Skip to main content

Packaging and Reliability Issues in Micro/Nano Systems

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The potential of microelectromechanical systems (GlossaryTerm

MEMS

)/nanoelectromechanical systems (GlossaryTerm

NEMS

) technologies has been viewed as a revolution comparable to or even greater than that of microelectronics. The scientific and engineering advancements in MEMS/NEMS could enable applications that were previously unthinkable, from space systems, environmental instruments, to appliances for use in daily life. As presented in previous chapters, development of core MEMS/NEMS processes has already demonstrated many commercial applications as well as potential for advanced functionality in the future. However, low-cost and reliable packaging for protection of these MEMS/NEMS products remains a very difficult challenge. Without addressing these packaging and reliability issues, no commercial products can be sold on the market. Packaging design and modeling, packaging material selection, packaging process integration, and packaging cost are the main issues to be considered when developing a new MEMS packaging process. In this chapter, we present the fundamentals of MEMS/NEMS packaging technology, including packaging processes, hermetic and vacuum encapsulation, wafer-level packaging, three-dimensional (GlossaryTerm

3-D

) packaging, polymer-MEMS assembly and encapsulation, thermal issues, packaging reliability, and future packaging trends. Specifically, development of MEMS packaging will rely on successful implementation of several unique techniques, including packaging design kits for system and circuit designers, low-cost and high-yield wafer-level, chip-scale packaging techniques, effective testing techniques at wafer level to reduce overall testing costs, and reliable fabrication of an interposer [43.1] with vertical through interconnects for device integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Matsuo, N. Hayasaka, K. Okumura, E. Hosomi, C. Takubo: Silicon interposer technology for high-density package. In: Proc. IEEE Electron. Compon. Technol. Conf. (2000) pp. 1455–1459

    Google Scholar 

  2. K.E. Peterson: Silicon as a mechanical material, Proc. IEEE 70, 420–457 (1982)

    Google Scholar 

  3. L. Lin, H.-C. Chu, Y.-W. Lu: A simulation program for the sensitivity and linearity of piezoresistive pressure sensors, IEEE/ASME J. Microelectromech. Syst. 8, 514–522 (1999)

    Google Scholar 

  4. Y.C. Tai, R.S. Muller: Lightly-doped polysilicon bridge as a flow meter, Sens. Actuators 15, 63–75 (1988)

    Google Scholar 

  5. D. Hicks, S.-C. Chang, M.W. Putty, D.S. Eddy: Piezoelectrically activated resonant bridge microacceleromenter. In: Tech. Digest Solid-State Sens. Actuators Workshop (1994) pp. 225–228

    Google Scholar 

  6. J. Berstein, S. Cho, A. King, A. Kourepenis, P. Maciel, M. Weinberg: A micromachined comb-drive tuning fork rate gyroscope. In: 6th IEEE Int. Conf. MEMS (1993) pp. 143–148

    Google Scholar 

  7. M. Madou: Compatibility and incompatibility of chemical sensors and analytical equipment with micromachining. In: Tech. Digest Solid-State Sens. Actuators Workshop (1994) pp. 164–171

    Google Scholar 

  8. M.J. Zdeblick, J.B. Angell: A microminiature electric-to-fluidic valve. In: Proc. Trandsucers’87, 4th Int. Conf. Solid-State Transducers Actuators (1987) pp. 827–829

    Google Scholar 

  9. J.H. Tsai, L. Lin: A thermal bubble actuated micro nozzle-diffuser pump, IEEE/ASME J. Microelectromech. Syst. 11, 665–671 (2002)

    Google Scholar 

  10. S.J. Ok, D. Baldwin: High density, aspect ratio through-wafer electrical interconnect vias for low cost, generic modular MEMS packaging. In: 8th IEEE Int. Symp. Adv. Packag. Mater. (2002) pp. 8–11

    Google Scholar 

  11. H. Reichl, V. Grosser: Overview and development trends in the field of MEMS packaging. In: 14th IEEE Int. Conf. MEMS (2001) pp. 1–5

    Google Scholar 

  12. R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein: Microelectronics Packaging Handbook, Semiconductor Packaging (Springer, Dordrecht 1997)

    Google Scholar 

  13. C.A. Harper (Ed.): Electronic Packaging and Interconnection Handbook (McGraw-Hill, New York 1991)

    Google Scholar 

  14. P. Kapur, P.M. McVittie, K. Saraswat: Technology and reliability constrained future copper interconnects–Part II: Performance implication, IEEE Trans. Election Devices 49, 598–604 (2002)

    Google Scholar 

  15. J. Lau: Flip Chip Technologies (McGraw-Hill, New York 1996)

    Google Scholar 

  16. R. Prasad: Surface Mount Technology: Principles and Practice, 2nd edn. (Chapman Hall, New York 1989)

    Google Scholar 

  17. M. Töpper, J. Auersperg, V. Glaw, K. Kaskoun, E. Prack, B. Keser, P. Coskina, D. Jäger, D. Petter, O. Ehrmann, K. Samulewicz, C. Meinherz, S. Fehlberg, C. Karduck, H. Reichl: Fab integrated packaging (FIP) a new concept for high reliability wafer-level chip size packaging. In: IEEE Electron. Compon. Technol. Conf. (2000) pp. 74–81

    Google Scholar 

  18. S. Savastiouk, O. Siniaguine, E. Korczynski: 3-D wafer level packaging. In: Int. Conf. High-Density Interconnect Syst. Packag. (2000) pp. 26–31

    Google Scholar 

  19. J.H. Tsai, L. Lin: Micro-to-macro fluidic interconnectors with an integrated polymer sealant, J. Micromech. Microeng. 11, 577–581 (2001)

    Google Scholar 

  20. T.A. Core, W.K. Tsang, S. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36, 39–47 (1993)

    Google Scholar 

  21. K. Koester, R. Majedevan, A. Shishkoff, K. Marcus: Multi-User MEMS Processes (MUMPS) Introduction and Design Rules, Rev. 4 (MCNC MEMS Technology Applications Center, Research Triangle Park 1996)

    Google Scholar 

  22. R. Lengtenberg, H.A.C. Tilmans: Electrically driven vacuum-encapsulated polysilicon resonator, Part I: Design and fabrication, Sens. Actuators A 45, 57–66 (1994)

    Google Scholar 

  23. R.L. Smith, S.D. Collins: Micromachined packaging for chemical microsensors, IEEE Trans. Electron Devices 35, 787–792 (1988)

    Google Scholar 

  24. M.C. Wu: Micromachining for optical and optoelectronic systems, Proc. IEEE 85(11), 1833–1856 (1997)

    Google Scholar 

  25. M. Putty, K. Najafi: A micromachined gyroscope. In: Solid-State Sens. Actuators Workshop (1994) pp. 212–220

    Google Scholar 

  26. S. Wolf: Silicon Processing for the VLSI Era, Vol I: Process Technology (Lattice, Sunset Beach 1995)

    Google Scholar 

  27. J.K. Bhardway, H. Ashraf: Advanced silicon etching using high density plasmas, SPIE Micromach. Fabr. Technol. 2639, 224–233 (1995)

    Google Scholar 

  28. W.H. Ko, J.T. Suminto, G.J. Yeh: Bonding techniques for microsensors. In: Micromachining and Micropackaging for Transducers, ed. by C.D. Fung, P.W. Cheung, W.H. Ko, D.G. Fleming (Elsevier, Amsterdam 1985)

    Google Scholar 

  29. S.D. Senturia, R.L. Smith: Microsensor packaging and system partitioning, Sens. Actuators 15, 221–234 (1988)

    Google Scholar 

  30. J.T. Butler, V.M. Bright, P.B. Chu, R.J. Saia: Adapting multichip module foundries for MEMS packaging. In: IEEE Int. Conf. Multichip Modul. High Density Packag. (1998) pp. 106–111

    Google Scholar 

  31. M. Schuenemann, A.J. Kourosh, R.V. Grosse, R. Leutenbauer, G. Bauer, W. Schaefer, H. Reichl: MEM modular packaging and interfaces. In: IEEE Electron. Compon. Technol. Conf. (2000) pp. 681–688

    Google Scholar 

  32. D.W. Lee, T. Ono, T. Abe, M. Esashi: Fabrication of microprobe array with sub-100nm nano-heater for nanometric thermal imaging and data storage. In: Proc. IEEE Micro Electro Mech. Syst. Conf. (2001) pp. 204–207

    Google Scholar 

  33. A.S. Laskar, B. Blythe: Epoxy multichip modules, a solution to the problem of packaging and interconnection of sensors and signal-processing chips, Sens. Actuators A 36, 1–27 (1993)

    Google Scholar 

  34. R. Reichl: Packaging and interconnection of sensors, Sens. Actuators A 25–27, 63–71 (1991)

    Google Scholar 

  35. A. Grisel, C. Francis, E. Verney, G. Mondin: Packaging technologies for integrated electrochemical sensors, Sens. Actuators 17, 285–295 (1989)

    Google Scholar 

  36. J.L. Lund, K.D. Wise: Chip-level encapsulation of implantable CMOS microelectrode arrays. In: 1994 Solid-State Sens. Actuators Workshop (1989) pp. 29–32

    Google Scholar 

  37. T. Akin, B. Siaie, K. Najafi: Modular micromachined high-density connector for implantable biomedical systems. In: Micro Electro Mech. Syst. Workshop (1996) pp. 497–502

    Google Scholar 

  38. L. Muller, M.H. Hecht, L.M. Miller, H.K. Rockstad, J.C. Lyke: Packaging qualification for MEMS-based space systems. In: Micro Electro Mech. Syst. Workshop (1996) pp. 503–508

    Google Scholar 

  39. S.V. Groen, M. Rosmeulen, P. Jansen, K. Baert, L. Deferm: CMOS compatible wafer scale adhesive bonding for circuit transfer. In: Int. Conf. Solid-State Sens. Actuators, Transducers’97 (1997) pp. 629–632

    Google Scholar 

  40. Y.T. Cheng, Y.T. Hsu, L. Lin, C.T. Nguyen, K. Najafi: Vacuum packaging using localized aluminum/silicon-to-glass bonding using localized aluminum/silicon-to-glass bonding. In: 14th IEEE Int. Conf. MEMS (2001) pp. 18–21

    Google Scholar 

  41. M. Chiao, L. Lin: Vacuum packaging of microresonators by rapid thermal processing. In: Proc. SPIE Smart Electron., MEMS, Nanotechnol (2002) pp. 17–21

    Google Scholar 

  42. J.H. Partridge: Glass-to-Metal Seals (The Society of Glass Technology, Chapeltown 1949)

    Google Scholar 

  43. P. Kumar, V.A. Greenhut: Metal-to-Ceramic Joining (Minerals, Metals and Materials Society, Pittsburgh 1991)

    Google Scholar 

  44. M.G. Nicholas, D.A. Mortimer: Ceramic/metal joining for structural applications, Mater. Sci. Technol. 1, 657–665 (1985)

    Google Scholar 

  45. M. Esashi, S. Shoji, A. Nakano: Normally closed microvalve and micropump fabricated on a silicon wafer, Sens. Actuators 20, 163–169 (1989)

    Google Scholar 

  46. M.E. Poplawski, R.W. Hower, R.B. Brown: A simple packaging process for chemical sensors. In: Solid-State Sens. Actuators Workshop (1994) pp. 25–28

    Google Scholar 

  47. S.F. Trautweiler, O. Paul, J. Stahl, H. Baltes: Anodically bonded silicon membranes for sealed and flush mounted microsensors. In: Micro Electro Mech. Syst. Workshop (1996) pp. 61–66

    Google Scholar 

  48. E.H. Klaassen, K. Petersen, J.M. Noworolski, J. Logan, N.I. Malfu, J. Brown, C. Storment, W. McCulley, G.T.A. Kovac: Silicon fusion bonding and deep reactive ion etching: A new technology for microstructures, Sens. Actuators A 52, 132–139 (1996)

    Google Scholar 

  49. C.H. Hsu, M.A. Schmidt: Micromachined structures fabricated using a wafer-bonded sealed cavity process. In: Solid State Sens. Actuators Workshop (1994) pp. 151–155

    Google Scholar 

  50. A.L. Tiensuu, J.A. Schweitz, S. Johansson: In situ investigation of precise high strength micro assembly using Au-Si eutectic bonding. In: Int. Conf. Solid-State Sens. Actuators, Eurosens. IX (1995) pp. 236–239

    Google Scholar 

  51. A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup: Practical microgripper by fine alignment, eutectic bonding and SMA actuation. In: Int. Conf. Solid-State Sens. Actuators, Eurosens. IX (1995) pp. 368–371

    Google Scholar 

  52. M.B. Cohn, Y. Liang, R. Howe, A.P. Pisano: Wafer to wafer transfer of microstructures for vacuum package. In: Solid State Sens. Actuators Workshop (1996) pp. 32–35

    Google Scholar 

  53. Q.-Y. Tong, U. Gosele: Semiconductor Wafer Bonding, Science and Technology (Wiley, New York 1999)

    Google Scholar 

  54. R.W. Bower, M.S. Ismail, B.E. Roberds: Low temperature Si3N4 direct bonding, Appl. Phys. Lett. 62, 3485–3487 (1993)

    Google Scholar 

  55. H. Takagi, R. Maeda, T.R. Chung, T. Suga: Low temperature direct bonding of silicon and silicon dioxide by the surface activation method. In: Int. Conf. Solid-State Sens. Actuators, Transducer 97, Vol. 1 (1997) pp. 657–660

    Google Scholar 

  56. G. Wallis, D. Pomerantz: Filed assisted glass-metal sealing, J. Appl. Phys. 40, 3946–3949 (1969)

    Google Scholar 

  57. L. Bowman, J. Meindl: The packaging of implantable integrated sensors, IEEE Trans. Biomed. Eng. 33, 248–255 (1986)

    Google Scholar 

  58. M. Esashi: Encapsulated micro mechanical sensors, Microsyst. Technol. 1, 2–9 (1994)

    Google Scholar 

  59. B. Ziaie, J. Von Arx, M. Dokmeci, K. Najafi: A hermetic glass-silicon micropackages with high-density on-Chip feedthroughs for sensors and actuators, J. Microelectromech. Syst. 5, 166–179 (1996)

    Google Scholar 

  60. Y. Lee, K. Wise: A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity, IEEE Trans. Electron Devices 29, 42–48 (1982)

    Google Scholar 

  61. S. Shoji, H. Kicuchi, H. Torigoe: Anodic bonding below 180 degree C for packaging and assembling of MEMS using lithium aluminosilicate-beta-quartz glass-ceramic. In: Proc. 10th Annu. Int. Workshop Micro Electro Mech. Syst. (1997) pp. 482–487

    Google Scholar 

  62. M. Esashi, N. Akira, S. Shoji, H. Hebiguchi: Low-temperature silicon-to-silicon anodic bonding with intermediate low melting point glass, Sens. Actuators A 23, 931–934 (1990)

    Google Scholar 

  63. A. Hanneborg, M. Nese, H. Jakobsen, R. Holm: Silicon-to-thin film anodic bonding, J. Micromech. Microeng. 2, 117–121 (1992)

    Google Scholar 

  64. A.V. Chavan, K.D. Wise: Batch-processed vacuum-sealed capacitive pressure sensors, ASME/IEEE J. Microelectromech. Syst. 10(4), 580–588 (2001)

    Google Scholar 

  65. H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, M. Esashi: Vacuum packaging for microsensors by glass-silicon anodic bonding, Sens. Actuators A 43(1–3), 243–248 (1994)

    Google Scholar 

  66. T. Hara, S. Kobayashi, K. Ohwada: A new fabrication method for low-pressure package with glass-silicon-glass structure and its stability. In: 10th Int. Conf. Solid-State Sens. Actuators, Transducers’99 Digest Tech. Papers, Vol. 2 (1999) pp. 1316–1319

    Google Scholar 

  67. S.A. Audet, K.M. Edenfeld: Integrated sensor wafer-level packaging. In: Int. Conf. Solid-State Sens. Actuators, Transducers’97 (1997) pp. 287–289

    Google Scholar 

  68. R.C. Benson, N. de Haas, P. Goodwin, T.E. Phillips: Epoxy adhesives in microelectronic hybrid applications, Johns Hopkins APL Tech. Dig. 13, 400–406 (1992)

    Google Scholar 

  69. M. Shimbo, J. Yoshikawa: New silicon bonding method, J. Electrochem. Soc. 143, 2371–2377 (1996)

    Google Scholar 

  70. P.M. Zavracky, B. Vu: Patterned eutectic bonding with Al/Ge thin film for MEMS, Proc. SPIE 2639, 46–52 (1995)

    Google Scholar 

  71. J. Seeger, M. Lim, S. Nasiri: Development of high-performance, high-volume consumer MEMS gyroscopes. In: Solid-State Sens., Actuators, Microsyst. Workshop (2010) pp. 61–64

    Google Scholar 

  72. G. Humpston, D.M. Jacobson: Principles of Soldering and Brazing (ASM International, Materials Park 1993) pp. 241–244

    Google Scholar 

  73. A. Singh, D. Horsely, M.B. Cohn, R. Howe: Batch transfer of microstructures using flip-chip solder bump bonding. In: Int. Conf. Solid State Sens. Actuators, Transducer 97, Vol. 1 (1997) pp. 265–268

    Google Scholar 

  74. M.M. Maharbiz, M.B. Cohn, R.T. Howe, R. Horowitz, A.P. Pisano: Batch micropackaging by compression-bonded wafer-wafer transfer. In: 12th Int. Conf. MEMS (1999) pp. 482–489

    Google Scholar 

  75. Y.T. Cheng, L. Lin, K. Najafi: Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging, IEEE/ASME J. Microelectromech. Syst. 9, 3–8 (2000)

    Google Scholar 

  76. L. Lin: Selective Encapsulations of MEMS: Micro Channels, Needles, Resonators, and Electromechanical Filters, Ph.D. Thesis (Univ. California, Berkeley 1993)

    Google Scholar 

  77. Y.C. Su, L. Lin: Localized plastic bonding for micro assembly, packaging and liquid encapsulation. In: Proc. IEEE Micro Electro Mech. Syst. Conf. (2001) pp. 50–53

    Google Scholar 

  78. M. Schwartz: Brazing (Chapman Hall, London 1995)

    Google Scholar 

  79. K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Oshida, K. Harada: Three dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm, Sens. Actuators A 21–23, 1001–1010 (1990)

    Google Scholar 

  80. L. Lin, R.T. Howe, A.P. Pisano: Microelectromechanical filters for signal processing, IEEE/ASME J. Microelectromech. Syst. 7, 286–294 (1998)

    Google Scholar 

  81. W.C. Tang, C.T.-C. Nguyen, R.T. Howe: Laterally driven polysilicon resonant microstructures, Sens. Actuators A 20, 25–32 (1989)

    Google Scholar 

  82. G.T. Mulhern, D.S. Soane, R.T. Howe: Supercritical carbon dioxide drying of microstructures. In: 7th Int. Conf. Solid State Sens. Actuators (1993) pp. 296–299

    Google Scholar 

  83. M. Judy: Micromechanisms Using Sidewall Beams, Ph.D. Thesis (EECS Department, Univ. California, Berkeley 1994) p. 162

    Google Scholar 

  84. R. Aigner, N.K.-G. Opperman, H. Kapels, S. Kolb: Cavity-micromachining technology: Zero-package solution for inertial sensors. In: TRANSDUCERS ’01. EUROSENSORS XV. 11th Int. Conf. Solid-State Sens. Actuators. Dig. Techn. Papers (2001) pp. 186–189

    Google Scholar 

  85. M. Bartek, J.A. Foerster, R.F. Wolffenbuttel: Vacuum sealing of mcirocavities using metal evaporation, Sens. Actuators A 61, 364–368 (1997)

    Google Scholar 

  86. J.J. Sniegowski, H. Guckle, R.T. Christenson: Performance characteristics of second generation polysilicon resonating beam force transducers. In: IEEE Solid-State Sensor Actuator Workshop (1990) pp. 9–12

    Google Scholar 

  87. C.H. Mastrangelo, R.S. Muller, S. Kumar: Microfabricated incandescent lamps, Appl. Optics 30, 868–873 (1993)

    Google Scholar 

  88. J. Smith, S. Montague, J. Sniegowski, L.R. Manginel, P. McWhorter, R. Huber: Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS, Proc. SPIE 2879, 306 (1996)

    Google Scholar 

  89. A. Partridge, M. Lutz, B. Kim, M. Hopcroft, R.N. Candler, T.W. Kenny, M. Esashi: MEMS resonators: Getting the packaging right. In: Proc. 9th SEMI Microsyst./MEMS Seminar (SEMICON) (2005) pp. 55–58

    Google Scholar 

  90. A.M. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods: Micromachined accelerometer based on convection heat transfer. In: 11th Int. Conf. MEMS (1998) pp. 627–630

    Google Scholar 

  91. D.R. Spark, L. Jordan, J.H. Frazee: Flexible vacuum-packaging method for resonating micromachines, Sens. Actuators A 55, 179–183 (1996)

    Google Scholar 

  92. M. Chiao, L. Lin: Hermetic wafer bonding based on rapid thermal processing, Sens. Actuators A 91, 398–402 (2001)

    Google Scholar 

  93. Y.T. Cheng, L. Lin, K. Najafi: Fabrication and hermeticity testing of a glass-silicon packaging formed using localized aluminum/silicon-to-glass bonding, IEEE/ASME J. Microelectromech. Syst. 10, 392–399 (2001)

    Google Scholar 

  94. M. Chiao, L. Lin: Accelerated hermeticity testing of a glass-silicon package formed by rapid thermal processing aluminum-to-silicon nitride bonding, Sens. Actuators A 97/98, 405–409 (2002)

    Google Scholar 

  95. M.K. Keshavan, G.A. Sargent, H. Conrad: Statistical analysis of the hertzian fracture of pyrex glass using the Weibull distribution function, J. Mater. Sci. 15, 839–844 (1980)

    Google Scholar 

  96. M. Chiao, L. Lin: A wafer-level vacuum packaging process by RTP aluminum-to-nitride bonding. In: Tech. Dig. Solid-State Sens., Actuators Microsyst. Workshop (2002) pp. 81–85

    Google Scholar 

  97. F. Rosebury: Handbook of Electron Tube and Vacuum Techniques (Addison-Wesley, Boston 1965)

    Google Scholar 

  98. Y.T. Cheng, W.T. Hsu, K. Najafi, C.T. Nguyen, L. Lin: Vacuum packaging technology using localized aluminum/silicon-to-glass bonding, J. Microelectromech. Syst. 11(5), 556–565 (2002)

    Google Scholar 

  99. C. Luo, L. Lin: The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask, Sens. Actuators A 97/98, 398–404 (2002)

    Google Scholar 

  100. A. Cao, M. Chiao, L. Lin: Selective and localized wafer bonding using induction heating. In: Tech. Dig. Solid-State Sens. Actuators Workshop (2002) pp. 153–156

    Google Scholar 

  101. J.B. Kim, M. Chiao, L. Lin: Ultrasonic bonding of In/Au and Al/Al for hermetic sealing of MEMS packaging. In: Proc. IEEE Micro Electro Mech. Syst. Conf. (2002) pp. 415–418

    Google Scholar 

  102. Y.T. Cheng, L. Lin, K. Najafi: Localized bonding with PSG or indium solder as intermediate layer. In: 12th Int. Conf. MEMS (1999) pp. 285–289

    Google Scholar 

  103. M. Esashi: Wafer level packaging of MEMS, J. Micromech. Microeng. 18, 073001 (2008)

    Google Scholar 

  104. M. Lapisa, G. Stemme, F. Niklaus: Wafer-level heterogeneous integration for MOEMS, MEMS, and NEMS, IEEE J. Sel. Top. Quantum Electron. 17, 629–644 (2011)

    Google Scholar 

  105. C. Liu: Recent developments in polymer MEMS, Adv. Mater. 19, 3783–3790 (2007)

    Google Scholar 

  106. R.C. Ruby, A. Barfknecht, C. Han, Y. Desai, F. Geefay, G. Gan, M. Gat, T. Verhoeven: High-Q FBAR filters in a wafer-level chip-scale package. In: IEEE Int. Solid-State Circuit Conf. (2002) pp. 184–185

    Google Scholar 

  107. H. Shao, D. Kumar, S.A. Feld, K.L. Lear: Fabrication of a Fabry-Perot cavity in a microfluidic channel using thermocompressive gold bonding of glass substrates, J. Microelectromech. Syst. 14, 756–762 (2005)

    Google Scholar 

  108. A. Decharat, M. Boers, F. Niklaus, G. Stemme: Novel room-temperature wafer-to-wafer attachment and sealing of cavities using cold metal welding. In: Tech. Dig. MEMS (2007) pp. 385–388

    Google Scholar 

  109. C.H. Yun, J.R. Martin, E.B. Tarvin, J.T. Winbigler: Al to Al wafer bonding for MEMS encapsulation and 3-D interconnect MEMS2008. In: Tech. Dig. (2008) pp. 810–813

    Google Scholar 

  110. K.-N. Chen, S.H. Lee, P.S. Andry, C.K. Tsang, A.W. Topol, Y.-M. Lin, J.-Q. Lu, A.M. Young, M. Ieong, W. Haensch: Structure, design and process control for Cu bonded interconnects in 3-D integrated circuits IEDM. In: Tech. Dig. (2006) pp. 367–370

    Google Scholar 

  111. L. Lin, K. McNair, R.T. Howe, A.P. Pisano: Vacuum encapsulated lateral microresonators. In: 7th Int. Conf. Solid State Sens. Actuators (1993) pp. 270–273

    Google Scholar 

  112. H. Guckel: Surface micromachined pressure transducers, Sens. Actuators A 28, 133–146 (1991)

    Google Scholar 

  113. C.H. Mastrangelo, R.S. Muller: Vacuum-sealed silicon micromachined incandescent light source. In: IEEE IEDM (1989) pp. 503–506

    Google Scholar 

  114. P. Monajemi, P.J. Joseph, P.A. Kohl, F. Ayazi: Wafer-level MEMS packaging via thermally released metal–organic membranes, J. Micromech. Microeng. 16, 742–750 (2006)

    Google Scholar 

  115. K.S. Lebouitz, R.T. Howe, A. Pisano: Permeable polysilicon etch-access windows for microshell fabrication. In: Dig. Tech. Papers, Transducers (1995) pp. 224–227

    Google Scholar 

  116. R. He, C.J. Kim: On-wafer monolithic encapsulation by surface micromachining with porous polysilicon shell, J. Microelectromech. Syst. 16, 462–472 (2007)

    Google Scholar 

  117. B.H. Stark, K. Najafi: A mold and transfer technique for lead-free fluxless soldering and application to MEMS packaging, J. Microelectromech. Syst. 15, 849–857 (2006)

    Google Scholar 

  118. M. Esashi, N. Ura, Y. Matsumoto: Anodic bonding for integrated capacitive sensors. In: Proc. Micro Electro Mech. Syst.’92 (1992) pp. 43–48

    Google Scholar 

  119. C.H. Yun, J.R. Martin, T. Chen, D. Davis: MEMS wafer-level packaging with conductive vias and wafer bonding. In: Dig. Tech. Papers, Transducers’07 (2007) pp. 2091–2094

    Google Scholar 

  120. S. Nasiri: Wafer level packaging of MOEMS solves manufacturability challenges in optical cross connect. In: IEEE Photonic Devices Syst. Packag. Symp (2003)

    Google Scholar 

  121. P. Chen, C. Lin, C. Liu: Amorphous Si/Au wafer bonding, Appl. Phys. Lett. 90(13), 132120 (2007)

    Google Scholar 

  122. P.R. Morrow, C.-M. Park, S. Ramanathan, M.J. Kobrinsky, M. Harmes: Three-dimensional wafer stacking via Cu–Cu bonding integrated with 65-nm strained-Si/low-k CMOS technology, IEEE Electron Device Lett. 27(5), 335–337 (2006)

    Google Scholar 

  123. I.W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, O. Solgaard: Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes, IEEE J. Sel. Top. Quantum. Electron. 13(2), 162–167 (2007)

    Google Scholar 

  124. MEMS Process Review Report: InvenSense IDG-300 Dual-Axis Angular Rate Gyroscope Sensor (Chipworks, Ottawa 2007) MPR-0702–0801

    Google Scholar 

  125. S. Nasiri: New innovations in MEMS fabrications are responsible for meeting the demand for low-cost inertial sensors for consumer markets. In: IMAPS Proc (2007) pp. 407–412

    Google Scholar 

  126. F. Zimmer, M. Lapisa, T. Bakke, M. Bring, G. Stemme, F. Niklaus: One-megapixel monocrystalline-silicon micromirror array on CMOS driving electronics manufactured with very large-scale heterogeneous integration, J. Microelectromech. Syst. 20(3), 564–572 (2011)

    Google Scholar 

  127. F. Zimmer, M.A. Lapisa, T. Bakke, M. Bring, G. Stemme, F. Niklaus: Very large scale heterogeneous system integration for 1-megapixel mono-crystalline silicon micro-mirror array on CMOS driving electronics. In: Proc. IEEE MEMS (2011) doi:10.1109/MEMSYS.2011.5734530

    Chapter  Google Scholar 

  128. F. Forsberg, N. Roxhed, P. Ericsson, S. Wissmar, F. Niklaus, G. Stemme: High-performance quantum-well silicon-germanium bolometers using IC-compatible integration for low-cost infrared imagers. In: Proc. Transducers, Denver (2009) pp. 2214–2217

    Google Scholar 

  129. M.A. Lapisa, F. Zimmer, A. Gehner, G. Stemme, F. Niklaus: Hidden-hinge micro-mirror arrays made by heterogeneous integration of two mono-crystalline silicon layers. In: Proc. IEEE MEMS (2011) doi:10.1109/MEMSYS.2011.5734520

    Chapter  Google Scholar 

  130. A. Lapadatu, G. Kittilsland, A. Elfving, E. Hohler, T. Kvisterøy, T. Bakke, P. Ericsson: High-performance long wave infrared bolometer fabricated by wafer bonding, Proc. SPIE 7660, 766016 (2010)

    Google Scholar 

  131. J. Voldman, M.L. Gray, M.A. Schmidt: Microfabrication in biology and medicine, Annu. Rev. Biomed. Eng. 1, 401–425 (1999)

    Google Scholar 

  132. H. Becker, L.E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)

    Google Scholar 

  133. Y.-C. Su, L. Lin: Localized bonding processes for assembly and packaging of polymeric MEMS, IEEE Trans. Adv. Packag. 28, 635–642 (2005)

    Google Scholar 

  134. G. Thyrum, E. Cruse: Heat pipe simulation, a simplified technique for modeling heat pipe assisted heat sinks, Adv. Packag. 10(12), 23–27 (2001)

    Google Scholar 

  135. G.P. Peterson, A.B. Duncan, M.H. Weichold: Experimental investigation of micro heat pipes fabricated in silicon wafers, J. Heat Trans. 115, 751–756 (1993)

    Google Scholar 

  136. L. Jiang, M. Wong, Y. Zohar: Forced convection boiling in a microchannel heat sink, IEEE/ASME J. Microelectromech. Syst. 10, 80–87 (2001)

    Google Scholar 

  137. F. Arias, S.R.J. Oliver, B. Xu, E. Holmlin, G.M. Whitesides: Fabrication of metallic exchangers using sacrificial polymer mandrils, IEEE/ASME J. Microelectromech. Syst. 10, 107–112 (2001)

    Google Scholar 

  138. ANSYS Modeling and Meshing Guide, 3rd edn. (SAS IP, Canonsburg 2013)

    Google Scholar 

  139. D. Bystrom, L. Lin: Residual stress analysis of silicon-aluminum-glass bonding processes. In: ASME 2002 Int. Mech. Eng. Congr. Expos., MEMS Symp. (2002) pp. 45–50

    Google Scholar 

  140. H. Scholze: Glass: Nature, Structure, and Properties, 1st edn. (Springer, New York 1991)

    Google Scholar 

  141. R.R. Tummala: Fundamentals of Microsystems Packaging (McGraw-Hill, New York 2001)

    Google Scholar 

  142. S.J. Adamson: BGA, CSP, and flip chip, Adv. Packag. 11(6), 21–24 (2002)

    Google Scholar 

  143. JEDEC Solid State Technol. Assoc.: Accelerated Moisture Resistance-Unbiased Autoclave (JEDEC, Arlington 2000), JESD22-A102C

    Google Scholar 

  144. M. Dokmeci, K. Najafi: A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages, IEEE/ASME J. Microelectromech. Syst. 10(2), 197–204 (2001)

    Google Scholar 

  145. E.E. Lewis: Introduction to Reliability Engineering, 2nd edn. (Wiley, New York 1996)

    Google Scholar 

  146. W.D. Brown: Advanced Electronic Packaging (IEEE, Piscataway 1999)

    Google Scholar 

  147. F. Niklaus, P. Znoksson, E. Käluesten, G. Stemme: Void free full wafer adhesion bonding. In: Proc. IEEE Micro Electro Mech. Syst. Conf. (2000) pp. 241–252

    Google Scholar 

  148. C.H. Cheng, A.S. Ergun, B.T. Khuri-Yakub: Electrical through-wafer interconnects with sub-picofarad parasitic capacitance. In: IEEE Electron. Compon. Technol. Conf. (2002) pp. 18–21

    Google Scholar 

  149. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J. Xu: Nonlithographic nano-array arrays: Fabrication, physics, and device applications, IEEE Trans. Electron Devices 43, 1646–1658 (1996)

    Google Scholar 

  150. J. Gou, M. Lundstrom, S. Datta: Performance projections for ballistic carbon nanotube fieldeffect transistors, Appl. Phys. Lett. 80, 3192–3194 (2002)

    Google Scholar 

  151. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke: Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79, 2252–2254 (2001)

    Google Scholar 

  152. K. Velikov, A. Moroz, A. Blaaderen: Photonic crystals of core-shell colloidal particles, Appl. Phys. Lett. 80, 49–51 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Su, YC., Kim, J., Cheng, YT., Chiao, M., Lin, L. (2017). Packaging and Reliability Issues in Micro/Nano Systems. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics