R.S. Wagner, W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4, 89–90 (1964)

    Google Scholar 

  106. Y. Wu, P. Yang: Direct observation of vapor-liquid-solid nanowire growth, J. Am. Chem. Soc. 123, 3165–3166 (2001)

    Google Scholar 

  107. Y. Wu, R. Fan, P. Yang: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires, Nano Lett. 2, 83–86 (2002)

    Google Scholar 

  108. S. Sharma, M.K. Sunkara, R. Miranda, G. Lian, E.C. Dickey: A novel low temperature synthesis method for semiconductor nanowires. In: Synthesis, Functional Properties and Applications of Nanostructures, Mater. Res. Soc. Symp. Proc., San Francisco, Vol. 676, ed. by H.W. Hahn, D.L. Feldheim, C.P. Kubiak, R. Tannenbaum, R.W. Siegel (Materials Research Society, Pittsburgh 2001) p. Y1.6

    Google Scholar 

  109. J. Johansson, B.A. Wacaser, K.A. Dick, W. Seifert: Growth related aspects of epitaxial nanowires, Nanotechnology 17, S355–S361 (2006) doi:10.1088/0957-4484/17/11/S21

    Article  Google Scholar 

  110. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang: Room-temperature ultraviolet nanowire nanolasers, Science 292, 1897–1899 (2001)

    Google Scholar 

  111. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber: Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415, 617–620 (2002)

    Google Scholar 

  112. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature 430, 61–65 (2004)

    Google Scholar 

  113. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson: One-dimensional steeplechase for electrons realized, Nano Lett. 2, 87–89 (2002)

    Google Scholar 

  114. N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, S.T. Lee: Nucleation and growth of Si nanowires from silicon oxide, Phys. Rev. B 58, R16024–R16026 (1998)

    Google Scholar 

  115. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee: One-dimensional growth mechanism of crystalline silicon nanowires, J. Cryst. Growth 197, 136–140 (1999)

    Google Scholar 

  116. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, Y.W. Chung: Semiconductor nanowires from oxides, J. Mater. Res. 14, 4503–4507 (1999)

    Google Scholar 

  117. D.D.D. Ma, C.S. Lee, Y. Lifshitz, S.T. Lee: Periodic array of intramolecular junctions of silicon nanowires, Appl. Phys. Lett. 81, 3233–3235 (2002)

    Google Scholar 

  118. S.V. Thombare, A.F. Marshall, P.C. McIntyre: Kinetics of germanium nanowire growth by the vapor-solid-solid mechanism with a Ni-based catalyst, APL Mater. 1, 061101 (2013) doi:10.1063/1.4833935

    Article  Google Scholar 

  119. J. Lensch-Falk, E. Hemesath, D. Perea, L. Lauhon: Alternative catalysts for VSS growth of silicon and germanium nanowires, J. Mater. Chem. 19, 849–857 (2009) doi:10.1039/b817391e

    Article  Google Scholar 

  120. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W.E. Buhro: Solution-liquid-solid growth of semiconductor nanowires, Inorganic Chem. 45, 7511–7521 (2006)

    Google Scholar 

  121. H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek: The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng. 5, 115–120 (1995)

    Google Scholar 

  122. Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt, A.C. Ferrari, W.I. Milne: Deep reactive ion etching as a tool for nanostructure fabrication, J. Vac. Sci. Technol. B 27, 1520–1526 (2009)

    Google Scholar 

  123. X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D.J. Fray: Black silicon: Fabrication methods, properties and solar energy applications, Energy Environ. Sci. 7, 3223–3263 (2014)

    Google Scholar 

  124. F. Toor, J.B. Miller, L.M. Davidson, L. Nichols, W. Duan, M.P. Jura, J. Yim, J. Forziati, M.R. Black: Nanostructured silicon via metal assisted catalyzed etch (MACE): Chemistry fundamentals and pattern engineering, Nanotechnology 27(41), 412003 (2016)

    Google Scholar 

  125. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele: Metal-assisted chemical etching of silicon: A review, Adv. Mater. 23, 285–308 (2011)

    Google Scholar 

  126. B. Gates, Y. Yin, Y. Xia: A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm, J. Am. Chem. Soc. 122, 12582–12583 (2000)

    Google Scholar 

  127. B. Mayers, B. Gates, Y. Yin, Y. Xia: Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process, Adv. Mater. 13, 1380–1384 (2001)

    Google Scholar 

  128. B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia: Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. 123, 11500–11501 (2001)

    Google Scholar 

  129. B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang, Y. Xia: Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature, Adv. Funct. Mater. 12, 679–686 (2002)

    Google Scholar 

  130. H. Yu, P.C. Gibbons, W.E. Buhro: Bismuth, tellurium and bismuth telluride nanowires, J. Mater. Chem. 14, 595–602 (2004)

    Google Scholar 

  131. X. Peng, J. Wickham, A.P. Alivisatos: Kinetics of II–VI, III–V colloidal semiconductor nanocrystal growth: ‘Focusing’ of size distributions, J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Google Scholar 

  132. M.P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R.M. Penner: Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration, Chem. Mater. 14, 3206–3216 (2002)

    Google Scholar 

  133. Dedi, P.-C. Lee, C.-H. Chien, G.-P. Dong, W.-C. Huang, C.-L. Chen, C.-M. Tseng, S.R. Harutyunyan, C.-H. Lee, Y.-Y. Chen: Stress-induced growth of single-crystalline lead telluride nanowires and their thermoelectric transport properties, Appl. Phys. Lett. 103, 023115 (2013) doi:10.1063/1.4813606

    Article  Google Scholar 

  134. J. Ham, W. Shim, D.H. Kim, S. Lee, J. Roh, S.W. Sohn, K.H. Oh, P.W. Voorhees, W. Lee: Direct growth of compound semiconductor nanowires by on-film formation of nanowires: Bismuth telluride, Nano Lett. 9, 2867–2872 (2009) doi:10.1021/nl9010518

    Article  Google Scholar 

  135. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolto, P.M. Petroff, J.R. Heath: Ultrahigh-density nanowire lattices and circuits, Science 300, 112–115 (2003)

    Google Scholar 

  136. P. Yang, F. Kim: Langmuir–Blodgett assembly of one-dimensional nanostructures, ChemPhysChem 3, 503–506 (2002)

    Google Scholar 

  137. B. Messer, J.H. Song, P. Yang: Microchannel networks for nanowire patterning, J. Am. Chem. Soc. 122, 10232–10233 (2000)

    Google Scholar 

  138. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk: Electric-field assisted assembly and alignment of metallic nanowires, Appl. Phys. Lett. 77, 1399–1401 (2000)

    Google Scholar 

  139. D. Whang, S. Jin, C.M. Lieber: Large-scale hierarchical organization of nanowires for functional nanosystems, Jpn. J. Appl. Phys. 43, 4465–4470 (2004)

    Google Scholar 

  140. S. Jin, D.M. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber: Scalable interconnection and integration of nanowire devices without registration, Nano Lett. 4, 915–919 (2004)

    Google Scholar 

  141. M. Li, R.B. Bhiladvala, T.J. Morrow, J.A. Sioss, K.-K. Lew, J.M. Redwing, C.D. Keating, T.S. Mayer: Bottom-up assembly of large-area nanowire resonator arrays, Nat. Nanotechnol. 3, 88–92 (2008)

    Google Scholar 

  142. S. Evoy, N. DiLello, V. Deshpande, A. Narayanan, H. Liu, M. Riegelman, B.R. Martin, B. Hailer, J.-C. Bradley, W. Weiss, T.S. Mayer, Y. Gogotsi, H.H. Bau, T.E. Mallouk, S. Raman: Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry, Microelectron. Eng. 75, 31–42 (2004)

    Google Scholar 

  143. T. Kuykendall, P.J. Pauzauskie, Y.F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P.D. Yang: Crystallographic alignment of high-density gallium nitride nanowire arrays, Nat. Mater. 3, 524–528 (2004)

    Google Scholar 

  144. O. Rabin, P.R. Herz, S.B. Cronin, Y.-M. Lin, A.I. Akinwande, M.S. Dresselhaus: Nanofabrication using self-assembled alumina templates. In: Nonlithographic and Lithographic Methods for Nanofabrication, Mater. Res. Soc. Symp. Proc., Boston, Vol. 636, ed. by J.A. Rogers, A. Karim, L. Merhari, D. Norris, Y. Xia (Materials Research Society, Pittsburgh 2001) pp. D4.7-1–D4.7-6

    Google Scholar 

  145. O. Rabin, P.R. Herz, Y.-M. Lin, A.I. Akinwande, S.B. Cronin, M.S. Dresselhaus: Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass, Adv. Funct. Mater. 13, 631–638 (2003)

    Google Scholar 

  146. O. Rabin, P.R. Herz, Y.-M. Lin, S.B. Cronin, A.I. Akinwande, M.S. Dresselhaus: Arrays of nanowires on silicon wafers. In: 21st Int. Conf. Thermoelectr. Proc. ICT ’02 Long Beach (IEEE, Piscataway 2002) pp. 276–279

    Google Scholar 

  147. Y.H. Tang, Y.F. Zhang, N. Wang, C.S. Lee, X.D. Han, I. Bello, S.T. Lee: Morphology of Si nanowires synthesized by high-temperature laser ablation, J. Appl. Phys. 85, 7981–7983 (1999)

    Google Scholar 

  148. Y. Ding, Z.L. Wang: Structure analysis of nanowires and nanobelts by transmission electron microscopy, J. Phys. Chem. B 108, 12280–12291 (2004)

    Google Scholar 

  149. S.B. Cronin, Y.-M. Lin, O. Rabin, M.R. Black, G. Dresselhaus, M.S. Dresselhaus, P.L. Gai: Bismuth nanowires for potential applications in nanoscale electronics technology, Microsc. Microanal. 8, 58–63 (2002)

    Google Scholar 

  150. M.S. Sander, R. Gronsky, Y.-M. Lin, M.S. Dresselhaus: Plasmon excitation modes in nanowire arrays, J. Appl. Phys. 89, 2733–2736 (2001)

    Google Scholar 

  151. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420, 57–61 (2002)

    Google Scholar 

  152. L. Venkataraman, C.M. Lieber: Molybdenum selenide molecular wires as one-dimensional conductors, Phys. Rev. Lett. 83, 5334–5337 (1999)

    Google Scholar 

  153. A. Majumdar: Scanning thermal microscopy, Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Google Scholar 

  154. K.M. Unruh, T.E. Huber, C.A. Huber: Melting and freezing behavior of indium metal in porous glasses, Phys. Rev. B 48, 9021–9027 (1993)

    Google Scholar 

  155. Y.Y. Wu, P.D. Yang: Melting and welding semiconductor nanowires in nanotubes, Adv. Mater. 13, 520–523 (2001)

    Google Scholar 

  156. P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)

    Google Scholar 

  157. Y. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)

    Google Scholar 

  158. M.E. Toimil-Molares, A.G. Balogh, T.W. Cornelius, R. Neumann, C. Trautmann: Fragmentation of nanowires driven by Rayleigh instability, Appl. Phys. Lett. 84, 5337–5339 (2004)

    Google Scholar 

  159. J.L. Costa-Krämer, N. Garcia, H. Olin: Conductance quantization histograms of gold nanowires at 4 K, Phys. Rev. B 55, 12910–12913 (1997)

    Google Scholar 

  160. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones: One-dimensional transport and the quantization of the ballistic resistance, J. Phys. C 21, L209–L214 (1988)

    Google Scholar 

  161. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouvenhoven, D. van der Marel, C.T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60, 848–850 (1988)

    Google Scholar 

  162. C.J. Muller, J.M. van Ruitenbeek, L.J. de Jongh: Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width, Phys. Rev. Lett. 69, 140–143 (1992)

    Google Scholar 

  163. C.J. Muller, J.M. Krans, T.N. Todorov, M.A. Reed: Quantization effects in the conductance of metallic contacts at room temperature, Phys. Rev. B 53, 1022–1025 (1996)

    Google Scholar 

  164. J.L. Costa-Krämer, N. Garcia, H. Olin: Conductance quantization in bismuth nanowires at 4 K, Phys. Rev. Lett. 78, 4990–4993 (1997)

    Google Scholar 

  165. C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N.J. Tao: Molecular detection based on conductance quantization of nanowires, Appl. Phys. Lett. 76, 1333–1335 (2000)

    Google Scholar 

  166. J.L. Costa-Krämer, N. Garcia, P. Garcia-Mochales, P.A. Serena, M.I. Marques, A. Correia: Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes, Phys. Rev. B 55, 5416–5424 (1997)

    Google Scholar 

  167. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber: Logic gates and computation from assembled nanowire building blocks, Science 294, 1313–1317 (2001)

    Google Scholar 

  168. J.-R. Kim, H. Oh, H.M. So, J.-J. Kim, J. Kim, C.J. Lee, S.C. Lyu: Schottky diodes based on a single GaN nanowire, Nanotechnology 13, 701–704 (2002)

    Google Scholar 

  169. X. Duan, Y. Huang, C.M. Lieber: Nonvolatile memory and programmable logic from molecule-gated nanowires, Nano Lett. 2, 487–490 (2002)

    Google Scholar 

  170. E.C. Walter, R.M. Penner, H. Liu, K.H. Ng, M.P. Zach, F. Favier: Sensors from electrodeposited metal nanowires, Surf. Interface Anal. 34, 409–412 (2002)

    Google Scholar 

  171. E.C. Walter, K.H. Ng, M.P. Zach, R.M. Penner, F. Favier: Electronic devices from electrodeposited metal nanowires, Microelectron. Eng. 61/62, 555–561 (2002)

    Google Scholar 

  172. Y.-M. Lin, X. Sun, M.S. Dresselhaus: Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires, Phys. Rev. B 62, 4610–4623 (2000)

    Google Scholar 

  173. K. Liu, C.L. Chien, P.C. Searson: Finite-size effects in bismuth nanowires, Phys. Rev. B 58, R14681–R14684 (1998)

    Google Scholar 

  174. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, J. Heremans: Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays, Appl. Phys. Lett. 73, 1589–1591 (1998)

    Google Scholar 

  175. J. Heremans, C.M. Thrush, Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, D.T. Morelli: Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization, Phys. Rev. B 58, R10091–R10095 (1998)

    Google Scholar 

  176. L. Sun, P.C. Searson, C.L. Chien: Finite-size effects in nickel nanowire arrays, Phys. Rev. B 61, R6463–R6466 (2000)

    Google Scholar 

  177. Y.-M. Lin, S.B. Cronin, O. Rabin, J.Y. Ying, M.S. Dresselhaus: Transport properties and observation of semimetal-semiconductor transition in Bi-based nanowires. In: Quantum Confined Semiconductor Nanostructures: MRS Symposium Proceedings, Boston, Vol. 737-C, ed. by J.M. Buriak, D.D.M. Wayner, F. Priolo, B. White, V. Klimov, L. Tsybeskov (Materials Research Society, Pittsburgh 2003) p. F3.14

    Google Scholar 

  178. Y.-M. Lin, M.S. Dresselhaus: Transport properties of superlattice nanowires and their potential for thermoelectric applications. In: Quantum Confined Semiconductor Nanostructures: MRS Symposium Proceedings, Boston, Vol. 737-C, ed. by J.M. Buriak, D.D.M. Wayner, F. Priolo, B. White, V. Klimov, L. Tsybeskov (Materials Research Society Press, Pittsburgh 2003) p. F8.18

    Google Scholar 

  179. Y.-M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus: Semimetal-semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties, Appl. Phys. Lett. 81, 2403–2405 (2002)

    Google Scholar 

  180. J. Heremans, C.M. Thrush, Y.-M. Lin, S.B. Cronin, M.S. Dresselhaus: Transport properties of antimony nanowires, Phys. Rev. B 63, 085406-1–085406-8 (2001)

    Google Scholar 

  181. Y.-M. Lin, S.B. Cronin, O. Rabin, J.Y. Ying, M.S. Dresselhaus: Transport properties of Bi1−xSbx alloy nanowires synthesized by pressure injection, Appl. Phys. Lett. 79, 677–679 (2001)

    Google Scholar 

  182. D.E. Beutler, N. Giordano: Localization and electron-electron interaction effects in thin Bi wires and films, Phys. Rev. B 38, 8–19 (1988)

    Google Scholar 

  183. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, J. Heremans: Electronic transport properties of single crystal bismuth nanowire arrays, Phys. Rev. B 61, 4850–4861 (2000)

    Google Scholar 

  184. J. Heremans, C.M. Thrush: Thermoelectric power of bismuth nanowires, Phys. Rev. B 59, 12579–12583 (1999)

    Google Scholar 

  185. D. Li, S.T. Huxtable, A.R. Abramson, A. Majumdar: Thermal transport in nanostructured solid-state cooling devices, J. Heat Transfer 127, 108–114 (2005) doi:10.1115/1.1839588

    Article  Google Scholar 

  186. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar: Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett. 83, 2934–2936 (2003)

    Google Scholar 

  187. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath: Silicon nanowires as efficient thermoelectric materials, Nature 451, 168–171 (2008) doi:10.1038/nature06458

    Article  Google Scholar 

  188. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang: Enhanced thermoelectric performance of rough silicon nanowires, Nature 451, 163–167 (2008) doi:10.1038/nature06381

    Article  Google Scholar 

  189. D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar: Thermal conductivity of Si/SiGe superlattice nanowires, Appl. Phys. Lett. 83, 3186–3188 (2003)

    Google Scholar 

  190. S.C. Andrews, M.A. Fardy, M.C. Moore, S. Aloni, M. Zhang, V. Radmilovic, P. Yang: Atomic-level control of the thermoelectric properties in polytypoid nanowires, Chem. Sci. 2, 706–714 (2011) doi:10.1039/C0SC00537A

    Article  Google Scholar 

  191. F. Zhou, A.L. Moore, M.T. Pettes, Y. Lee, J.H. Seol, Q.L. Ye, L. Rabenberg, L. Shi: Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires, J. Phys. D Appl. Phys. 43, 025406 (2010) doi:10.1088/0022-3727/43/2/025406

    Article  Google Scholar 

  192. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)

    Google Scholar 

  193. S.T. Huxtable, A.R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, E.T. Croke: Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices, Appl. Phys. Lett. 80, 1737–1739 (2002)

    Google Scholar 

  194. L. Shi, C. Yu, J. Zhou: Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems, J. Phys. Chem. B 109, 22102–22111 (2005)

    Google Scholar 

  195. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597–602 (2001)

    Google Scholar 

  196. C. Dames, G. Chen: Theoretical phonon thermal conductivity of Si-Ge superlattice nanowires, J. Appl. Phys. 95, 682–693 (2004)

    Google Scholar 

  197. C. Dames, G. Chen: Modeling the thermal conductivity of a SiGe segmented nanowire. In: 21st Int. Conf. Thermoelectr. Proc. ICT ’02, Long Beach (IEEE, Piscataway 2002) pp. 317–320

    Google Scholar 

  198. N. Mingo, L. Yang, D. Li, A. Majumdar: Predicting the thermal conductivity of Si and Ge nanowires, Nano Lett. 3, 1713–1716 (2003) doi:10.1021/nl034721i

    Article  Google Scholar 

  199. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat: Recent developments in thermoelectric materials, Int. Mater. Rev. 48, 45–66 (2003)

    Google Scholar 

  200. M. Kazan, G. Guisbiers, S. Pereira, M.R. Correia, P. Masri, A. Bruyant, S. Volz, P. Royer: Thermal conductivity of silicon bulk and nanowires: Effects of isotopic composition, phonon confinement, and surface roughness, J. Appl. Phys. 107, 083503 (2010) doi:10.1063/1.3340973

    Article  Google Scholar 

  201. K. Schwab, J.L. Arlett, J.M. Worlock, M.L. Roukes: Thermal conductance through discrete quantum channels, Physica E 9, 60–68 (2001)

    Google Scholar 

  202. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes: Measurement of the quantum of thermal conductance, Nature 404, 974–977 (2000)

    Google Scholar 

  203. L.D. Hicks, M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631–16634 (1993)

    Google Scholar 

  204. O. Rabin, Y.-M. Lin, M.S. Dresselhaus: Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment, Appl. Phys. Lett. 79, 81–83 (2001)

    Google Scholar 

  205. Y.M. Zuev, J.S. Lee, C. Galloy, H. Park, P. Kim: Diameter dependence of the transport properties of antimony telluride nanowires, Nano Lett. 10, 3037–3040 (2010)

    Google Scholar 

  206. W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, P. Yang: Field-effect modulation of Seebeck coefficient in single PbSe nanowires, Nano Lett. 9, 1689–1693 (2009)

    Google Scholar 

  207. Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, X.P.A. Gao: One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires, Nano Lett. 12, 6492–6497 (2012)

    Google Scholar 

  208. P.M. Wu, J. Gooth, X. Zianni, S.F. Svensson, J.G. Gluschke, K.A. Dick, C. Thelander, K. Nielsch, H. Linke: Large thermoelectric power factor enhancement observed in InAs nanowires, Nano Lett. 13, 4080–4086 (2013)

    Google Scholar 

  209. J.E. Cornett, O. Rabin: Thermoelectric figure of merit calculations for semiconducting nanowires, Appl. Phys. Lett. 98, 182104 (2011)

    Google Scholar 

  210. J.E. Cornett, O. Rabin: Universal scaling relations for the thermoelectric power factor of semiconducting nanostructures, Phys. Rev. B 84, 205410 (2011)

    Google Scholar 

  211. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473, 66–69 (2011)

    Google Scholar 

  212. J. Tang, H. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang: Holey silicon as an efficient thermoelectric material, Nano Lett. 10, 4279–4283 (2010)

    Google Scholar 

  213. L.D. Hicks, M.S. Dresselhaus: The effect of quantum well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727–12731 (1993)

    Google Scholar 

  214. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge: Quantum dot superlattice thermoelectric materials and devices, Science 297, 2229–2232 (2002)

    Google Scholar 

  215. Y.-M. Lin, M.S. Dresselhaus: Thermoelectric properties of superlattice nanowires, Phys. Rev. B 68, 075304 (2003)

    Google Scholar 

  216. S.R. Nicewarner-Peña, R.G. Freeman, B.D. Reiss, L. He, D.J. Peña, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan: Submicrometer metallic barcodes, Science 294, 137–141 (2001)

    Google Scholar 

  217. M.T. Björk, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, L. Samuelson: Nanowire resonant tunneling diodes, Appl. Phys. Lett. 81, 4458–4460 (2002)

    Google Scholar 

  218. M. Cardona: Light Scattering in Solids (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  219. P.Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer, Berlin, Heidelberg 1995), Chap. 7

    MATH  Google Scholar 

  220. J.C.M. Garnett: Colours in metal glasses, in metallic films, and in metallic solutions, Philos. Trans. R. Soc. A 205, 237–288 (1906)

    Google Scholar 

  221. D.E. Aspnes: Optical properties of thin films, Thin Solid Films 89, 249–262 (1982)

    Google Scholar 

  222. U. Kreibig, L. Genzel: Optical absorption of small metallic particles, Surf. Sci. 156, 678–700 (1985)

    Google Scholar 

  223. M.R. Black, Y.-M. Lin, S.B. Cronin, O. Rabin, M.S. Dresselhaus: Infrared absorption in bismuth nanowires resulting from quantum confinement, Phys. Rev. B 65, 195417–1–195417–9 (2002)

    Google Scholar 

  224. Veselago 1967 Usp. Fiz. Nauk 92 517

    Google Scholar 

  225. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar: Hyperbolic metamaterials, Nat. Photonics 7, 948–957 (2013)

    Google Scholar 

  226. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang: Optical negative refraction in bulk metamaterials of nanowires, Science 321, 930–930 (2008)

    Google Scholar 

  227. M.W. Lee, H.Z. Twu, C.-C. Chen, C.H. Chen: Optical characterization of wurtzite gallium nitride nanowires, Appl. Phys. Lett. 79, 3693–3695 (2001)

    Google Scholar 

  228. M.S. Gudiksen, J. Wang, C.M. Lieber: Size-depent photoluminescence from single indium phosphide nanowires, J. Phys. Chem. B 106, 4036–4039 (2002)

    Google Scholar 

  229. D.M. Lyons, K.M. Ryan, M.A. Morris, J.D. Holmes: Tailoring the optical properties of silicon nanowire arrays through strain, Nano Lett. 2, 811–816 (2002)

    Google Scholar 

  230. S. Bhattacharya, D. Banerjee, K.W. Adu, S. Samui, S. Bhattacharyya: Confinement in silicon nanowires: Optical properties, Appl. Phys. Lett. 85, 2008–2010 (2004) doi:10.1063/1.1787164

    Article  Google Scholar 

  231. J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang: Single nanowire lasers, J. Phys. Chem. B 105, 11387–11390 (2001)

    Google Scholar 

  232. S. Blom, L.Y. Gorelik, M. Jonson, R.I. Shekhter, A.G. Scherbakov, E.N. Bogachek, U. Landman: Magneto-optics of electronic transport in nanowires, Phys. Rev. B 58, 16305–16314 (1998)

    Google Scholar 

  233. J.P. Pierce, E.W. Plummer, J. Shen: Ferromagnetism in cobalt-iron alloy nanowire arrays on w(110), Appl. Phys. Lett. 81, 1890–1892 (2002)

    Google Scholar 

  234. S. Melle, J.L. Menendez, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R.B. Wehrsphon, U. Gösele: Magneto-optical properties of nickel nanowire arrays, Appl. Phys. Lett. 83, 4547–4549 (2003)

    Google Scholar 

  235. J.C. Johnson, H. Yan, R.D. Schaller, P.B. Petersen, P. Yang, R.J. Saykally: Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires, Nano Lett. 2, 279–283 (2002)

    Google Scholar 

  236. M.R. Black, P.L. Hagelstein, S.B. Cronin, Y.-M. Lin, M.S. Dresselhaus: Optical absorption from an indirect transition in bismuth nanowires, Phys. Rev. B 68, 235417 (2003)

    Google Scholar 

  237. M.R. Black, Y.-M. Lin, S.B. Cronin, M.S. Dresselhaus: Using optical measurements to improve electronic models of bismuth nanowires. In: 21st Int. Conf. Thermoelectr. Proc. ICT ’02, Long Beach, ed. by T. Caillat, J. Snyder (IEEE, Piscataway 2002) pp. 253–256

    Google Scholar 

  238. H. Richter, Z.P. Wang, L. Ley: The one phonon Raman-spectrum in microcrystalline silicon, Solid State Commun. 39, 625–629 (1981)

    Google Scholar 

  239. I.H. Campbell, P.M. Fauchet: The effects of microcrystal size and shape on the one phonon Raman-spectra of crystalline semiconductors, Solid State Commun. 58, 739–741 (1986)

    Google Scholar 

  240. H.-L. Liu, C.-C. Chen, C.-T. Chia, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, S. Keller, S.P. DenBaars: Infrared and Raman-scattering studies in single-crystalline GaN nanowires, Chem. Phys. Lett. 345, 245–251 (2001)

    Google Scholar 

  241. R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund: Laser-induced Fano resonance scattering in silicon nanowires, Nano Lett. 3, 627–631 (2003)

    Google Scholar 

  242. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66–69 (2001)

    Google Scholar 

  243. Y. Cui, C.M. Lieber: Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science 291, 851–853 (2001)

    Google Scholar 

  244. Y. Cui, X. Duan, J. Hu, C.M. Lieber: Doping and electrical transport in silicon nanowires, J. Phys. Chem. B 104, 101–104 (2000)

    Google Scholar 

  245. G.F. Zheng, W. Lu, S. Jin, C.M. Lieber: Synthesis and fabrication of high-performance n-type silicon nanowire transistors, Adv. Mater. 16, 1890–1891 (2004)

    Google Scholar 

  246. J. Goldberger, D.J. Sirbuly, M. Law, P. Yang: ZnO nanowire transistors, J. Phys. Chem. B 109, 9–14 (2005)

    Google Scholar 

  247. D.H. Kang, J.H. Ko, E. Bae, J. Hyun, W.J. Park, B.K. Kim, J.J. Kim, C.J. Lee: Ambient air effects on electrical characteristics of gap nanowire transistors, J. Appl. Phys. 96, 7574–7577 (2004)

    Google Scholar 

  248. S.-W. Chung, J.-Y. Yu, J.R. Heath: Silicon nanowire devices, Appl. Phys. Lett. 76, 2068–2070 (2000)

    Google Scholar 

  249. C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, C. Zhou: Multilevel memory based on molecular devices, Appl. Phys. Lett. 84, 1949–1951 (2004)

    Google Scholar 

  250. B. Lei, C. Li, D.Q. Zhang, Q.F. Zhou, K. Shung, C.W. Zhou: Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects, Appl. Phys. Lett. 84, 4553–4555 (2004)

    Google Scholar 

  251. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan: Single crystal nanowire vertical surround-gate field-effect transistor, Nano Lett. 4, 1247–1252 (2004)

    Google Scholar 

  252. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy: Nanowire transistors without junctions, Nat. Nanotechnol. 5, 225–229 (2010) doi:10.1038/nnano.2010.15

    Article  Google Scholar 

  253. J.P. Colinge, A. Kranti, R. Yan, C.W. Lee, I. Ferain, R. Yu, A.N. Dehdashti, P. Razavi: Junctionless nanowire transistor (JNT): Properties and design guidelines, Solid-State Electron. 65/66, 33–37 (2011) doi:10.1016/j.sse.2011.06.004

    Article  Google Scholar 

  254. W. Wu, X. Wen, Z.L. Wang: Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging, Science 340, 952–957 (2013)

    Google Scholar 

  255. M. Ding, H. Kim, A.I. Akinwande: Observation of valence band electron emission from n-type silicon field emitter arrays, Appl. Phys. Lett. 75, 823–825 (1999)

    Google Scholar 

  256. F.-H. Chu, C.-W. Huang, C.-L. Hsin, C.-W. Wang, S.-Y. Yu, P.-H. Yeh, W.-W. Wu: Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties, Nanoscale 4, 1471–1475 (2012)

    Google Scholar 

  257. F.C.K. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello, S.T. Lee: Electron field emission from silicon nanowires, Appl. Phys. Lett. 75, 1700–1702 (1999)

    Google Scholar 

  258. P.M. Ajayan, O.Z. Zhou: Applications of carbon nanotubes. In: Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer Ser. Top. Appl. Phys., Vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, Heidelberg 2001) pp. 391–425

    Google Scholar 

  259. M. Lu, M.K. Li, Z.J. Zhang, H.L. Li: Synthesis of carbon nanotubes/si nanowires core-sheath structure arrays and their field emission properties, Appl. Surf. Sci. 218, 196–202 (2003)

    Google Scholar 

  260. L. Vila, P. Vincent, L. Dauginet-DePra, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, P. Legagneux: Growth and field-emission properties of vertically aligned cobalt nanowire arrays, Nano Lett. 4, 521–524 (2004)

    Google Scholar 

  261. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans: Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8, 689–692 (2008) doi:10.1021/nl073296g

    Article  Google Scholar 

  262. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber: Single-nanowire electrically driven lasers, Nature 421, 241 (2003)

    Google Scholar 

  263. F. Qian, Y. Li, S. Gradecak, D.L. Wang, C.J. Barrelet, C.M. Lieber: Gallium nitride-based nanowire radial heterostructures for nanophotonics, Nano Lett. 4, 1975–1979 (2004)

    Google Scholar 

  264. V. Dneprovskii, E. Zhukov, V. Karavanskii, V. Poborchii, I. Salamatini: Nonlinear optical properties of semiconductor quantum wires, Superlattice. Microst. 23(6), 1217–1221 (1998)

    Google Scholar 

  265. J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, R.J. Saykally: Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nano Lett. 4, 197–204 (2004)

    Google Scholar 

  266. J.X. Ding, J.A. Zapien, W.W. Chen, Y. Lifshitz, S.T. Lee, X.M. Meng: Lasing in ZnS nanowires grown on anodic aluminum oxide templates, Appl. Phys. Lett. 85, 2361 (2004)

    Google Scholar 

  267. J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally: Single gallium nitride nanowire lasers, Nat. Mater. 1, 106–110 (2002)

    Google Scholar 

  268. H.J. Choi, J.C. Johnson, R. He, S.K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally, P. Yang: Self-organized GaN quantum wire UV lasers, J. Phys. Chem. B 107, 8721–8725 (2003)

    Google Scholar 

  269. C.J. Barrelet, A.B. Greytak, C.M. Lieber: Nanowire photonic circuit elements, Nano Lett. 4, 1981–1985 (2004)

    Google Scholar 

  270. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang: Ultralong nanoribbon waveguides for sub-wavelength photonics integration, Science 305, 1269–1273 (2004)

    Google Scholar 

  271. H. Kind, H. Yan, B. Messer, M. Law, P. Yang: Nanowire ultraviolet photodetectors and optical switches, Adv. Mater. 14, 158–160 (2002)

    Google Scholar 

  272. B.M.I. van der Zande, M.R. Böhmer, L.G.J. Fokkink, C. Schöneberger: Colloidal dispersions of gold rods: Synthesis and optical properties, Langmuir 16, 451–458 (2000)

    Google Scholar 

  273. B.M.I. van der Zande, G.J.M. Koper, H.N.W. Lekkerkerker: Alignment of rod-shaped gold particles by electric fields, J. Phys. Chem. B 103, 5754–5760 (1999)

    Google Scholar 

  274. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos: Hybrid nanorod-polymer solar cells, Science 295, 2425–2427 (2002)

    Google Scholar 

  275. I. Åberg, G. Vescovi, D. Asoli: A GaAs nanowire array solar cell with 15.3% efficiency at 1 Sun, IEEE J. Photovolt. 6, 185–190 (2016)

    Google Scholar 

  276. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström: InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science 339, 1057–1060 (2013)

    Google Scholar 

  277. B.X. Tian, T.J. Zheng: Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber: Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449, 885–889 (2007)

    Google Scholar 

  278. P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard: A. Fontcuberta i Morral: Single-nanowire solar cells beyond the Shockley-Queisser limit, Nat. Photon. 7, 306–310 (2013)

    Google Scholar 

  279. B. A. Buchine, F. Modawar, M. R. Black: Nanostructured Devices. US Patent No. 20,100,122,725. (2010)

    Google Scholar 

  280. L. Hu, G. Chen: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Lett. 7, 3249–3252 (2007)

    Google Scholar 

  281. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui: High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3, 31–35 (2008)

    Google Scholar 

  282. L. Mai, Y. Dong, L. Xu, C. Han: Single nanowire electrochemical devices, Nano Lett. 10, 4273–4278 (2010) doi:10.1021/nl102845r

    Article  Google Scholar 

  283. V.P. Oleshko, T. Lam, D. Ruzmetov, P. Haney, H.J. Lezec, A.V. Davydov, S. Krylyuk, J. Cumings, A.A. Talin: Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes, Nanoscale 6(20), 11756 (2014)

    Google Scholar 

  284. M. Green: U.S. Patent No. 7402829 (U.S. Patent and Trademark Office, Washington DC 2008)

    Google Scholar 

  285. B. A. Buchine, F. Modawar, M. R. Black: Nanostructured silicon for battery anodes, U.S. Patent No. 8791449. (2014)

    Google Scholar 

  286. G. E. Loveness, C.I. Stefan, S. Han: Multidimensional electrochemically active structures for battery electrodes, U.S. Patent No. 9172088. (2015)

    Google Scholar 

  287. C. Liu, E.I. Gillette, X. Chen, A.J. Pearse, A.C. Kozen, M.A. Schroeder, K.E. Gregorczyk, S.L. Bok, G.W. Rubloff: An all-in-one nanopore battery array, Nat. Nanotechnol. 9, 1031–1039 (2014) doi:10.1038/nnano.2014.247

    Article  Google Scholar 

  288. J. Qiu, G. Zeng, M.-A. Ha, M. Ge, Y. Lin, M. Hettick, B. Hou, A.N. Alexandrova, A. Javey, S.B. Cronin: Artificial photosynthesis on TiO2-passivated InP nanopillars, Nano Lett. 15, 6177–6181 (2015)

    Google Scholar 

  289. Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, P. Yang: Single-nanowire photoelectrochemistry, Nat. Nanotechnol. 11, 609–612 (2016) doi:10.1038/nnano.2016.30

    Article  Google Scholar 

  290. P. Banerjee, I. Perez, L. Henn-Lecordier, S.B. Lee, G.W. Rubloff: Nanotubular metal–insulator–metal capacitor arrays for energy storage, Nat. Nanotechnol. 4(5), 292–296 (2009)

    Google Scholar 

  291. Z. Liu, Y. Zhan, G. Shi, S. Moldovan, M. Gharbi, L. Song, L. Ma, W. Gao, J. Huang, R. Vajtai, F. Banhart, P. Sharma, J. Lou, P.M. Ajayan: Anomalous high capacitance in a coaxial single nanowire capacitor, Nat. Commun. (2012) doi:10.1038/ncomms1833

  292. P.M. Rorvik, T. Grande, M.A. Einarsrud: One-dimensional nanostructures of ferroelectric perovskites, Adv. Mater. 23, 4007–4034 (2011) doi:10.1002/adma.201004676

    Article  Google Scholar 

  293. Z.L. Wang: From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures, MRS Bull. 37, 814–827 (2012) doi:10.1557/mrs.2012.186

    Article  Google Scholar 

  294. Z.L. Wang, J.H. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312, 242–246 (2006) doi:10.1126/science.1124005

    Article  Google Scholar 

  295. L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, Y. Qin, Z. Lin Wang: Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode, Nano Lett. 13, 91–94 (2013) doi:10.1021/nl303539c

    Article  Google Scholar 

  296. J.H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou, Z.L. Wang: Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator, Acs Nano 5, 10041–10046 (2011) doi:10.1021/nn2039033

    Article  Google Scholar 

  297. J. Kwon, W. Seung, B.K. Sharma, S.W. Kim, J.H. Ahn: A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes, Energy Environ. Sci. 5, 8970–8975 (2012) doi:10.1039/c2ee22251e

    Article  Google Scholar 

  298. C. Falconi, G. Mantinia, A. D’Amico, Z.L. Wang: Studying piezoelectric nanowires and nanowalls for energy harvesting, Sens. Actuat. B-Chem. 139, 511–519 (2009) doi:10.1016/j.snb.2009.02.071

    Article  Google Scholar 

  299. G. Mantini, Y.F. Gao, A. D’Amico, C. Falconi, Z.L. Wang: Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire, Nano Res 2, 624–629 (2009) doi:10.1007/s12274-009-9063-2

    Article  Google Scholar 

  300. Z. Wang, X. Pan, Y. He, Y. Hu, H. Gu, Y. Wang: Piezoelectric nanowires in energy harvesting applications, Adv. Mater. Sci. Eng. (2015) doi:10.1155/2015/165631

  301. H.D. Espinosa, R.A. Bernal, M. Minary-Jolandan: A review of mechanical and electromechanical properties of piezoelectric nanowires, Adv. Mater. 24, 4656–4675 (2012) doi:10.1002/adma.201104810

    Article  Google Scholar 

  302. C.-T. Huang, J. Song, W.-F. Lee, Y. Ding, Z. Gao, Y. Hao, L.-J. Chen, Z.L. Wang: GaN nanowire arrays for high-output nanogenerators, J. Am. Chem. Soc. 132, 4766–4771 (2010) doi:10.1021/ja909863a

    Article  Google Scholar 

  303. C.T. Huang, J. Song, C.-M. Tsai, W.-F. Lee, D.-H. Lien, Z. Gao, Y. Hao, L.-J. Chen, Z.L. Wang: Single-InN-nanowire nanogenerator with upto 1 V output voltage, Adv. Mater. 22, 4008–4013 (2010) doi:10.1002/adma.201000981

    Article  Google Scholar 

  304. Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang: Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect, Adv. Mater. 20, 3127–3130 (2008) doi:10.1002/adma.200703236

    Article  Google Scholar 

  305. M.-Y. Lu, J. Song, M.-P. Lu, C.-Y. Lee, L.-J. Chen, Z.L. Wang: ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation, Acs Nano 3, 357–362 (2009) doi:10.1021/nn800804r

    Article  Google Scholar 

  306. Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang: Piezoelectric nanogenerator using CdS nanowires, Appl. Phys. Lett. 92, 022105 (2008) doi:10.1063/1.2831901

    Article  Google Scholar 

  307. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang: Self-powered nanowire devices, Nat. Nanotechnol. 5, 366–373 (2010) doi:10.1038/nnano.2010.46

    Article  Google Scholar 

  308. S. Xu, B.J. Hansen, Z.L. Wang: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics, Nat. Commun. (2010) doi:10.1038/ncomms1098

  309. Z.Y. Wang, J. Hu, A.P. Suryavanshi, K. Yum, M.F. Yu: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load, Nano Lett. 7, 2966–2969 (2007) doi:10.1021/nl070814e

    Article  Google Scholar 

  310. R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang: Power generation with laterally packaged piezoelectric fine wires, Nat. Nanotechnol. 4, 34–39 (2009) doi:10.1038/nnano.2008.314

    Article  Google Scholar 

  311. Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhoua, J. Guan: Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures, Crystengcomm 12, 3157–3162 (2010) doi:10.1039/c000169d

    Article  Google Scholar 

  312. G.A. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang: Flexible high-output nanogenerator based on lateral ZnO nanowire array, Nano Lett. 10, 3151–3155 (2010) doi:10.1021/nl101973h

    Article  Google Scholar 

  313. J.Y. Chang, M. Domnner, C. Chang, L.W. Lin: Piezoelectric nanofibers for energy scavenging applications, Nano Energy 1, 356–371 (2012) doi:10.1016/j.nanoen.2012.02.003

    Article  Google Scholar 

  314. X. Chen, S.Y. Xu, N. Yao, Y. Shi: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano Lett. 10, 2133–2137 (2010) doi:10.1021/nl100812k

    Article  Google Scholar 

  315. Y.F. Hu, Y. Zhang, C. Xu, G.A. Zhu, Z.L. Wang: High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display, Nano Lett. 10, 5025–5031 (2010) doi:10.1021/nl103203u

    Article  Google Scholar 

  316. L. Lin, C. Lai, Y. Hu, Y. Zhang, X. Wang, C. Xu, R.L. Snyder, L.J. Chen, Z.L. Wang: High output nanogenerator based on assembly of GaN nanowires, Nanotechnology (2011) doi:10.1088/0957-4484/22/47/475401

  317. L.A. Bauer, N.S. Birenbaum, G.J. Meyer: Biological applications of high aspect ratio nanoparticles, J. Mater. Chem. 14, 517–526 (2004)

    Google Scholar 

  318. Y. Cui, Q. Wei, H. Park, C. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001)

    Google Scholar 

  319. J. Hahm, C. Lieber: Direct ultra-sensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett. 4, 51–54 (2004)

    Google Scholar 

  320. J. Zhoua, C.S. Lao, P. Gao, W. Mai, W.L. Hughes, S. Zhi Deng, N.S. Xu, Z.L. Wang: Nanowire as pico-gram balance at workplace atmosphere, Solid State Commun. 139, 222–226 (2006)

    Google Scholar 

  321. M.S. Hanay, S. Kelber, A.K. Naik, D. Chi, S. Hentz, E.C. Bullard, E. Colinet, L. Duraffourg, M.L. Roukes: Single-protein nanomechanical mass spectrometry in real time, Nat. Nanotechnol. 7, 602–608 (2012) doi:10.1038/nnano.2012.119

    Article  Google Scholar 

  322. M. L. Roukes, M. S. Hanay, S. Kelber, A. Naik: US Patent Application No. 13/890,087 (2013)

    Google Scholar 

  323. D.J. Sirbuly, M. Law, H. Yan, P. Yang: Semiconductor nanowires for subwavelength photonics integration, J. Phys. Chem. B 109, 15190–15213 (2005)

    Google Scholar 

  324. R. Yan, J. Park, Y. Choi, C. Heo, S. Yang, L.P. Lee, P. Yang: Nanowire-based single cell endoscopy, Nat. Nanotechnol. 7, 191–196 (2012)

    Google Scholar 

  325. Y. Huang, Y. Fang, Z. Zhang, L. Zhu, M. Sun: Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering, Light Sci. Appl. 3, e199 (2014) doi:10.1038/lsa.2014.80

    Article  Google Scholar 

  326. S.S.P. Parkin, M. Hayashi, L. Thomas: Magnetic domain-wall racetrack memory, Science 320, 190–194 (2008) doi:10.1126/science.1145799

    Article  Google Scholar 

  327. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn: Magnetic domain-wall logic, Science 309, 1688–1692 (2005) doi:10.1126/science.1108813

    Article  Google Scholar 

  328. D. Atkinson, D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, R.P. Cowburn: Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure, Nat. Mater. 2, 85–87 (2003) doi:10.1038/nmat803

    Article  Google Scholar 

  329. R.D. McMichael, M.J. Donahue: Head to head domain wall structures in thin magnetic strips, IEEE Trans. Magnet. 33, 4167–4169 (1997) doi:10.1109/20.619698

    Article  Google Scholar 

  330. T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, T. Shinjo: Propagation of a magnetic domain wall in a submicrometer magnetic wire, Science 284, 468–470 (1999) doi:10.1126/science.284.5413.468

    Article  Google Scholar 

  331. D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, D. Atkinson, N. Vernier, R.P. Cowburn: Submicrometer ferromagnetic NOT gate and shift register, Science 296, 2003–2006 (2002) doi:10.1126/science.1070595

    Article  Google Scholar 

  332. C.C. Faulkner, D.A. Allwood, M.D. Cooke, G. Xiong, D. Atkinson, R.P. Cowburn: Controlled switching of ferromagnetic wire junctions by domain wall injection, IEEE Trans. Magnet. 39, 2860–2862 (2003) doi:10.1109/tmag.2003.816247

    Article  Google Scholar 

Download references

Acknowledgements

In loving memory of our advisor, mentor, and friend Dr. Millie Dresselhaus who passed away during the production of this handbook. O.R. acknowledges support from the National Science Foundation (DMR-1151614).

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Dresselhaus, M.S., Black, M.R., Meunier, V., Rabin, O. (2017). Nanowires. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics