Skip to main content

Nanotribology, Nanomechanics and Materials Characterization

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

Nanotribology and nanomechanics studies are needed to develop a fundamental understanding of interfacial phenomena on a small scale, and to study interfacial phenomena in micro/nanoelectromechanical systems (GlossaryTerm

MEMS

/GlossaryTerm

NEMS

), magnetic storage devices, and many other applications. Friction and wear of lightly loaded micro/nanocomponents are highly dependent on surface interactions (a few atomic layers). These structures are generally coated with molecularly thin films. Nanotribology and nanomechanics studies are also valuable in the fundamental understanding of interfacial phenomena in macrostructures, and provide a bridge between science and engineering. An atomic force microscope (GlossaryTerm

AFM

) tip is used to simulate a single-asperity contact with a solid or lubricated surface. AFMs are used to study the various tribological phenomena, which include surface roughness, adhesion, friction, scratching, wear, detection of material transfer, and boundary lubrication. In situ surface characterization of local deformation of materials and thin coatings can be carried out using a tensile stage inside an AFM. Mechanical properties such as hardness, Young's modulus of elasticity, and creep/relaxation behavior can be determined on micro- to picoscales using a depth-sensing indentation system in an AFM. Localized surface elasticity and viscoelastic mapping near surface regions can be obtained with nanoscale lateral resolution. Finally, an AFM can be used for nanofabrication/nanomachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Google Scholar 

  2. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  3. B. Bhushan: Micro/Nanotribology and its Applications, Nato Science, Vol. 330 (Kluwer, Dordrecht 1997)

    Google Scholar 

  4. I.L. Singer, H.M. Pollock: Fundamentals of Friction: Macroscopic and Microscopic Processes, Nato Science Series, Vol. E220 (Kluwer, Dordrecht 1992)

    Google Scholar 

  5. H.J. Guntherodt, D. Anselmetti, E. Meyer: Forces in Scanning Probe Methods, Vol. E286 (Kluwer, Dordrecht 1995)

    Google Scholar 

  6. B.N.J. Persson, E. Tosatti: Physics of Sliding Friction, Nato Science, Vol. E311 (Kluwer, Dordrecht 1996)

    Google Scholar 

  7. B. Bhushan: Nanoscale tribophysics and tribomechanics, Wear 225–229, 465–492 (1999)

    Google Scholar 

  8. B. Bhushan: Wear and mechanical characterisation on micro- to picoscales using AFM, Int. Mater. Rev. 44, 105–117 (1999)

    Google Scholar 

  9. B. Bhushan: Modern Tribology Handbook: Principles of Tribology, Vol. 1 (CRC, Boca Raton 2001)

    Google Scholar 

  10. B. Bhushan: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, NATO Science Series II, Vol. 10 (Kluwer, Dordrecht 2001)

    Google Scholar 

  11. B. Bhushan: Nano- to microscale wear and mechanical characterization studies using scanning probe microscopy, Wear 251, 1105–1123 (2001)

    Google Scholar 

  12. B. Bhushan: Nanotribology and nanomechanics, Wear 259, 1507–1531 (2005)

    Google Scholar 

  13. B. Bhushan: Nanotribology, nanomechanics and nanomaterials characterization, Philos. Trans. R. Soc. A 366, 1351–1381 (2008)

    MathSciNet  Google Scholar 

  14. B. Bhushan: Nanotribology and Nanomechanics – An Introduction, 4th edn. (Springer International, Cham 2017)

    Google Scholar 

  15. B. Bhushan: Encyclopedia of Nanotechnology, 2nd edn. (Springer, Cham 2016)

    Google Scholar 

  16. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)

    Google Scholar 

  17. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Google Scholar 

  18. B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8, 1985–2015 (1999)

    Google Scholar 

  19. B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction, J. Vac. Sci. Technol. B 21, 2262–2296 (2003)

    Google Scholar 

  20. B. Bhushan, A.V. Kulkarni, V.N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and Langmuir-Blodgett monolayers by atomic and friction force microscopy, Langmuir 11, 3189–3198 (1995)

    Google Scholar 

  21. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscopy, Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  22. G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate: Atomic resolution with atomic force microscope, Europhys. Lett. 3, 1281–1286 (1987)

    Google Scholar 

  23. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    Google Scholar 

  24. B. Bhushan, J. Ruan: Atomic-scale friction measurements using friction force microscopy: Part II – Application to magnetic media, ASME J. Tribol. 116, 389–396 (1994)

    Google Scholar 

  25. J. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I – general principles and new measurement techniques, ASME J. Tribol. 116, 378–388 (1994)

    Google Scholar 

  26. J. Ruan, B. Bhushan: Atomic-scale and microscale friction of graphite and diamond using friction force microscopy, J. Appl. Phys. 76, 5022–5035 (1994)

    Google Scholar 

  27. J. Ruan, B. Bhushan: Frictional behavior of highly oriented pyrolytic graphite, J. Appl. Phys. 76, 8117–8120 (1994)

    Google Scholar 

  28. B. Bhushan, V.N. Koinkar, J. Ruan: Microtribology of magnetic media, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 208, 17–29 (1994)

    Google Scholar 

  29. B. Bhushan, A.V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 278, 49–56 (1996)

    Google Scholar 

  30. B. Bhushan, A.V. Kulkarni: Erratum to ‘‘Effect of normal load on microscale friction measurement’’, Thin Solid Films 293, 333 (1997)

    Google Scholar 

  31. B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)

    Google Scholar 

  32. V. Scherer, W. Arnold, B. Bhushan: Active friction control using ultrasonic vibration. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 463–469

    Google Scholar 

  33. V. Scherer, W. Arnold, B. Bhushan: Lateral force microscopy using acoustic friction force microscopy, Surf. Interface Anal. 27, 578–587 (1999)

    Google Scholar 

  34. M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)

    Google Scholar 

  35. M. Reinstaedtler, U. Rabe, A. Goldade, B. Bhushan, W. Arnold: Investigating ultra-thin lubricant layers using resonant friction force microscopy, Tribol. Int. 38, 533–541 (2005)

    Google Scholar 

  36. M. Reinstaedtler, T. Kasai, U. Rabe, B. Bhushan, W. Arnold: Imaging and measurement of elasticity and friction using the TR mode, J. Phys. D 38, R269–R282 (2005)

    Google Scholar 

  37. B. Bhushan, T. Kasai: A surface topography-independent friction measurement technique using torsional resonance mode in an AFM, Nanotechnology 15, 923–935 (2004)

    Google Scholar 

  38. N.S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D: Appl. Phys. 38, 764–773 (2005)

    Google Scholar 

  39. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)

    Google Scholar 

  40. B. Bhushan, D. Hansford, K.K. Lee: Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2006)

    Google Scholar 

  41. B. Bhushan, M. Cichomski, Z. Tao, N.T. Tran, T. Ethen, C. Merton, R.E. Jewett: Nanotribological characterization and lubricant degradation studies of metal-film magnetic tapes using novel lubricants, ASME J. Tribol. 129, 621–627 (2007)

    Google Scholar 

  42. V.N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys. 79, 8071–8075 (1996)

    Google Scholar 

  43. V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)

    Google Scholar 

  44. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412-1–245412-11 (2001)

    Google Scholar 

  45. H. Liu, B. Bhushan, W. Eck, V. Staedtler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)

    Google Scholar 

  46. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)

    Google Scholar 

  47. H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Google Scholar 

  48. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffmann: Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Google Scholar 

  49. K.K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of perfluoropolymer thin films for biomedical micro/nanoelectromechanical systems applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)

    Google Scholar 

  50. N.S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)

    Google Scholar 

  51. Z. Tao, B. Bhushan: Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants, Wear 259, 1352–1361 (2005)

    Google Scholar 

  52. Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether, self assembled monolayers, and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)

    Google Scholar 

  53. M. Palacio, B. Bhushan: Surface potential and resistance measurements for detecting wear of chemically-bonded and unbonded molecularly-thick perfluoropolyether lubricant films using atomic force microscopy, J. Colloid Interface Sci. 315, 261–269 (2007)

    Google Scholar 

  54. M. Palacio, B. Bhushan: Wear detection of candidate MEMS/NEMS lubricant films using atomic force microscopy-based surface potential measurements, Scr. Mater. 57, 821–824 (2007)

    Google Scholar 

  55. B. Bhushan, V.N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75, 5741–5746 (1994)

    Google Scholar 

  56. V.N. Koinkar, B. Bhushan: Microtribological studies of Al2O3-TiC, polycrystalline and single-crystal Mn-Zn ferrite and SiC head slider materials, Wear 202, 110–122 (1996)

    Google Scholar 

  57. V.N. Koinkar, B. Bhushan: Microtribological properties of hard amorphous carbon protective coatings for thin film magnetic disks and heads, Proc. Inst. Mech. Eng. Part J 211, 365–372 (1997)

    Google Scholar 

  58. S. Sundararajan, B. Bhushan: Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultra-thin hard amorphous carbon coatings, J. Mater. Res. 16, 75–84 (2001)

    Google Scholar 

  59. J. Ruan, B. Bhushan: Nanoindentation studies of fullerene films using atomic force microscopy, J. Mater. Res. 8, 3019–3022 (1993)

    Google Scholar 

  60. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)

    Google Scholar 

  61. B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 64, 1653–1655 (1994)

    Google Scholar 

  62. X. Li, B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact. 48, 11–36 (2002)

    Google Scholar 

  63. B. Bhushan, X. Li: Nanomechanical characterisation of solid surfaces and thin films, Int. Mater. Rev. 48, 125–164 (2003), (invited)

    Google Scholar 

  64. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103–106 (1991)

    Google Scholar 

  65. B. Anczykowski, D. Kruger, K.L. Babcock, H. Fuchs: Basic properties of dynamic force microscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66, 251–259 (1996)

    Google Scholar 

  66. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Google Scholar 

  67. U.D. Schwarz, O. Zwoerner, P. Koester, R. Wiesendanger: Friction force spectroscopy in the low-load regime with well-defined tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp. 233–238

    Google Scholar 

  68. S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold: Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75–84 (2001)

    Google Scholar 

  69. W.W. Scott, B. Bhushan: Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly-thick lubricant films, Ultramicroscopy 97, 151–169 (2003)

    Google Scholar 

  70. B. Bhushan, J. Qi: Phase contrast imaging of nanocomposites and molecularly-thick lubricant films in magnetic media, Nanotechnology 14, 886–895 (2003)

    Google Scholar 

  71. T. Kasai, B. Bhushan, L. Huang, C. Su: Topography and phase imaging using the torsional resonance mode, Nanotechnology 15, 731–742 (2004)

    Google Scholar 

  72. N. Chen, B. Bhushan: Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode in an AFM, J. Micros. 220, 96–112 (2005)

    Google Scholar 

  73. M.S. Bobji, B. Bhushan: Atomic force microscopic study of the micro-cracking of magnetic thin films under tension, Scr. Mater. 44, 37–42 (2001)

    Google Scholar 

  74. M.S. Bobji, B. Bhushan: In situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy, J. Mater. Res. 16, 844–855 (2001)

    Google Scholar 

  75. N.S. Tambe, B. Bhushan: In situ study of nano-cracking of multilayered magnetic tapes under monotonic and fatigue loading using an AFM, Ultramicroscopy 100, 359–373 (2004)

    Google Scholar 

  76. M. Palacio, B. Bhushan: Normal and lateral force calibration techniques for AFM cantilevers, Crit. Rev. Solid State Mater. Sci. 35, 73–104 (2010)

    Google Scholar 

  77. M. Palacio, B. Bhushan: Erratum to: Normal and lateral force calibration techniques for AFM cantilevers, Crit. Rev. Solid State Mater. Sci. 36, 261 (2010)

    Google Scholar 

  78. B. Bhushan, T. Kasai, C.V. Nguyen, M. Meyyappan: Multiwalled carbon nanotube AFM probes for surface characterization of micro/nanostructures, Microsyst. Technol. 10, 633–639 (2004)

    Google Scholar 

  79. B. Bhushan: Micro/nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28, 85–95 (1995)

    Google Scholar 

  80. A. Avila, B. Bhushan: Electrical measurement techniques in atomic force microscopy, Crit. Rev. Solid State Mater. Sci. 35, 38–51 (2010)

    Google Scholar 

  81. B. Bhushan, A.V. Goldade: Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244, 104–117 (2000)

    Google Scholar 

  82. D.T. Lee, J.P. Pelz, B. Bhushan: Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance, Rev. Sci. Instrum. 73, 3523–3533 (2002)

    Google Scholar 

  83. D. DeVecchio, B. Bhushan: Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69, 3618–3624 (1998)

    Google Scholar 

  84. B. Bhushan, A.V. Goldade: Measurements and analysis of surface potential change during wear of single crystal silicon (100) at ultralow loads using kelvin probe microscopy, Appl. Surf. Sci. 157, 373–381 (2000)

    Google Scholar 

  85. I.P. Seshadri, B. Bhushan: In-situ tensile deformation characterization of human hair with atomic force microscopy, Acta Mater. 56, 774–781 (2008)

    Google Scholar 

  86. I.P. Seshadri, B. Bhushan: Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy, Acta Mater. 56, 3585–3597 (2008)

    Google Scholar 

  87. H.U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti: Pulse force mode: A new method for the investigation of surface properties, Surf. Interface Anal. 27, 336–340 (1999)

    Google Scholar 

  88. U. Rabe, K. Janser, W. Arnold: Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment, Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Google Scholar 

  89. V. Scherer, B. Bhushan, U. Rabe, W. Arnold: Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies, IEEE Trans. Magn. 33, 4077–4079 (1997)

    Google Scholar 

  90. J. Tamayo, R. Garcia: Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir 12, 4430–4435 (1996)

    Google Scholar 

  91. R. Garcia, J. Tamayo, M. Calleja, F. Garcia: Phase contrast in tapping-mode scanning force microscopy, Appl. Phys. A 66, S309–S312 (1998)

    Google Scholar 

  92. Y. Song, B. Bhushan: Quantitative extraction of in-plane surface properties using torsional resonance mode in atomic force microscopy, J. Appl. Phys. 87, 83533 (2005)

    Google Scholar 

  93. Z. Tao, B. Bhushan: Surface modification of AFM silicon probes for adhesion and wear reduction, Tribol. Lett. 21, 1–16 (2006)

    Google Scholar 

  94. B. Bhushan, J. Ruan, B.K. Gupta: A scanning tunnelling microscopy study of fullerene films, J. Phys. D: Appl. Phys. 26, 1319–1322 (1993)

    Google Scholar 

  95. B. Bhushan, P.S. Mokashi, T. Ma: A new technique to measure poisson’s ratio of ultrathin polymeric films using atomic force microscopy, Rev. Sci. Instrum. 74, 1043–1047 (2003)

    Google Scholar 

  96. G.A. Tomlinson: A molecular theory of friction, Philos. Mag. 7, 905–939 (1929)

    Google Scholar 

  97. D. Tomanek, W. Zhong, H. Thomas: Calculation of an atomically modulated friction force in atomic force microscopy, Europhys. Lett. 15, 887–892 (1991)

    Google Scholar 

  98. E. Meyer, R. Overney, R. Luthi, D. Brodbeck, L. Howald, J. Frommer, H.J. Guntherodt, O. Wolter, M. Fujihira, T. Takano, Y. Gotoh: Friction force microscopy of mixed Langmuir-Blodgett films, Thin Solid Films 220, 132–137 (1992)

    Google Scholar 

  99. C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)

    Google Scholar 

  100. V.N. Koinkar, B. Bhushan: Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy, J. Mater. Res. 12, 3219–3224 (1997)

    Google Scholar 

  101. S. Sundararajan, B. Bhushan: Topography-induced contributions to friction forces measured using an atomic force/friction force microscope, J. Appl. Phys. 88, 4825–4831 (2000)

    Google Scholar 

  102. V.N. Koinkar, B. Bhushan: Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys. 81, 2472–2479 (1997)

    Google Scholar 

  103. B. Bhushan: Principles and Applications of Tribology, 2nd edn. (Wiley, New York 2013)

    Google Scholar 

  104. B. Bhushan: Introduction to Tribology, 2nd edn. (Wiley, New York 2013)

    Google Scholar 

  105. B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–458 (1991)

    Google Scholar 

  106. K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)

    Google Scholar 

  107. I.P. Seshadri, B. Bhushan: Effect of rubbing load on nanoscale charging characteristics of human hair characterized by AFM based Kelvin probe, J. Colloid Interface Sci. 325, 580–587 (2008)

    Google Scholar 

  108. O. Marti, H.-U. Krotil: Dynamic friction measurement with the scanning force microscope. In: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp. 121–135

    Google Scholar 

  109. Z. Tao, B. Bhushan: A new technique for studying nanoscale friction at sliding velocities up to 200 mm/s using atomic force microscope, Rev. Sci. Instrum. 77, 103705 (2006)

    Google Scholar 

  110. N.S. Tambe, B. Bhushan: Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)

    Google Scholar 

  111. N.S. Tambe, B. Bhushan: Friction model for the velocity dependence of nanoscale friction, Nanotechnology 16, 2309–2324 (2005)

    Google Scholar 

  112. N.S. Tambe, B. Bhushan: Durability studies of micro/nanoelectromechanical system materials, coatings, and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope, J. Vac. Sci. Technol. A 23, 830–835 (2005)

    Google Scholar 

  113. N.S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett. 86, 061906 (2005)

    Google Scholar 

  114. Z. Tao, B. Bhushan: Velocity dependence and rest time effect in nanoscale friction of ultrathin films at high sliding velocities, J. Vac. Sci. Technol. A 25, 1267–1274 (2007)

    Google Scholar 

  115. O. Zworner, H. Holscher, U.D. Schwarz, R. Wiesendanger: The velocity dependence of frictional forces in point-contact friction, Appl. Phys. A 66, S263–S267 (1998)

    Google Scholar 

  116. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.-J. Guntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)

    Google Scholar 

  117. J.S. Helman, W. Baltensperger, J.A. Holyst: Simple-model for dry friction, Phys. Rev. B 49, 3831–3838 (1994)

    Google Scholar 

  118. C. Fusco, A. Fasolino: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional tomlinson model, Phys. Rev. B 71, 045413 (2005)

    Google Scholar 

  119. N.S. Tambe, B. Bhushan: Nanoscale friction and wear maps, Philos. Trans. R. Soc. A 366, 1405–1424 (2008)

    Google Scholar 

  120. N.S. Tambe, B. Bhushan: Nanoscale friction mapping, Appl. Phys. Lett. 86, 193102 (2005)

    Google Scholar 

  121. N.S. Tambe, B. Bhushan: Nanoscale friction-induced phase transformation of diamond-like carbon, Scr. Mater. 52, 751–755 (2005)

    Google Scholar 

  122. S.C. Lim, M.F. Ashby: Wear mechanism maps, Acta Metall. 35, 1–24 (1987)

    Google Scholar 

  123. S.C. Lim, M.F. Ashby, J.H. Brunton: Wear-rate transitions and their relationship to wear mechanisms, Acta Metall. 35, 1343–1348 (1987)

    Google Scholar 

  124. N.S. Tambe, B. Bhushan: Nanowear mapping: A novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities, Tribol. Lett. 20, 83–90 (2005)

    Google Scholar 

  125. B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87, 1201–1210 (2000)

    Google Scholar 

  126. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning probe microscopy, Phys. Rev. B 62, 13667–13673 (2000)

    Google Scholar 

  127. B. Bhushan, H. Liu, S.M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)

    Google Scholar 

  128. H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Google Scholar 

  129. B. Bhushan, B.K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments (Krieger, Malabar 1997)

    Google Scholar 

  130. B. Bhushan, S. Venkatesan: Mechanical and tribological properties of silicon for micromechanical applications: A review, Adv. Inf. Storage Syst. 5, 211–239 (1993)

    Google Scholar 

  131. Properties of Silicon, EMIS Data Reviews Series No. 4 (INSPEC, Institution of Electrical Engineers, London 1988)

    Google Scholar 

  132. J.E. Field: The Properties of Natural and Synthetic Diamond (Academic, London 1992)

    Google Scholar 

  133. National Carbon Company: The Industrial Graphite Engineering Handbook (National Carbon Company, New York 1959)

    Google Scholar 

  134. M. Nosonovsky, B. Bhushan: Scale effects in dry friction during multiple-asperity contact, ASME J. Tribol. 127, 37–46 (2005)

    Google Scholar 

  135. B. Bhushan, M. Nosonovsky: Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip), Acta Mater. 51, 4331–4345 (2003)

    Google Scholar 

  136. B. Bhushan, M. Nosonovsky: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing), Acta Mater. 52, 2461–2474 (2004)

    Google Scholar 

  137. B. Bhushan, M. Nosonovsky: Scale effects in dry and wet friction, wear, and interface temperature, Nanotechnology 15, 749–761 (2004)

    Google Scholar 

  138. X. Zhao, B. Bhushan: Material removal mechanism of single-crystal silicon on nanoscale and at ultralow loads, Wear 223, 66–78 (1998)

    Google Scholar 

  139. W. Tang, B. Bhushan, S. Ge: Triboelectrification studies of skin and skin cream using Kelvin probe microscopy, J. Vac. Sci. Technol. A 28, 1018–1028 (2010)

    Google Scholar 

  140. R.A. Lodge, B. Bhushan: Effect of physical wear and triboelectric interaction on surface charges measured by kelvin probe microscopy, J. Colloid Interface Sci. 310, 321–330 (2007)

    Google Scholar 

  141. S.C. Nagpure, B. Bhushan, S.S. Babu: Surface potential measurement of aged li-ion batteries using kelvin probe microscopy, J. Power Sources 196, 1508–1512 (2011)

    Google Scholar 

  142. U. Zaghloul, B. Bhushan, F. Coccetti, P. Pons, R. Plana: Kelvin probe force microscopy based characterization techniques applied for electrostatic MEMS and thin dielectric films to investigate the dielectric substrate charging phenomena, J. Vac. Sci. Technol. A 29, 051101 (2011)

    Google Scholar 

  143. A.V. Kulkarni, B. Bhushan: Nanoscale mechanical property measurements using modified atomic force microscopy, Thin Solid Films 290/291, 206–210 (1996)

    Google Scholar 

  144. A.V. Kulkarni, B. Bhushan: Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy, Mater. Lett. 29, 221–227 (1996)

    Google Scholar 

  145. A.V. Kulkarni, B. Bhushan: Nanoindentation measurement of amorphous carbon coatings, J. Mater. Res. 12, 2707–2714 (1997)

    Google Scholar 

  146. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)

    Google Scholar 

  147. W.D. Nix, H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998)

    MATH  Google Scholar 

  148. W.B. Li, J.L. Henshall, R.M. Hooper, K.E. Easterling: The mechanism of indentation creep, Acta Metall. Mater. 39, 3099–3110 (1991)

    Google Scholar 

  149. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part 1 (Clarendon, Oxford 1950)

    MATH  Google Scholar 

  150. B. Bhushan, M. Palacio, B. Kinzig: AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films, J. Colloid Interface. Sci. 317, 275–287 (2008)

    Google Scholar 

  151. M. Palacio, B. Bhushan: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications, Adv. Mater. 20, 1194–1198 (2008)

    Google Scholar 

  152. M. Palacio, B. Bhushan: Molecularly thick dicationic liquid films for nanolubrication, J. Vac. Sci. Technol. A 27, 986–995 (2009)

    Google Scholar 

  153. E. Hoque, J.A. DeRose, P. Hoffmann, H.J. Mathieu, B. Bhushan, M. Cichomski: Phosphonate self-assembled monolayers on aluminum surfaces, J. Chem. Phys. 124, 174710 (2006)

    Google Scholar 

  154. E. Hoque, J.A. DeRose, G. Kulik, P. Hoffmann, H.J. Mathieu, B. Bhushan: Alkylphosphonate modified aluminum oxide surfaces, J. Phys. Chem. B 110, 10855–10861 (2006)

    Google Scholar 

  155. E. Hoque, J.A. DeRose, P. Hoffmann, B. Bhushan, H.J. Mathieu: Alkylperfluorosilane self-assembled monolayers on aluminum: A comparison with alkylphosphonate self-assembled monolayers, J. Phys. Chem. C 111, 3956–3962 (2007)

    Google Scholar 

  156. E. Hoque, J.A. DeRose, P. Hoffmann, B. Bhushan, H.J. Mathieu: Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilazation of copper, J. Chem. Phys. 126, 114706 (2007)

    Google Scholar 

  157. E. Hoque, J.A. DeRose, B. Bhushan, H.J. Mathieu: Self-assembled monolayers on aluminum and copper oxide surfaces: Surface and interface characteristics, nanotribological properties, and chemical stability. In: Applied Scanning Probe Methods Vol. IX – Characterization, ed. by B. Bhushan, H. Fuchs, M. Tomitori (Springer, Berlin, Heidelberg 2008) pp. 235–281

    Google Scholar 

  158. E. Hoque, J.A. DeRose, B. Bhushan, K.W. Hipps: Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces, Ultramicroscopy 109, 1015–1022 (2009)

    Google Scholar 

  159. J.A. DeRose, E. Hoque, B. Bhushan, H.J. Mathieu: Characterization of perfluorodecanote self-assembled monolayers on aluminum and comparison of stability with phosphonate and siloxy self-assembled monolayers, Surf. Sci. 602, 1360–1367 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Bhushan, B. (2017). Nanotribology, Nanomechanics and Materials Characterization. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics