Skip to main content

Materials Aspects of Micro- and Nanoelectromechanical Systems

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

One of the more significant technological achievements during the last twenty years has been the development of the field of microelectromechanical systems (GlossaryTerm

MEMS

) and its offshoot, nanoelectromechanical systems (GlossaryTerm

NEMS

). These developments were made possible by significant advancements in the materials and processing technologies used in the fabrication of MEMS and NEMS devices. While initial developments capitalized on a mature Si infrastructure built for the integrated circuit (GlossaryTerm

IC

) industry, recent advances have come about using materials and processes not typically associated with IC fabrication, a trend that is likely to continue as new application areas emerge.

A well-rounded understanding of MEMS and NEMS technology requires a basic knowledge of the materials used to construct the devices, since material properties often govern device performance and dictate fabrication approaches. An understanding of the materials used in MEMS and NEMS involves an understanding of material systems, since such devices are rarely constructed of a single material, but rather a collection of materials working in conjunction with each other to provide critical functions. It is from this perspective that the following chapter is constructed. This chapter is not a summary of all materials used in MEMS and NEMS, as such a work would itself constitute a single text of significant size. It does, however, present a selection of some of the more popular materials, as well as those that illustrate the importance of viewing MEMS and NEMS in terms of material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954)

    Google Scholar 

  2. A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)

    Google Scholar 

  3. D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single-crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vacuum Sci. Technol. B 15, 2760–2763 (1997)

    Google Scholar 

  4. T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer Academic, Boston 1988)

    Google Scholar 

  5. J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany: Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications, Mater. Res. Symp. Proc. 605, 31–36 (2000)

    Google Scholar 

  6. L. Cao, T.S. Kin, S.C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuat. 80, 273–279 (2000)

    Google Scholar 

  7. H. Guckel, T. Randazzo, D.W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983)

    Google Scholar 

  8. R.T. Howe, R.S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983)

    Google Scholar 

  9. X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998)

    Google Scholar 

  10. J. Yang, H. Kahn, A.-Q. He, S.M. Phillips, A.H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process, J. Microelectromech. Syst. 9, 485–494 (2000)

    Google Scholar 

  11. T.J. Kang, H.Y. Lee, Y.H. Kim: Reduction of sheet resistance and low-thermal budget relaxation of stress gradients in polysilicon microcantilever beams using nickel-silicides, J. Microelectromech. Syst. 16, 279–288 (2007)

    Google Scholar 

  12. P. Gennissen, M. Bartek, P.J. French, P.M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: Stress minimization and applications, Sens. Actuat. A62, 636–645 (1997)

    Google Scholar 

  13. P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: Deposition, structuring, and mechanical characterization, Sens. Actuat. A54, 674–678 (1996)

    Google Scholar 

  14. S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)

    Google Scholar 

  15. K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer. In: Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 57–60

    Google Scholar 

  16. T. Abe, M.L. Reed: Low strain sputtered polysilicon for micromechanical structures. In: Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 258–262

    Google Scholar 

  17. K. Honer, G.T.A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuat. A 91, 392–403 (2001)

    Google Scholar 

  18. J. Gaspar, T. Adrega, V. Chu, J.P. Conde: Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110°C. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 125–128

    Google Scholar 

  19. S.B. Patil, V. Chu, J.P. Conde: Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer, J. Vacuum Sci. Technol. B 25, 455–458 (2007)

    Google Scholar 

  20. R. Anderson, R.S. Muller, C.W. Tobias: Porous polycrystalline silicon: A new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994)

    Google Scholar 

  21. W. Lang, P. Steiner, H. Sandmaier: Porous silicon: A novel material for microsystems, Sens. Actuat. A 51, 31–36 (1995)

    Google Scholar 

  22. R. He, C.J. Kim: On-chip hermetic packaging enabled by post-deposition electrochemical etching of polysilicon. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 544–547

    Google Scholar 

  23. R. He, C.J. Kim: On-wafer monolithic encapsulation by surface micromachining with porous polysilicon shell, J. Microelectromech. Syst. 16, 462–472 (2007)

    Google Scholar 

  24. S.K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983)

    Google Scholar 

  25. W.A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vacuum Sci. Technol. 21, 1064–1081 (1977)

    Google Scholar 

  26. J.S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuat. A 21/23, 971–977 (1990)

    Google Scholar 

  27. A. Yasseen, J.D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999)

    Google Scholar 

  28. R. Liu, M.J. Vasile, D.J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999)

    Google Scholar 

  29. B.A. Walmsley, Y.L. Liu, X.Z. Hu, M.B. Bush, J.M. Dell, L. Faraone: Poisson’s ratio of low-temperature PECVD silicon nitride thin films, J. Microelectromech. Syst. 16, 622–627 (2007)

    Google Scholar 

  30. B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuat. A 51, 71–75 (1995)

    Google Scholar 

  31. M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer X-ray mask, J. Vacuum Sci. Technol. 21, 1017–1021 (1982)

    Google Scholar 

  32. P.P. Tsai, I.-C. Chen, C.J. Ho: Ultralow power carbon monoxide microsensor by micromachining techniques, Sens. Actuat. B 76, 380–387 (2001)

    Google Scholar 

  33. P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuat. A 58, 149–157 (1997)

    Google Scholar 

  34. B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999)

    Google Scholar 

  35. A. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, C.G. Johnson: Post-CMOS integration of germanium microstructures. In: Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 630–637

    Google Scholar 

  36. A.E. Franke, Y. Jiao, M.T. Wu, T.J. King, R.T. Howe: Post-CMOS modular integration of poly-SiGe microstructures using poly-Ge sacraficial layers. In: Tech. Digest – Solid State Sens. Actuat. Workshop (Transducers Research Foundation, Cleveland 2000) pp. 18–21

    Google Scholar 

  37. S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)

    Google Scholar 

  38. S. Sedky, A. Witvrouw, K. Baert: Poly SiGe, a promising material for mems monolithic integration with the driving electronics, Sens. Actuat. A 97/98, 503–511 (2002)

    Google Scholar 

  39. C.W. Low, T.J.K. Liu, R. Howe: Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications, J. Microelectromech. Syst. 16, 68–77 (2007)

    Google Scholar 

  40. S. Sedky, A. Bayoumy, A. Alaa, A. Nagy, A. Witvrouw: Optimal conditions for micromachining Si1−xGex at 210C, J. Microelectromech. Syst. 16, 581–588 (2007)

    Google Scholar 

  41. J.M. Heck, C.G. Keller, A.E. Franke, L. Muller, T.-J. King, R.T. Howe: High aspect ratio polysilicon-germanium microstructures. In: Proc. 10th Int. Conf. Solid State Sens. Actuat. (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334

    Google Scholar 

  42. P. Van Gerwen, T. Slater, J.B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-Germanium30% for Thermopiles, Sens. Actuat. A 53, 325–329 (1996)

    Google Scholar 

  43. D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Shaffner, A. Walson, R.Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Freq. Microw. Commun. Eng. 9, 348–361 (1999)

    Google Scholar 

  44. C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuat. 79, 71–75 (2000)

    Google Scholar 

  45. A. Reddy, H. Kahn, A.H. Heuer: A MEMS-based evaluation of the mechanical properties of metallic thin films, J. Microelectromech. Syst. 16, 650–658 (2007)

    Google Scholar 

  46. M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004)

    Google Scholar 

  47. E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald: Bulk micromachined titanium microneedles, J. Microelectromech. Syst. 16, 289–295 (2007)

    Google Scholar 

  48. C.L. Shih, B.K. Lai, H. Kahn, S.M. Phillips, A.H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001)

    Google Scholar 

  49. G. Hahm, H. Kahn, S.M. Phillips, A.H. Heuer: Fully microfabricated silicon spring biased shape memory actuated microvalve. In: Proc. Solid State Sens. Actuat. Workshop (Transducers Research Foundation, San Diego 2000) pp. 230–233

    Google Scholar 

  50. S.D. Leith, D.T. Schwartz: High-rate through-mold electrodeposition of thick (> 200 micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999)

    Google Scholar 

  51. N. Rajan, M. Mehregany, C.A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999)

    Google Scholar 

  52. T. Pornsin-Sirirak, Y.C. Tai, H. Nassef, C.M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuat. A 89, 95–103 (2001)

    Google Scholar 

  53. C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuat. A 97/98, 410–415 (2002)

    Google Scholar 

  54. M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuat. 74, 56–59 (1999)

    Google Scholar 

  55. Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001)

    Google Scholar 

  56. D. Young, J.D. Du, C.A. Zorman, W.H. Ko: High-temperature single-crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)

    Google Scholar 

  57. C.A. Zorman, S. Rajgolpal, X.A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002)

    Google Scholar 

  58. L. Behrens, E. Peiner, A.S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002)

    Google Scholar 

  59. C.A. Zorman, S. Roy, C.H. Wu, A.J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996)

    Google Scholar 

  60. C.H. Wu, C.A. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355/356, 179–183 (1999)

    Google Scholar 

  61. P. Sarro: Silicon carbide as a new MEMS technology, Sens. Actuat. 82, 210–218 (2000)

    Google Scholar 

  62. N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J.M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surf. Coatings Technol. 125, 246–250 (2000)

    Google Scholar 

  63. X.A. Fu, R. Jezeski, C.A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004)

    Google Scholar 

  64. J. Trevino, X.A. Fu, M. Mehregany, C. Zorman: Low-stress, heavily-doped polycrystalline silicon carbide for MEMS applications. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 451–454

    Google Scholar 

  65. R.S. Okojie, A.A. Ned, A.D. Kurtz: Operation of a 6H-SiC pressure sensor at 500C, Sens. Actuat. A 66, 200–204 (1998)

    Google Scholar 

  66. K. Lohner, K.S. Chen, A.A. Ayon, M.S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soc. Symp. Proc. 546, 85–90 (1999)

    Google Scholar 

  67. K.O. Min, S. Tanaka, M. Esashi: Micro/nano glass press molding using silicon carbide molds fabricated by silicon lost molding. In: Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 475–478

    Google Scholar 

  68. S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001)

    Google Scholar 

  69. L.A. Liew, W. Zhang, V.M. Bright, A. Linan, M.L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuat. A 89, 64–70 (2001)

    Google Scholar 

  70. A.J. Fleischman, S. Roy, C.A. Zorman, M. Mehregany: Polycrystalline silicon carbide for surface micromachining. In: Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 234–238

    Google Scholar 

  71. A.J. Fleischman, X. Wei, C.A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264–268, 885–888 (1998)

    Google Scholar 

  72. G. Beheim, C.S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6 (2000)

    Google Scholar 

  73. W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, O.M. Jadaan: Fracture strength of single-crystal silicon carbide microspecimens at 24C and 1000C, J. Microelectromech. Syst. 17, 244–254 (2008)

    Google Scholar 

  74. A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron Dev. Lett. 21, 164–166 (2000)

    Google Scholar 

  75. X. Song, S. Rajgolpal, J.M. Melzak, C.A. Zorman, M. Mehregany: Development of a multilayer sic surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389–393, 755–758 (2001)

    Google Scholar 

  76. D. Gao, R.T. Howe, R. Maboudian: High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma, Appl. Phys. Lett. 82, 1742–1744 (2004)

    Google Scholar 

  77. D. Gao, M.B. Wijesundara, C. Carraro, R.T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004)

    Google Scholar 

  78. X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes: Nanodevice motion at microwave frequenies, Nature 421, 496 (2003)

    Article  Google Scholar 

  79. T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000)

    Google Scholar 

  80. H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuat. 73, 24–29 (1999)

    Google Scholar 

  81. P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic components in diamond. In: Proc. 10th Int. Conf. Solid State Sens. Actuat. (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 190–193

    Google Scholar 

  82. H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuat. 78, 41–47 (1999)

    Google Scholar 

  83. M. Aslam, D. Schulz: Technology of diamond microelectromechanical systems. In: Proc. 8th Int. Conf. Solid State Sens. Actuat. (IEEE, Piscataway 1995)

    Google Scholar 

  84. R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999)

    Google Scholar 

  85. Y. Yang, X. Wang, C. Ren, J. Xie, P. Lu, W. Wang: Diamond surface micromachining technology, Diam. Relat. Mater. 8, 1834–1837 (1999)

    Google Scholar 

  86. X.D. Wang, G.D. Hong, J. Zhang, B.L. Lin, H.Q. Gong, W.Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002)

    Google Scholar 

  87. J. Wang, J.E. Butler, D.S.Y. Hsu, C.T.C. Nguyen: CVD polycrystalline diamond high-Q micromechanical resonators. In: Proc. 15th Int. Conf. Micrelectromech. Syst. (IEEE, Piscataway 2001) pp. 657–660

    Google Scholar 

  88. J. Wang, J.E. Butler, T. Feygelson, C.T.C. Nguyen: 1.51 GHz nanocrystalline diamond micromechanical disk resonator with material mismatched isolating support. In: Proc. 17th IEEE Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2004) pp. 641–644

    Google Scholar 

  89. N. Sepulveda, D. Aslam, J.P. Sullivan: Polycrystalline diamond MEMS resonator technology for sensor applications, Diam. Relat. Mater. 15, 398–403 (2006)

    Google Scholar 

  90. L. Sekaric, J.M. Parpia, H.G. Craighead, T. Feygelson, B.H. Houston, J.E. Butler: Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett. 81, 4455–4457 (2002)

    Google Scholar 

  91. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1961 (2001)

    Google Scholar 

  92. X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004)

    Google Scholar 

  93. S. Srinivasan, J. Hiller, B. Kabius, O. Auciello: Piezoelectric/untrananocrytalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems, Appl. Phys. Lett. 90, 134101-1–134101-3 (2007)

    Google Scholar 

  94. H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, C.A. Zorman, M. Mehregany: Elasticity, strength and toughness of single-crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amporphous carbon, Appl. Phys. Lett. 89, 073111-1–073111-3 (2006)

    Google Scholar 

  95. X. Xiao, J. Wang, C. Liu, J.A. Carlisle, B. Mech, R. Greenberg, D. Guven, R. Freda, M.S. Humayun, J. Weiland, O. Auciello: In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips, J. Biomed. Mater. Res. B 77B, 273–281 (2006)

    Google Scholar 

  96. F.J. Hernandez-Guillen, K. Janischowsky, W. Ebert, E. Kohn: Nanocrystalline diamond films for mechanical applications, Phys. Stat. Solidi (a) 201, 2553–2557 (2004)

    Google Scholar 

  97. T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997)

    Google Scholar 

  98. J.P. Sullivan, T.A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001)

    Google Scholar 

  99. J.R. Webster, C.W. Dyck, J.P. Sullivan, T.A. Friedmann, A.J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004)

    Google Scholar 

  100. K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994)

    Google Scholar 

  101. K. Hjort: Sacrificial etching of III-V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996)

    Google Scholar 

  102. K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994)

    Google Scholar 

  103. A. Dehe, K. Fricke, K. Mutamba, H.L. Hartnagel: A piezoresistive GaAs pressure sensor with GaAs/AlGaAs membrane technology, J. Micromech. Microeng. 5, 139–142 (1995)

    Google Scholar 

  104. A. Dehe, K. Fricke, H.L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuat. A 46/47, 432–436 (1995)

    Google Scholar 

  105. A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H.L. Hartnagel: III-V compound semiconductor micromachined actuators for long resonator tunable fabry-perot detectors, Sens. Actuat. A 68, 365–371 (1998)

    Google Scholar 

  106. T. Lalinsky, S. Hascik, Z. Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuat. 76, 241–246 (1999)

    Google Scholar 

  107. T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuat. 85, 365–370 (2000)

    Google Scholar 

  108. H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)

    Google Scholar 

  109. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)

    Google Scholar 

  110. J. Miao, B.L. Weiss, H.L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003)

    Google Scholar 

  111. C. Seassal, J.L. Leclercq, P. Viktorovitch: Fabrication of InP-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996)

    Google Scholar 

  112. J. Leclerq, R.P. Ribas, J.M. Karam, P. Viktorovitch: III-V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998)

    Google Scholar 

  113. H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111)A heteroepitaxial systems, Physica E 13, 1163–1167 (2002)

    Google Scholar 

  114. K. Deng, P. Kumar, L. Li, D.L. Devoe: Piezoelectric disk resonators based on epitaxial AlGaAs films, J. Microelectromech. Syst. 16, 155–162 (2007)

    Google Scholar 

  115. C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 553–559 (1996)

    Google Scholar 

  116. B. Xu, L.E. Cross, J.J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377/378, 712–718 (2000)

    Google Scholar 

  117. E. Hong, S. Trolier-McKinstry, R.L. Smith, S.V. Krishnaswamy, C.B. Freidhoff: Design of MEMS PZT circular diaphragm actuators to generate large deflections, J. Microelectromech. Syst. 15, 832–839 (2006)

    Google Scholar 

  118. S.P. Beeby, A. Blackburn, N.M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999)

    Google Scholar 

  119. K. Tonisch, C. Buchheim, F. Niebelschütz, M. Donahue, R. Goldhahn, V. Cimalla, O. Ambacher: Piezoelectric actuation of all-nitride MEMS, Phys. Stat. Solidi (c) 5, 1910–1913 (2008)

    Google Scholar 

  120. C. Giordano, I. Ingrosso, M.T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio: AlN on polysilicon piezoelectric cantilevers for sensors/actuators, Microelectron. Eng. 86, 1204–1207 (2009)

    Google Scholar 

  121. M. Schneider, A. Bittner, U. Schmid: Thickness dependence of Young’s modulus and residual stress of sputtered aluminum nitride thin films, Appl. Phys. Lett. 105, 201912 (2014)

    Google Scholar 

  122. G. Piazza, P.J. Stephanou, A.P. Pisano: Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators, J. Microelectromech. Syst. 15, 1406–1418 (2006)

    Google Scholar 

  123. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza: Piezoelectric aluminum nitride nanoelectromechanical actuators, Appl. Phys. Lett. 95, 053106 (2009)

    Google Scholar 

  124. R.B. Karabalin, M.H. Matheny, X.L. Feng, E. Defaÿ, G. Le Rhun, C. Marcoux, S. Hentz, P. Andreucci, M.L. Roukes: Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films, Appl. Phys. Lett. 95, 103111 (2009)

    Google Scholar 

  125. P. Ramesh, S. Krishnamoorthy, S. Rajan, G.N. Washington: Fabrication and characterization of a piezoelectric gallium nitride switch for optical MEMS applications, Smart Mater. Struct. 21, 094003 (2012)

    Google Scholar 

  126. J. Lv, Z. Yang, G. Member: Yan, W. Lin, Y. Cai, B. Zhang, K.J. Chen: Fabrication of large-area suspended MEMS structures using GaN-on-Si platform, IEEE Electr. Dev. Lett. 30, 1045–1047 (2009)

    Google Scholar 

  127. M. Rais-Zadeh, V.J. Gokhale, A. Ansari, M. Faucher, D. Théron, Y. Cordier, L. Buchaillot: Gallium nitride as an electromechanical material, J. Microelectromech. Syst. 23, 1252–1271 (2014)

    Google Scholar 

  128. A.B. Amar, M. Faucher, V. Brandli, Y. Cordier, D. Théron: Young’s modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application, Phys. Stat. Solidi (a) 211, 1655–1659 (2014)

    Google Scholar 

  129. T. Zimmermann, M. Neuburger, P. Benkart, F.J. Hernández-Guillén, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, E. Kohn: Piezoelectric GaN sensor structures, IEEE Electron Dev. Lett. 27, 309–312 (2006)

    Google Scholar 

  130. C. Shearwood, M.A. Harradine, T.S. Birch, J.C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996)

    Google Scholar 

  131. F. Jiang, G.B. Lee, Y.C. Tai, C.M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuat. 79, 194–203 (2000)

    Google Scholar 

  132. H. Yousef, K. Hjort, M. Lindberg: Vertical thermopiles embedded in a polyimide-based flexible printed circuit board, J. Microelectromech. Syst. 16, 1341–1348 (2007)

    Google Scholar 

  133. D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuat. A 99, 85–91 (2002)

    Google Scholar 

  134. A. Bagolini, L. Pakula, T.L.M. Scholtes, H.T.M. Pham, P.J. French, P.M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)

    Google Scholar 

  135. T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuat. A 90, 203–211 (2001)

    Google Scholar 

  136. T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuat. B 83, 8–14 (2002)

    Google Scholar 

  137. T. Stieglitz, M. Schuettler, K.P. Koch: Implantable Biomedical Microsystems for neural prostheses, IEEE Eng. Med. Biol. 24, 58–65 (2005)

    Google Scholar 

  138. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuat. A 64, 33–39 (1998)

    Google Scholar 

  139. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997)

    Google Scholar 

  140. E.H. Conradie, D.F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002)

    Google Scholar 

  141. C.T. Pan, H. Yang, S.C. Shen, M.C. Chou, H.P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002)

    Google Scholar 

  142. P.A. Stupar, A.P. Pisano: Silicon, parylene, and silicon/parylene micro-needles for strength and toughness. In: Tech. Digest 11th Int. Conf. Solid State Sens. Actuat. (IEEE, Piscataway 2001) pp. 1368–1389

    Google Scholar 

  143. X. Yang, J.M. Yang, Y.C. Tai, C.M. Ho: Micromachined membrane particle filters, Sens. Actuat. 73, 184–191 (1999)

    Google Scholar 

  144. J.M. Zara, S.W. Smith: Optical scanner using a MEMS actuator, Sens. Actuat. A 102, 176–184 (2002)

    Google Scholar 

  145. H.S. Noh, P.J. Hesketh, G.C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002)

    Google Scholar 

  146. Y. Suzuki, Y.C. Tai: Micromachined high aspect ratio parylene spring and its application to low frequency accelerometers, J. Microelectromech. Syst. 15, 1364–1370 (2006)

    Google Scholar 

  147. T.J. Yao, X. Yang, Y.C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuat. A 97/98, 771–775 (2002)

    Google Scholar 

  148. P.-J. Chen, D.C. Rodger, E.M. Meng, M.S. Humayun, Y.C. Tai: Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation, J. Microelectromech. Syst. 16, 223–231 (2007)

    Google Scholar 

  149. D.C.Y.C. Rodger: Tai: Microelectronic packaging for retinal prosthesis, IEEE Eng. Med. Biol. 24, 52–57 (2005)

    Google Scholar 

  150. D. Ziegler, T. Suzuki, S. Takeuchi: Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene, J. Microelectromech. Syst. 15, 1477–1482 (2006)

    Google Scholar 

  151. X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: Processing and applications, J. Micromech. Microeng. 13, 628–633 (2003)

    Google Scholar 

  152. C.J. Lee, S.J. Oh, J.K. Song, S.J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004)

    Google Scholar 

  153. F.F. Faheem, K.C. Gupta, Y.C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microw. Theory Tech. 51, 2562–2567 (2003)

    Google Scholar 

  154. J.N. Palasagaram, R. Ramadoss: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques, IEEE Sens. J. 6, 1374–1375 (2006)

    Google Scholar 

Download references

Acknowledgements

Prof. Zorman thanks Prof. Mehran Mehregany of Case Western Reserve University for his numerous contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zorman, C.A. (2017). Materials Aspects of Micro- and Nanoelectromechanical Systems. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics