Skip to main content

Plant Surfaces: Structures and Functions for Biomimetic Applications

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents an overview of plant surface structures and their evolution, combines surface chemistry and architecture with their functions and refers to possible biomimetic applications .

Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments, providing some 10 million living prototypes (i. e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step in the invasion of terrestrial habitats some 350−450 million years ago by plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it many biological role models .

Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this chapter. We estimate that superhydrophobic plant leaves (e. g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet.

A survey of structures and functions based on our own examinations of almost 20000 species is provided; for further references we refer to [36.1]. A basic difference exists between aquatic nonvascular and land-living vascular plants; the latter exhibit a particularly intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures . A descriptive terminology for this diversity is provided.

Simplified, the functions of plant surface characteristics may be grouped into six categories:

  1. 1.

    Mechanical properties

  2. 2.

    Influence on reflection and absorption of spectral radiation

  3. 3.

    Reduction of water loss or increase of water uptake, moisture harvesting

  4. 4.

    Adhesion and nonadhesion (lotus effect , insect trapping)

  5. 5.

    Drag and turbulence increase

  6. 6.

    Air retention underwater for drag reduction or gas exchange (Salvinia effect ).

This list is far from complete.

A short overview of the history of bionics and the impressive spectrum of existing and anticipated biomimetic applications are provided. The major challenge for engineers and materials scientists, the durability of the fragile nanocoatings, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Barthlott, M. Mail, C. Neinhuis: Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications, Philos. Trans. R. Soc. A 374(2073), 20160191 (2016) doi:10.1098/rsta.2016.0191

    Article  Google Scholar 

  2. W. Barthlott, N. Ehler: Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten, Trop. Subtrop. Pflanzenwelt 19, 1–105 (1977)

    Google Scholar 

  3. S. Blackmore, K. Ferguson (Eds.): Pollen and Spores: Form and Function, Linn. Soc. Symp. Series, Vol. 12 (Academic Press, London 1986)

    Google Scholar 

  4. S.N. Agashe, E. Caulton: Pollen and Spores – Application with Special Emphasis on Aerobiology and Allergy (Taylor & Francis, Enfield 2009)

    Google Scholar 

  5. K. Koch, B. Bhushan, W. Barthlott: Multifunctional plant surfaces and smart materials. In: Springer Handbook of Nanotechnology, 3rd edn., ed. by B. Bhushan (Springer, Berlin, Heidelberg 2010) pp. 1399–1436

    Google Scholar 

  6. B. Bhushan: Springer Handbook of Nanotechnology, 3rd edn. (Springer, Berlin, Heidelberg 2010)

    Google Scholar 

  7. W. Barthlott, M. Mail, B. Bhushan, K. Koch: Plant surfaces: Structures and functions for biomimetic innovations, Nano-Micro Lett. (2017) doi:10.1007/s40820-016-0125-1

  8. C. Neinhuis, W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot. 79, 667–677 (1997) doi:10.1006/anbo.1997.0400

    Article  Google Scholar 

  9. S. Porembski, B. Martens-Aly, W. Barthlott: Surface/volume – rations of plants with special consideration of succulents, Beitr. Biol. Pflanz. 66, 189–209 (1992)

    Google Scholar 

  10. J.M. Suttie, S.G. Reynolds, C. Batello: Grasslands of the World, Plant Production and Protection Series, Vol. 34 (Food and Agricultural Organisations of the UN (FAO), Rome 2005)

    Google Scholar 

  11. K. Koch, I.C. Blecher, G. König, S. Kehraus, W. Barthlott: The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): A biological model for spreading of water and oil on surfaces, Funct. Plant Biol. 36, 339–350 (2009)

    Google Scholar 

  12. W. Barthlott, D. Rafiqpoor, W. Erdelen: Bionics and biodiversity – Bio-inspired technical innovation for a sustainable future. In: Biomimetic Research for Architecture and Building Construction – Biological Design and Integrative Structures, ed. by J. Knippers, K. Nickel, T. Speck (Springer, Berlin, Heidelberg 2016)

    Google Scholar 

  13. R.L. Ripley, B. Bhushan: Bioarchitecture: bioinspired art and architecture – A perspective, Philos. Trans. R. Soc. A 374, 20160192 (2016) doi:10.1098/rsta.2016.0192

    Article  Google Scholar 

  14. R.H. Francé: Die Pflanze als Erfinder (Franckh’sche Verlagshandlung, Stuttgart 1920), Engl. edn. Plants as Inventors (Simpkin and Marshall, London 1926)

    Google Scholar 

  15. Living prototypes – The key to new technology. In: Proc. Bionic Symp., ed. by J.C. Robinette (Wright Air Development Division, Dayton 1960)

    Google Scholar 

  16. W. Barthlott, C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202, 1–8 (1997) doi:10.1007/s004250050096

    Article  Google Scholar 

  17. H.C. von Baeyer: The Lotus effect, The Sciences 40, 12–15 (2000)

    Google Scholar 

  18. D.W. Bechert, A. Dinkelacker, W.-E. Reif: On the fluid dynamic of the shark skin, Bull. Am. Phys. Soc. 28 (1983)

    Google Scholar 

  19. D.W. Bechert, M. Bruse, W. Hage, R. Meyer: Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften 87, 157–171 (2000)

    Google Scholar 

  20. B. Bhushan: Biomimetics – Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, 2nd edn. (Springer, Berlin, Heidelberg 2016)

    Google Scholar 

  21. P. Forbes: The Gecko’s Foot (Fourth Estate, London 2005)

    Google Scholar 

  22. J.W. von Goethe: Verstäubung, Verdunstung, Vertropfung. In: Die Schriften zur Naturwissenschaft, Morphologische Hefte, Vol. 9, ed. by D. Kuhn (H. Böhlaus, Weimar 1954) pp. 210–221

    Google Scholar 

  23. A. Otten, S. Herminghaus: How plants keep dry: A physicist’s point of view, Langmuir 20, 2405–2408 (2004) doi:10.1021/la034961d

    Article  Google Scholar 

  24. W. Barthlott, C. Neinhuis, D. Cutler, F. Ditsch, I. Meusel, I. Theisen, H. Wilhelmi: Classification and terminology of plant epicuticular waxes, Bot. J. Linn. Soc. 126, 237–260 (1998) doi:10.1111/j.1095-8339.1998.tb02529.x

    Article  Google Scholar 

  25. A. Dommisse, J. Wirtz, K. Koch, K. Wandelt, W. Barthlott, T. Kolter: Synthesis of Snonacosan-10-ol, the main component of plant surface tubular wax crystals, Eur. J. Org. Chem. 2007, 3508–3511 (2007) doi:10.1002/ejoc.200700262

    Article  Google Scholar 

  26. M. Riederer, C. Markstädter: Cuticular waxes: A critical assessment of current knowledge. In: Plant Cuticles an Integrated Functional Approach, ed. by G. Kerstiens (University Scientific, Oxford 1996) pp. 189–200

    Google Scholar 

  27. L. Kunst, A.L. Samuels: Biosynthesis and secretion of plant cuticular wax, Prog. Lipid Res. 42, 51–80 (2003)

    Google Scholar 

  28. C.E. Jeffree: The fine structure of the plant cuticle. In: Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford 2006) pp. 11–125

    Google Scholar 

  29. R. Jetter, S. Schäffer: Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development, Plant Phys. 126, 1725–1737 (2001)

    Google Scholar 

  30. K. Koch, W. Barthlott, S. Koch, A. Hommes, K. Wandelt, W. Mamdouh, S. De-Feyter, P. Broekmann: Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): From the molecular level to three dimensional crystals, Planta 223, 258–270 (2005) doi:10.1007/s00425-005-0081-3

    Article  Google Scholar 

  31. R. Jetter, L. Kunst, A.L. Samuels: Composition of plant cuticular waxes. In: Biology of the Plant Cuticle, Ann. Plant Rev., Vol. 23, ed. by M. Riederer, C. Müller (Blackwell, Oxford 2006) pp. 145–175

    Google Scholar 

  32. E.A. Baker: Chemistry and morphology of plant epicuticular waxes. In: The Plant Cuticle, ed. by D.F. Cutler, K.L. Alvin, C.E. Price (Academic, London 1982) pp. 139–165

    Google Scholar 

  33. T. Shepherd, D.W. Griffiths: The effects of stress on plant cuticular waxes, New Phytol. 171, 469–499 (2006)

    Google Scholar 

  34. K. Koch, K.D. Hartmann, L. Schreiber, W. Barthlott, C. Neinhuis: Influence of air humidity on epicuticular wax chemical composition, morphology and wettability of leaf surfaces, Env. Exp. Bot. 56, 1–9 (2006)

    Google Scholar 

  35. C. Markstädter, W. Federle, R. Jetter, M. Riederer, B. Hölldobler: Chemical composition of the slippery epicuticular wax blooms on Macaranga Thouars. (Euphorbiaceae) ant-plants, Chemoecology 10, 33–40 (2000)

    Google Scholar 

  36. M. Riedel, A. Eichner, R. Jetter: Slippery surfaces of carnivorous plants: Composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers, Planta 218, 87–97 (2003)

    Google Scholar 

  37. M. Wen, C. Buschhaus, R. Jetter: Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L, Phytochemistry 67, 1808–1817 (2007)

    Google Scholar 

  38. H. Ensikat, C. Neinhuis, W. Barthlott: Direct access to plant epicuticular wax crystals by a new mechanical isolation method, Int. J. Plant Sci. 161, 143–148 (2000)

    Google Scholar 

  39. H.J. Ensikat, B. Boese, W. Mader, W. Barthlott, K. Koch: Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies, Chem. Phys. Lipids 144, 45–59 (2006) doi:10.1016/j.chemphyslip.2006.06.016

    Article  Google Scholar 

  40. D. Frölich, W. Barthlott: Die Mikromorphologie der epicuticularen Wachse und das System der Monocotylen, Trop. Subtrop. Pflanzenwelt 63, 1–135 (1988)

    Google Scholar 

  41. N.D. Hallam, B.E. Juniper: The anatomy of the leaf surface. In: The Ecology of Leaf Surface Micro-organisms, ed. by T.F. Preece, C.H. Dickinson (Academic, London 1971) pp. 3–37

    Google Scholar 

  42. C.E. Jeffree: The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Insects and the Plant Surface, ed. by B.E. Juniper, R. Southwood (Edward Arnold, London 1986) pp. 23–63

    Google Scholar 

  43. K. Koch, C. Neinhuis, H.J. Ensikat, W. Barthlott: Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM), J. Exp. Bot. 55, 711–718 (2004) doi:10.1093/jxb/erh077

    Article  Google Scholar 

  44. K. Koch, H.J. Ensikat: The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly, Micron 39, 759–772 (2008)

    Google Scholar 

  45. K. Koch, A. Dommisse, C. Neinhuis, W. Barthlott: Self-assembly of epicuticular waxes on living plant surfaces by atomic force microscopy. In: Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, ed. by P.M. Koenraad, M. Kemerink (American Institute of Physics, Melville 2003) pp. 457–460

    Google Scholar 

  46. P.J. Holloway, C.E. Jeffree, E.A. Baker: Structural determination of secondary alcohols from plant epicuticular waxes, Phytochemistry 15, 1768–1770 (1976)

    Google Scholar 

  47. R. Jetter, M. Riederer: In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkanediols, Bot. Acta 108, 111–120 (1995) doi:10.1111/j.1438-8677.1995.tb00840.x

    Article  Google Scholar 

  48. I. Meusel, C. Neinhuis, C. Markstadter, W. Barthlott: Chemical composition and recrystallization of epicuticular waxes: Coiled rodlets and tubules, Plant Biol. 2, 462–470 (2000) doi:10.1055/s-2000-5961

    Article  Google Scholar 

  49. W. Barthlott, I. Theisen, T. Borsch, C. Neinhuis: Epicuticular waxes and vascular plant systematics: Integrating micromorphological and chemical data. In: Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, ed. by T.F. Stuessy, V. Mayer, E. Hörandl (Reg. Veg. Gantner, Ruggell 2003) pp. 189–206

    Google Scholar 

  50. I. Meusel, C. Neinhuis, C. Markstadter, W. Barthlott: Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: Transversely ridged rodlets, Can. J. Bot. 77, 706–720 (1999) doi:10.1139/cjb-77-5-706

    Article  Google Scholar 

  51. International Union of Crystallography: Report of the Executive Committee for 1991, Acta Crystalogr. A 48, 922–946 (1992)

    Google Scholar 

  52. C.E. Jeffree, E.A. Baker, P.J. Holloway: Ultrastructure and recrystallization of plant epicuticular waxes, New Physiol. 75, 539–549 (1975)

    Google Scholar 

  53. R. Jetter, M. Riederer: Epicuticular crystals of nonacosan-10-ol: in vitro reconstitution and factors influencing crystal habits, Planta 195, 257–270 (1994) doi:10.1007/BF00199686

    Article  Google Scholar 

  54. K. Koch, A. Dommisse, W. Barthlott: Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst. Growth Des. 6, 2571–2578 (2006)

    Google Scholar 

  55. G.M. Whitesides, M. Boncheva: Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci. USA 99(8), 4769–4774 (2002)

    Google Scholar 

  56. J. Zhang, W. Zhong-Lin, J. Liu, C. Shaowei, G. Liu: Self Assembled Nanostructures (Kluwer, New York 2003)

    Google Scholar 

  57. N. Boden, P.J.B. Edwards, K.W. Jolley: Self-assembly and self-organization in micellar liquid crystals. In: Structure and Dynamics of Strongly Interacting Colloids and Supermolecular Aggregates in Solutions, ed. by S.H. Chen, J.S. Huang, P. Tartaglia (Kluwer, Dordrecht 1992)

    Google Scholar 

  58. C. Neinhuis, K. Koch, W. Barthlott: Movement and regeneration of epicuticular waxes through plant cuticles, Planta 213, 427–434 (2001) doi:10.1007/s004250100530

    Article  Google Scholar 

  59. D. Dorset: Development of lamellar structures in natural waxes – An electron diffraction investigation, J. Phys. D – Appl. Phys. 32, 1276–1280 (1999)

    Google Scholar 

  60. B. Bhushan, K. Koch, Y.C. Jung: Biomimetic hierarchical structure for self-cleaning, Appl. Phys. Lett. 93, 093101 (2008)

    Google Scholar 

  61. B. Bhushan, K. Koch, Y.C. Jung: Nanostructures for superhydrophobicity and low adhesion, Soft Matter 4, 1799–1804 (2008)

    Google Scholar 

  62. S. De Feyter, F.C. De Schryver: Self-assembly at the liquid/solid interface: STM reveals, J. Phys. Chem. B 109, 4290–4302 (2005)

    Google Scholar 

  63. F.C. Meldrum, S. Ludwigs: Template-directed control of crystal morphologies, Macromol. Biosci. 7, 152–162 (2007)

    Google Scholar 

  64. K. Koch, A. Dommisse, A. Niemietz, W. Barthlott, K. Wandelt: Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules, Surf. Sci. 603, 1961–1968 (2009) doi:10.1016/j.susc.2009.03.019

    Article  Google Scholar 

  65. A. Fahn: Structure and function of secretory cells, Adv. Bot. Res. 31, 37–75 (2000)

    Google Scholar 

  66. G.J. Wagner, E. Wang, R.W. Shephers: New approaches for studying and exploiting an old protuberance, the plant trichome, Ann. Bot. 93, 3–11 (2004)

    Google Scholar 

  67. E. Wollenweber: The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns, Am. Fern J. 68, 13–28 (1978)

    Google Scholar 

  68. W. Barthlott, E. Wollenweber: Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete, Trop. Subtrop. Pflanzenwelt 32, 7–67 (1981)

    Google Scholar 

  69. W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, H.F. Bohn: The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22, 2325–2328 (2010) doi:10.1002/adma.200904411

    Article  Google Scholar 

  70. P.J. Holloway: Plant cuticles: Physicochemical characteristics and biosynthesis. In: Air Pollution and the Leaf Cuticle, ed. by K.E. Percy, J.N. Cape, R. Jagels, C.J. Simpson (Springer, Berlin, Heidelberg 1994) pp. 1–13

    Google Scholar 

  71. P.E. Kolattukudy: Plant cuticle and suberin, eLS (2001) doi:10.1038/npg.els.0001920

  72. J.T. Martin, B.E. Juniper: The Cuticles of Plants (Edward Arnold, London 1970)

    Google Scholar 

  73. D.F. Cutler, K.L. Alvin, C.E. Price: The Plant Cuticle (Academic, London 1982)

    Google Scholar 

  74. G. Kerstiens: Plant Cuticles: An Integrated Functional Approach (BIOS Scientific, Oxford 1996)

    Google Scholar 

  75. M. Riederer, C. Müller: Biology of the Plant Cuticle. In: Annual Plant Reviews, Vol. 23 (Blackwell, Oxford 2006)

    Google Scholar 

  76. H. Bargel, C. Neinhuis: Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle, J. Exp. Bot. 56, 1049–1060 (2005)

    Google Scholar 

  77. H. Bargel, K. Koch, Z. Cerman, C. Neinhuis: Structure–function relationships of the plant cuticle and cuticular waxes – A smart material?, Funct. Plant Biol. 33, 893–910 (2006) doi:10.1071/FP06139

    Article  Google Scholar 

  78. W. Barthlott: Scanning electron microscopy of the epidermal surface in plants. In: Application of the Scanning em in Taxonomy and Functional Morphology. Systematics Associations’ Special Volume, ed. by D. Claugher (Clarendon, Oxford 1990) pp. 69–94

    Google Scholar 

  79. H.-J. Ensikat, T. Geisler-Wierwille, M. Weigend: A first report of hydroxylated apatite as structural biomineral in Loasaceae-plants’ teeth against herbivores, Sci. Rep. 6, 26073 (2016) doi:10.1038/srep26073

    Article  Google Scholar 

  80. W. Barthlott: Morphogenese und Mikromorphologie komplexer Cuticular-Faltungsmuster an Blüten-Trichomen von Antirrhinum L. (Scrophulariaceae), Ber. Dt. Bot. Ges. 93, 379–390 (1980)

    Google Scholar 

  81. L.H.P. Jones, K.A. Handreck: Silica in soils, plants, and animals, Adv. Agron. 19, 107–149 (1967)

    Google Scholar 

  82. A.G. Sangster, M.J. Hudson, H.J. Tubb: Silicon deposition in higher plants. In: Silicon in Agriculture, ed. by L.E. Datnoff, G.H. Snyder, G.H. Korndörfer (Elsevier, Amsterdam 2001) pp. 85–114

    Google Scholar 

  83. R.K. Saeedur: Calcium Oxalate in Biological Systems (CRC, Boca Raton 1995) p. 375

    Google Scholar 

  84. K. Koch, B. Bhushan, W. Barthlott: Diversity of structure, morphology and wetting of plant surfaces, Soft Matter 4, 1943–1963 (2008) doi:10.1039/b804854a

    Article  Google Scholar 

  85. K. Koch, B. Bhushan, W. Barthlott: Multifunctional surface structures of plants: An inspiration for biomimetics, Prog. Mater. Sci. 54, 137–178 (2009) doi:10.1016/j.pmatsci2008.07.003

    Article  Google Scholar 

  86. C. Martin, B.J. Glover: Functional aspects of cell patterning in aerial epidermis, Curr. Opin. Plant Biol. 10, 70–82 (2007)

    Google Scholar 

  87. C.A. Brewer, W.K. Smith, T.C. Vogelmann: Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets, Plant Cell Environ. 14, 955–962 (1991)

    Google Scholar 

  88. E. Rodriguez, P.L. Healey, I. Mehta: Biology and Chemistry of Plant Trichomes (Plenum, New York 1984)

    Google Scholar 

  89. H.D. Behnke: Plant trichomes-structure and ultrastructure: general terminology, taxonomic applications, and aspects of Trichome bacterial interaction in leaf tips of Dioscorea. In: Biology and Chemistry of Plant Trichomes, ed. by E. Rodriguez, P.L. Healey, I. Mehta (Plenum, New York 1984) pp. 1–21

    Google Scholar 

  90. W. Barthlott, D. Hunt: Seed-diversity in Cactaceae subfam. Cactoideae. In: Succulent Plant Research, Vol. 5, ed. by D. Hundt (David Hunt, Milborne Port 2000)

    Google Scholar 

  91. W. Barthlott, B. Große-Veldmann, N. Korotkova: Orchid seed diversity: A scanning electron microscopy survey, Englera 32, 1–244 (2014)

    Google Scholar 

  92. W. Barthlott, S. Wiersch, Z. Colic, K. Koch: Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes, Botany 87, 830–836 (2009) doi:10.1139/B09-048

    Article  Google Scholar 

  93. J.N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1992)

    Google Scholar 

  94. B. Bhushan: Introduction to Tribology, 2nd edn. (Wiley, New York 2013)

    Google Scholar 

  95. P.G. De Gennes, F. Brochard-Wyart, D. Quere: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York 2004)

    MATH  Google Scholar 

  96. B. Bhushan, Y.C. Jung: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces, J. Phys. Condens. Matter 20, 225010 (2008)

    Google Scholar 

  97. M. Nosonovsky, B. Bhushan: Green Tribology, Biomimetics, Energy Conservation and Sustainability (Springer, Berlin, Heidelberg 2012)

    Google Scholar 

  98. E.Y. Bormashenko: Wetting of real surfaces. In: De Gruyter Studies in Mathematical Physics, Vol. 19 (Walter de Gruyter, Berlin, Boston 2013) p. 187

    Google Scholar 

  99. H.J. Butt, K. Graf, M. Kappl: Physics and Chemistry of interfaces, 3rd edn. (Wiley, Weinheim 2013)

    Google Scholar 

  100. F. Schellenberger, N. Encinas, D. Vollmer, H.-J. Butt: How water advances on superhydrophobic surfaces, Phys. Rev. Lett. 116, 096101 (2016)

    Google Scholar 

  101. B. Bhushan: Nanotribology and Nanomechanics – An Introduction, 3rd edn. (Springer, Berlin, Heidelberg 2011)

    Google Scholar 

  102. C.W. Extrand: Model for contact angle and hysteresis on rough and ultraphobic surfaces, Langmuir 18, 7991–7999 (2002)

    Google Scholar 

  103. Y.C. Jung, B. Bhushan: Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces, J. Microsc. 229, 127–140 (2008)

    MathSciNet  Google Scholar 

  104. B. Bhushan, Y.C. Jung: Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy 107, 1033–1041 (2007)

    Google Scholar 

  105. P. Roach, N.J. Shirtcliffe, M.I. Newton: Progress in superhydrophobic surface development, Soft Matter 4, 224–240 (2008) doi:10.1039/b712575p

    Article  Google Scholar 

  106. X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang: Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem. 18, 621–633 (2008)

    Google Scholar 

  107. C.W. Extrand: Origins of wetting, Langmuir 32(31), 7697–7706 (2016) doi:10.1021/acs.langmuir.6b01935

    Article  Google Scholar 

  108. A.V. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1990)

    Google Scholar 

  109. M. Nosonovsky, B. Bhushan: Lotus versus rose: Biomimetic surface effects. In: Green Tribology, Biomimetics, Energy Conservation and Sustainability, ed. by M. Nosonovsky, B. Bhushan (Springer, Berlin, Heidelberg 2012) pp. 25–40

    Google Scholar 

  110. R.N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988 (1936)

    Google Scholar 

  111. A.B.D. Cassie, S. Baxter: Wettability of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944) doi:10.1039/tf9444000546

    Article  Google Scholar 

  112. A. Marmur: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?, Langmuir 19, 8343–8348 (2003)

    Google Scholar 

  113. E.Y. Bormashenko: Wetting transitions on biomimetic surfaces, Philos. Trans. R. Soc. A 368, 4695–4711 (2010)

    Google Scholar 

  114. L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang: Petal effect: A superhydrophobic state with high adhesive force, Langmuir 24, 4114–4119 (2008)

    Google Scholar 

  115. A.-L. Yarin: Drop impact dynamics: Splashing, spreading, receding, bouncing..., Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    MathSciNet  MATH  Google Scholar 

  116. C. Josserand, S.T. Thoroddsen: Drop impact on a solid surface, Annu. Rev. Fluid Mech. 48, 365–391 (2015)

    MathSciNet  MATH  Google Scholar 

  117. J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C.M. Megaridis, Z. Zhao: Wetting effects on the spreading of a liquid droplet surface: Experiment and modeling colliding with a flat, Phys. Fluids 7, 236–247 (1995) doi:10.1063/1.868622

    Article  Google Scholar 

  118. C. Mundo, M. Sommerfeld, C. Tropea: Droplet-wall collisions: Experimental studies of the deformation and breakup process, Int. J. Multiph. Flow 21, 151–173 (1995) doi:10.1016/0301-9322(94)00069-V

    Article  MATH  Google Scholar 

  119. T. Mao, D. Kuhn, H. Tran: Spread and rebound of liquid droplets upon impact on flat surfaces, AIChE J. 43, 2169–2179 (1997) doi:10.1002/aic.690430903

    Article  Google Scholar 

  120. L. Xu, L. Barcos, S.R. Nagel: Splashing of liquids: interplay of surface roughness withsurrounding gas, Phys. Rev. E 76, 066311 (2007) doi:10.1103/PhysRevE.76.066311

    Article  Google Scholar 

  121. R. Rioboo, C. Tropea, M. Marengo: Outcomes from a drop impact on solid surfaces, At. Sprays 11, 155–165 (2001) doi:10.1615/AtomizSpr.v11.i2.40

    Article  Google Scholar 

  122. C. Motzkus, F. Gensdarmes, E. Géhin: Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release, J. Colloid Interface Sci. 362, 540–552 (2011) doi:10.1016/j.jcis.2011.06.031

    Article  Google Scholar 

  123. T. Gilet, L. Bourouiba: Rain-induced ejection of pathogens from leaves: Revisiting the hypothesis of splash-on-film using high-speed visualization, Integr. Comp. Biol. 54(6), 974–984 (2014)

    Google Scholar 

  124. K. Koch, R. Grichnik: Influence of surface structure and chemistry on water droplet splashing, Philos Trans. R. Soc. A 374, 20160183 (2016) doi:10.1098/rsta.2016.0183

    Article  Google Scholar 

  125. Y. Liu, L. Moevius, X. Xu, T. Qian, J.M. Yeomans, Z. Wang: Pancake bouncing on superhydrophobic surfaces, Nat. Phys. 10(7), 515–519 (2014)

    Google Scholar 

  126. K. Koch, M. Bennemann, H.F. Bohn, D.C. Albach, W. Barthlott: Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting, Bioinspir. Biomim. 8, 036005 (2013)

    Google Scholar 

  127. H.-J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, W. Barthlott: Superhydrophobicity in perfection: The outstanding properties of the lotus leaf, Beilstein J. Nanotechnol. 2, 152–161 (2011) doi:10.3762/bjnano.2.19

    Article  Google Scholar 

  128. W. Barthlott, K. Riede, M. Wolter: Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicateae: Salviniaceae), Amazoniana 13, 47–58 (1994)

    Google Scholar 

  129. H. Bargel, W. Barthlott, K. Koch, L. Schreiber, C. Neinhuis: Plant cuticles: Multifunctional interfaces between plant and environment. In: The Evolution of Plant Physiology, ed. by A.R. Hemsley, I. Poole (Academic, London 2003) pp. 171–194

    Google Scholar 

  130. L. Schreiber, J. Schonherr: Water and Solute Permeability of Plant Cuticles (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  131. K. Koch, W. Barthlott: Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials, Philos. Trans. R. Soc. A 367, 1487–1509 (2009) doi:10.1098/rsta.2009.002

    Article  Google Scholar 

  132. W. Barthlott: Epidermal and seed surface characters of plants: Systematic applicability and some evolutionary aspects, Nordic J. Bot. 1, 345–355 (1981) doi:10.1111/j.1756-1051.1981.tb00704.x

    Article  Google Scholar 

  133. P.G. Kevan, M.A. Lanet: Flower petal microtexture is a tactile cue for bees, Proc. Natl. Acad. Sci. USA 82, 4750–4752 (1985)

    Google Scholar 

  134. S.N. Gorb: Functional Surfaces in Biology: Adhesion Related Phenomena, Vol. 1 (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  135. F. Exner, S. Exner: Die physikalischen Grundlagen der Blütenfärbungen, Sitzungsber. Kais. Akad. Wiss. Wien, Math.-nat. Kl. I 119, 191–245 (1910)

    Google Scholar 

  136. Y. Toda: Physiological studies on Schistostega osmundacea (Dicks.) Mohr, J. Coll. Sci. 40(5), 1–30 (1918)

    Google Scholar 

  137. Q. Kay, H. Daoud, C. Stirton: Pigment distribution, light reflection and cell structure in petals, Bot. J. Linn. Soc. 83(1), 57–84 (1981)

    Google Scholar 

  138. H.M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B. Glover: Floral iridescence, produced by diffractive optics, acts as cue for animal pollinators, Science 323, 130–133 (2009)

    Google Scholar 

  139. D.G. Lloyd, S.C.H. Barret: Floral Biology – Studies on Floral Evolution in Animal-Pollinated Plants (Chapman & Hall, New York 1996)

    Google Scholar 

  140. B. Burr, D. Rosen, W. Barthlott: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. III. Dilleniidae und Asteridae s. I, Trop. Subtrop. Pflanzenwelt 93, 186 (1995), (Akad. Wiss. Lit. Mainz, F. Steiner, Stuttgart 1995)

    Google Scholar 

  141. B. Burr, W. Barthlott: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae, Trop. Subtrop. Pflanzenwelt 87, 193 (1993), (Akad. Wiss. Lit. Mainz, F. Steiner, Stuttgart 1993)

    Google Scholar 

  142. N. Biedinger, W. Barthlott: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. I. Monocotyledoneae, Trop. Subtrop. Pflanzenwelt 86, 122 (1993), (Akad. Wiss. Lit. Mainz, F. Steiner, Stuttgart 1993)

    Google Scholar 

  143. H. Whitney, M. Kolle, R. Alvarez-Fernandez, U. Steiner, B. Glover: Contributions of iridescence to floral patterning, Commun. Integr. Biol. 2(3), 230–232 (2009)

    Google Scholar 

  144. S. Robinson, C.E. Lovelock, C.B. Osmond: Wax as a mechanism for protection against photoinhibition: A study of Cotyledon orbiculata, Bot. Acta 106, 307–312 (1993)

    Google Scholar 

  145. C. Müller, M. Riederer: Plant surface properties in chemical ecology, Chem. Ecol. 3, 2621–2651 (2005)

    Google Scholar 

  146. J.R. Ehleringer, O. Björkman: Pubescence and leaf spectral characteristics in a desert shrub Encelia farinosa, Oecologia 36, 151–162 (1978)

    Google Scholar 

  147. M.G. Holmes, D.R. Keiller: Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species, Plant Cell. Env. 25, 85–93 (2002)

    Google Scholar 

  148. D.M. Gates: Energy exchange and transpiration. In: Water and Plant Life, Ecological Studies, Vol. 19, ed. by O.L. Lange, L. Kappen, E.D. Schulze (Springer, Berlin, Heidelberg 1976) pp. 137–147

    Google Scholar 

  149. P.H. Schuepp: Model experiments on free convection heat and mass transfer of leaves and plant elements, Bound.-Layer Meteorol. 3, 454–457 (1973)

    Google Scholar 

  150. P.H. Schuepp: Leaf boundary layers, New Phytol. 125, 477–507 (1993)

    Google Scholar 

  151. H.G. Jones, E. Rotenberg: Energy, radiation and temperature regulation in plants. In: Encyclopedia of Life Sciences (Wiley, New York 2001) pp. 1–8

    Google Scholar 

  152. W. Barthlott, W. Schultze-Motel: Zur Feinstruktur der Blattoberflächen und systematischen Stellung der Laubmoosgattung Rhacocarpus und anderer Hedwigiaceae, Willdenowia 11, 3–11 (1981)

    Google Scholar 

  153. H.G. Edelmann, C. Neinhuis, M. Jarvis, B. Evans, E. Fischer, W. Barthlott: Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): A puzzling architecture among plants, Planta 206, 315–321 (1998)

    Google Scholar 

  154. F.T. Malik, R.M. Clement, D.T. Gethin, W. Krawszik, A.R. Parker: Nature’s moisture harvesters: A comparative review, Bioinspir. Biomim. 9, 031002 (2014)

    Google Scholar 

  155. M.A.K. Azad, D. Ellerbrok, W. Barthlott, K. Koch: Fog collecting biomimetic surfaces: Influence of microstructure and wettability, Bioinspir. Biomim. 10, 016004 (2015) doi:10.1088/1748-3190/10/1/016004

    Article  Google Scholar 

  156. M.A.K. Azad, W. Barthlott, K. Koch: Hierarchical surface architecture of plants as an inspiration for biomimetic fog collectors, Langmuir 31(48), 13172–13179 (2015) doi:10.1021/acs.langmuir.5b02430

    Article  Google Scholar 

  157. P.T. Martone, L. Kost, M. Boller: Drag reduction in wave-swept macroalgae: Alternative stratgies and new predictions, Am. J. Bot. 99, 8006–8815 (2012)

    Google Scholar 

  158. W. Barthlott, J. Bertling, P. Schoppa, C. Vogt: Lufthaltende Schiffsbeschichtungen nach biologischem Vorbild zur Reibungsreduktion, Fraunhofer UMSICHT, Design4Science (2011)

    Google Scholar 

  159. W. Barthlott: Die Selbstreinigungsfähigkeit pflanzlicher Oberflächen durch Epicuticularwachse. In: Klima- und Umweltforschung an der Universität Bonn (Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 1992) pp. 117–120

    Google Scholar 

  160. C.W. Extrand, S.I. Moon: Repellency of the lotus leaf: Contact angles, drop retention, and sliding angles, Langmuir 30, 8791–8797 (2014) doi:10.1021/la5019482

    Article  Google Scholar 

  161. A. Balmert, H.F. Bohn, P. Ditsche-Kuru, W. Barthlott: Dry under water: Comparative morphology and functional aspects of air-retaining insect surfaces, J. Morphol. 272, 442–451 (2011) doi:10.1002/jmor.10921

    Article  Google Scholar 

  162. R.S. Seymour, P.G.D. Matthews: Physical gills in diving insects and spiders: Theory and experiment, J. Exp. Biol. 216, 164–170 (2013)

    Google Scholar 

  163. K. Koch, H.F. Bohn, W. Barthlott: Hierarchical sculpturing of plant surfaces and superhydrophobicity, Langmuir 25, 14116–14120 (2009) doi:10.1021/la9017322

    Article  Google Scholar 

  164. M. Amabili, A. Giacomello, S. Meloni, C.M. Casciola: Unraveling the Salvinia paradox: design principles for submerged superhydrophobicity, Adv. Mater. Interfaces 2, 1500248 (2015) doi:10.1002/admi.201500248

    Article  Google Scholar 

  165. P. Ditsche, E. Gorb, M. Mayser, S. Gorb, T. Schimmel, W. Barthlott: Elasticity of the hair cover in air-retaining Salvinia surfaces, Appl. Phys. A 121, 505–511 (2015) doi:10.1007/s00339-015-9439-y

    Article  Google Scholar 

  166. D. Gandyra, S. Walheim, S. Gorb, W. Barthlott, T. Schimmel: The capillary adhesion technique: A versatile method for determining the liquid adhesion force and sample stiffness, Beilstein J. Nanotchnol. 6, 11–18 (2015) doi:10.3762/bjnano.6.2

    Article  Google Scholar 

  167. W. Konrad, C. Apeltauer, J. Frauendiener, W. Barthlott, A. Roth-Nebelsick: Applying methods from differential geometry to devise stable and persistent air layers attached to objects immersed in water, J. Bion. Eng. 6, 350–356 (2009) doi:10.1016/S1672-6529(08)60133-X

    Article  Google Scholar 

  168. M.J. Mayser, W. Barthlott: Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure, Integr. Comp. Biol. 54, 1001–1007 (2014) doi:10.1093/icb/icu072

    Article  Google Scholar 

  169. M.J. Mayser, H.F. Bohn, M. Reker, W. Barthlott: Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces, Beilstein J. Nanotechnol. 5, 812–821 (2014) doi:10.3762/bjnano.5.93

    Article  Google Scholar 

  170. A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott: The dream of staying clean: Lotus and biomimetic surfaces, Bioinspir. Biomim. 2, 126–134 (2007) doi:10.1088/1748-3182/2/4/S02

    Article  Google Scholar 

  171. S.D. Eigenbrode: Plant surface waxes and insect behaviour. In: Plant Cuticles: An Integrated Functional Approach, ed. by G. Kerstiens (BIOS Scientific, Oxford 1996) pp. 201–222

    Google Scholar 

  172. R.G. Beutel, S.N. Gorb: Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny, J. Zool. Syst. 39(4), 177–207 (2001) doi:10.1046/j.1439-0469.2001.00155.x

    Article  Google Scholar 

  173. S. Gorb: Attachment Devices of Insect Cuticle (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  174. H.F. Bohn, W. Federle: Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface, Proc. Natl. Acad. Sci. USA 101(39), 14138–14143 (2004)

    Google Scholar 

  175. U. Bauer, H.F. Bohn, W. Federle: Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar, Proc. R. Soc. B 275, 259–265 (2008)

    Google Scholar 

  176. J. Gould: Learning from nature's best, Nature 519, S2–S3 (2015) doi:10.1038/519S2a

    Article  Google Scholar 

  177. A.J. Schulte, D.M. Droste, K. Koch, W. Barthlott: Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – New design principles for biomimetic materials, Beilstein J. Nanotechnol. 2, 228–236 (2011) doi:10.3762/bjnano.2.27

    Article  Google Scholar 

  178. M. Hopkin: Butterflies boast ultrablack wings: Insects use optical trick to get the blackest black out of dark pigments, Nat. Sci. Update 28, 040126–4 (2004)

    Google Scholar 

  179. M. Spinner, S.N. Gorb, A. Balmert, H. Bleckmann, G. Westhoff: Non-contaminating camouflage: Multifunctional skin microornamentation in the West African Gaboon viper (Bitis rhinoceros), PLoS ONE 9, e91087 (2014) doi:10.1371/journal.pone.0091087

    Article  Google Scholar 

  180. M.A.K. Azad: Fog Collection on Plant Surfaces and Biomimetic Applications, Ph.D. Thesis (University of Bonn, Bonn 2016)

    Google Scholar 

  181. M.A.K. Azad, T. Krause, L. Danter, A. Baars, K. Koch, W. Barthlott: Fog collection on polyethylene terephthalate (PET) fibers: Influence of cross section and surface structure, Langmuir (2017) doi:10.1021/acs.langmuir.7b00478

  182. M. Nosonovsky, B. Bhushan: Energy transitions in superhydrophobicity: Low adhesion, easy flow and bouncing, J. Phys. Condens. Matter 20, 395005 (2008)

    Google Scholar 

  183. G. Zouridakis, J.E. Moore, J. Maitland: Biomedical Technology and Devices, 2nd edn. (CRC, Boca Raton 2013)

    Google Scholar 

  184. D.J. Babu, M. Mail, W. Barthlott, J.J. Schneider: Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water (Salvinia effect), Adv. Mater. Interfaces (2017) doi:10.1002/admi.201700273

  185. C.J. Weng, C.H. Chang, C.W. Peng, S.W. Chen, J.M. Yeh, C.L. Hsu, Y. Wei: Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability, Chem. Mater. 23(8), 2075–2083 (2011)

    Google Scholar 

  186. S. Farhadi, M. Farzaneh, S.A. Kulinich: Anti-icing performance of superhydrophobic surfaces, Appl. Surf. Sci. 257, 6264–6269 (2011) doi:10.1016/j.apsusc.2011.02.057

    Article  Google Scholar 

  187. L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao: Anti-icing superhydrophobic coatings, Langmuir 25, 12444–12448 (2009) doi:10.1021/la902882b

    Article  Google Scholar 

  188. Y.Y. Yan, N. Gao, W. Barthlott: Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces, Adv. Colloid Interface Sci. 169, 80–105 (2011) doi:10.1016/j.cis.2011.08.005

    Article  Google Scholar 

  189. R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel: Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir 21, 956–961 (2005) doi:10.1021/la0401011

    Article  Google Scholar 

  190. K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott: Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5(7), 1386–1393 (2009)

    Google Scholar 

  191. M. Schwab, G. Noga, W. Barthlott: Bedeutung der Epicuticularwachse für die Pathogenabwehr am Beispiel von Botrytis cinerea – Infektionen bei Kohlrabi und Erbse, Gartenbauwissenschaft 60, 102–109 (1995)

    Google Scholar 

  192. G.J. Noga, M. Knoche, M. Wolter, W. Barthlott: Changes in leaf micro-morphology induced by surfactant application, Angew. Bot. 61, 521–528 (1987)

    Google Scholar 

  193. M. Wolter, W. Barthlott, M. Knoche, G.J. Noga: Concentration effects and regeneration of epicuticular waxes after treatment with Triton-X-100 surfactant, Angew. Bot. 62, 53–62 (1988)

    Google Scholar 

  194. G. Noga, M. Wolter, W. Barthlott, W. Petry: Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment, Angew. Bot. 65, 239–252 (1991)

    Google Scholar 

  195. G. Noga, M. Knoche, M. Wolter: The Impact of Triton X-100 surfactant on leaf micromorphology, Hortscience 23(3), 808 (1988)

    Google Scholar 

  196. C. Neinhuis, M. Wolter, W. Barthlott: Epicuticular wax of Brassica oleracea: Changes in microstructure and ability to be contaminated of leaf surfaces after application of Triton X-100, Z. Pflanzenkrankh. Pflanzenschutz 99, 542–549 (1992)

    Google Scholar 

  197. C. Zeiger, I.C.R. da Silva, M. Mail, M.N. Kavalenka, W. Barthlott, H. Hölscher: Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials, Bioinspir. Biomim. 11(5), 056003 (2016)

    Google Scholar 

  198. M.A. Salem, W. Al-Zayadneh, H.F. Schulze, A.J. Cheruth: Effect of nanohydrophobic sand layer on Bermudagrass (Cynodon spp.) in urban landscaping, Urban Water J. 11, 167–173 (2013) doi:10.1080/1573062X.2013.768684

    Article  Google Scholar 

  199. J.-E. Melskotte, M. Brede, A. Ott, M. Mayser, W. Barthlott, A. Leder: Künstliche Luft haltende Oberflächen zur Reibungsreduktion am Schiff/Artificial air retaining surfaces for drag reduction on shiphulls. In: Lasermethoden in der Strömungsmesstechnik, Vol. 39, ed. by M. Brede, B. Ruck, D. Dopheide (Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., Karlsruhe 2012) pp. 1–6

    Google Scholar 

  200. O. Tricinci, T. Terencio, B. Mazzolai, N.M. Pugno, F. Greco, V. Mattoli: 3D micropatterned surfaces inspired by Salvinia molesta via direct laser lithography, ACS Appl. Mater. Interfaces 7(46), 25560–25567 (2015) doi:10.1021/acsami.5b07722

    Article  Google Scholar 

  201. J.-E. Melskotte, M. Brede, A. Wolter, W. Barthlott, A. Leder: Schleppversuche an künstlichen, Luft haltenden Oberflächen zur Reibungsreduktion am Schiff. In: Lasermethoden Strömungsmesstech., 21. Fachtag., München, 2013 (Tagungsbd.), ed. by C.J. Kähler, R. Hain, C. Cierpka, B. Ruck, A. Leder, D. Dopheide (Dt. Ges. Laser-Anemometrie GALA e.V., Karlsruhe 2013) pp. 53-1–51-7

    Google Scholar 

  202. P. Ditsche-Kuru, E.S. Schneider, J.-E. Melskotte, M. Brede, A. Leder, W. Barthlott: Superhydrophobic surfaces of the water bug Notonecta glauca: A model for friction reduction and air retention, Beilstein J. Nanotechnol. 2, 137–144 (2011) doi:10.3762/bjnano.2.17

    Article  Google Scholar 

  203. W. Federle, U. Maschwitz, B. Fiala, M. Riederer, B. Hölldobler: Slippery ant-plants and skilful climbers: Selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae), Oecologia 112, 217–224 (1997)

    Google Scholar 

  204. P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg: Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates, Nano Lett. 13(4), 1793–1799 (2013) doi:10.1021/nl4003969

    Article  Google Scholar 

  205. T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477, 443–447 (2011) doi:10.1038/nature10447

    Article  Google Scholar 

  206. C.A.E. Hamlett, N.J. Shirtcliffe, F.B. Pyatt, M.I. Newton, G. McHale, K. Koch: Passive water control at the surface of a superhydrophobic lichen, Planta 234(6), 1267–1274 (2011) doi:10.1007/s00425-011-1475-z

    Article  Google Scholar 

  207. W. Barthlott, W. Erdelen, M.D. Rafiqpoor: Biodiversity and technical innovations: bionics. In: Concept and Value in Biodiversity. Routledge Studies in Biodiversity Politics and Management, ed. by D. Lanzerath, M. Friele (Routledge, Oxon, New York 2014) pp. 300–315

    Google Scholar 

Download references

Acknowledgements

This survey is based on over three decades of research on surfaces by a large working group with ever-changing members: first and foremost, we acknowledge all the students who had successful theses in this field. Their names can be found in the papers quoted in the references. We acknowledge the discussions with colleagues and friends in particular we would like to thank Horst Bleckmann (Bonn), Alfred Leder, Martin Brede (both Rostock), Thomas Schimmel, Stefan Walheim, Markus Moosmann, Torsten Scherer (all KIT Karlsruhe), Walter Erdelen (former UNESCO Paris), Anna-Julia Schulte (Euskirchen), Daud Rafiqpoor, Birte Böhnlein, Peter Häger (all Bonn), Gerhard Gottsberger (Ulm), Stanislav Gorb (Kiel), Georg Noga (Bonn), and Maximilian Weigend (Bonn). Technical assistance was provided over the years by Hans-Jürgen Ensikat, the late Wolfgang Roden, Alexandra Runge, Bernd Haeseling, and Danica Christensen. Our work in bionics and biodiversity was supported by the Deutsche Bundesstiftung Umwelt DBU, the German Research Council DFG, the Federal Ministry for Science and Education BMBF, and the Academy of Science and Literature in Mainz.

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Barthlott, W., Mail, M., Bhushan, B., Koch, K. (2017). Plant Surfaces: Structures and Functions for Biomimetic Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics