Skip to main content

Contact-free Mechanical Manipulation of Biological Materials

  • Chapter
Springer Handbook of Nanotechnology

Abstract

In biotechnology and medicine, controlled studies on biological material are fundamental for developing new methodologies and therapeutic approaches. To explore the nature of biological processes and to test inherent material properties, it has become increasingly clear that new experimental methods must be developed in order to allow precise manipulations and quantification of biological materials on the microscopic level. Traditional methods often rely on physical contact with the sample, which can induce drastic artifacts in soft biological systems. To bypass this limitation, tools for contact-free manipulation were developed, which even enable the induction of whole-cell deformations to explore their mechanical properties. These approaches facilitate extensive investigations of single molecules, molecular ensembles, cells and even tissues, potentially reducing the need for animal studies. In this rapidly changing field, it is nearly impossible to provide a comprehensive overview of all available techniques since new methods are constantly being developed. In this chapter, we highlight many of the predominant approaches, aiming to investigate cellular as well as subcellular mechanical properties and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 793–796 (2006)

    Article  Google Scholar 

  2. B. Huang, W. Wang, M. Bates, X. Zhuang: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science 319, 810–813 (2008)

    Article  Google Scholar 

  3. S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19, 780–782 (1994)

    Article  Google Scholar 

  4. S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 21, 1347–1355 (2003)

    Article  Google Scholar 

  5. A. Ashkin: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J. 61, 569–582 (1992)

    Article  Google Scholar 

  6. A. Ashkin, J. Dziedzic: Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987)

    Article  Google Scholar 

  7. M.M. Burns, J.-M. Fournier, J.A. Golovchenko: Optical binding, Phys. Rev. Lett. 63, 1233–1236 (1989)

    Article  Google Scholar 

  8. A. Ashkin: Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156–159 (1970)

    Article  Google Scholar 

  9. K.T. Gahagan, G.A. Swartzlander: Optical vortex trapping of particles, Opt. Lett. 21, 827–829 (1996)

    Article  Google Scholar 

  10. Y. Kimura, P.R. Bianco: Single molecule studies of DNA binding proteins using optical tweezers, Analyst 131, 868–874 (2006)

    Article  Google Scholar 

  11. A. Sasso, G. Pesce: Optical tweezers calibration: A quantitative tool for local viscosity investigation, Proc. SPIE 5830, 368 (2005)

    Article  Google Scholar 

  12. S.F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F.S. Pavone, F. Jülicher, H. Flyvbjerg: Calibration of optical tweezers with positional detection in the back focal plane, Rev. Sci. Instrum. 77, 103101 (2006)

    Article  Google Scholar 

  13. P. Debye: Der Lichtdruck auf Kugeln von beliebigem Material, Ann. Phys. 335, 57–136 (1909)

    Article  Google Scholar 

  14. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288–290 (1986)

    Article  Google Scholar 

  15. K. Svoboda, S.M. Block: Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994)

    Article  Google Scholar 

  16. K.C. Neuman, S.M. Block: Optical trapping, Rev. Sci. Instrum. 75, 2787–2809 (2004)

    Article  Google Scholar 

  17. D. Strehle, J. Schnauß, C. Heussinger, J. Alvarado, M. Bathe, J. Käs, B. Gentry: Transiently crosslinked F-actin bundles, Eur. Biophys. J. 40, 93–101 (2011)

    Article  Google Scholar 

  18. J. Schnauß, T. Golde, C. Schuldt, B.U.S. Schmidt, M. Glaser, D. Strehle, T. Händler, C. Heussinger, J.A. Käs: Transition from a linear to a harmonic potential in collective dynamics of a multifilament actin bundle, Phys. Rev. Lett. 116, 108102 (2016)

    Article  Google Scholar 

  19. F. Gittes, C.F. Schmidt: Interference model for back-focal-plane displacement detection in optical tweezers, Opt. Lett. 23, 7–9 (1998)

    Article  Google Scholar 

  20. A. Ward, F. Hilitski, W. Schwenger, D. Welch, A.W.C. Lau, V. Vitelli, L. Mahadevan, Z. Dogic: Solid friction between soft filaments, Nat. Mater. 14, 583–588 (2015)

    Article  Google Scholar 

  21. F. Hilitski, A.R. Ward, L. Cajamarca, M.F. Hagan, G.M. Grason, Z. Dogic: Measuring cohesion between macromolecular filaments one pair at a time: Depletion-induced microtubule bundling, Phys. Rev. Lett. 114, 138102 (2015)

    Article  Google Scholar 

  22. Z. Lansky, M. Braun, A. Lüdecke, M. Schlierf, P.R. ten Wolde, M.E. Janson, S. Diez: Diffusible crosslinkers generate directed forces in microtubule networks, Cell 160, 1159–1168 (2015)

    Article  Google Scholar 

  23. M. Braun, A.P. Bregulla, K. Günther, M. Mertig, F. Cichos: Single molecules trapped by dynamic inhomogeneous temperature fields, Nano Lett. 15, 5499–5505 (2015)

    Article  Google Scholar 

  24. M. Braun, A. Würger, F. Cichos: Trapping of single nano-objects in dynamic temperature fields, Phys. Chem. Chem. Phys. 16, 15207 (2014)

    Article  Google Scholar 

  25. M. Braun, F. Cichos: Optically controlled thermophoretic trapping of single nano-objects, ACS Nano 7, 11200–11208 (2013)

    Article  Google Scholar 

  26. D. Braun, A. Libchaber: Trapping of DNA by thermophoretic depletion and convection, Phys. Rev. Lett. 89, 188103 (2002)

    Article  Google Scholar 

  27. M. Tanase, N. Biais, M. Sheetz: Magnetic tweezers in cell biology. In: Cell Mechanics, ed. by Y.-L. Wang, D.E. Discher (Elsevier, Amsterdam, Boston 2007) pp. 473–493

    Chapter  Google Scholar 

  28. I.D. Vilfan, J. Lipfert, D.A. Koster, S.G. Lemay, N.H. Dekker: Magnetic tweezers for single-molecule experiments. In: Handbook of Single-Molecule Biophysics, ed. by P. Hinterdorfer, A. van Oijen (Springer, New York 2009) pp. 371–369

    Chapter  Google Scholar 

  29. J. Schnauß, M. Glaser, C. Schuldt, T. Golde, T. Händler, B.U.S. Schmidt, S. Diez, J.A. Käs: Motor-free force generation in biological systems, diffusion-fundamentals.org 23, 1–15 (2015)

    Google Scholar 

  30. M. Braun, Z. Lansky, F. Hilitski, Z. Dogic, S. Diez: Entropic forces drive contraction of cytoskeletal networks, BioEssays 38, 474–481 (2016)

    Article  Google Scholar 

  31. C. Wagner, C. Olbrich, H. Brutzer, M. Salomo, U. Kleinekathöfer, U.F. Keyser, F. Kremer: DNA condensation by TmHU studied by optical tweezers, AFM and molecular dynamics simulations, J. Biol. Phys. 37, 117–131 (2011)

    Article  Google Scholar 

  32. S.M. Block, L.S.B. Goldstein, B.J. Schnapp: Bead movement by single kinesin molecules studied with optical tweezers, Nature 348, 348–352 (1990)

    Article  Google Scholar 

  33. K. Svoboda, S.M. Block: Force and velocity measured for single kinesin molecules, Cell 77, 773–784 (1994)

    Article  Google Scholar 

  34. R.M. Simmons, J.T. Finer, H.M. Warrick, B. Kralik, S. Chu, J.A. Spudich: Force on single actin filaments in a motility assay measured with an optical trap. In: Mechanism of Myofilament Sliding in Muscle Contraction, ed. by H. Sugi, G.H. Pollack (Springer, New York 1993) pp. 331–337

    Chapter  Google Scholar 

  35. F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, J. Käs: Emergent complexity of the cytoskeleton: From single filaments to tissue, Adv. Phys. 62, 1–112 (2013)

    Article  Google Scholar 

  36. R. Seidel, J. van Noort, C. van der Scheer, J.G.P. Bloom, N.H. Dekker, C.F. Dutta, A. Blundell, T. Robinson, K. Firman, C. Dekker: Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I, Nat. Struct. Mol. Biol. 11, 838–843 (2004)

    Article  Google Scholar 

  37. R. Seidel, J.G.P. Bloom, C. Dekker, M.D. Szczelkun: Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I, EMBO J. 27, 1388–1398 (2008)

    Article  Google Scholar 

  38. H. Itoh, A. Takahashi, K. Adachi, H. Noji, R. Yasuda, M. Yoshida, K. Kinosita: Mechanically driven ATP synthesis by F1-ATPase, Nature 427, 465–468 (2004)

    Article  Google Scholar 

  39. Y. Rondelez, G. Tresset, T. Nakashima, Y. Kato-Yamada, H. Fujita, S. Takeuchi, H. Noji: Highly coupled ATP synthesis by F1-ATPase single molecules, Nature 433, 773–777 (2005)

    Article  Google Scholar 

  40. T. Stangner, C. Wagner, D. Singer, S. Angioletti-Uberti, C. Gutsche, J. Dzubiella, R. Hoffmann, F. Kremer: Determining the specificity of monoclonal antibody HPT-101 to tau-peptides with optical tweezers, ACS Nano 7, 11388–11396 (2013)

    Article  Google Scholar 

  41. T. Stangner, S. Angioletti-Uberti, D. Knappe, D. Singer, C. Wagner, R. Hoffmann, F. Kremer: Epitope mapping of monoclonal antibody HPT-101: A study combining dynamic force spectroscopy, ELISA and molecular dynamics simulations, Phys. Biol. 12, 66018 (2015)

    Article  Google Scholar 

  42. D.J. Kauert, T. Kurth, T. Liedl, R. Seidel: Direct mechanical measurements reveal the material properties of three-dimensional DNA origami, Nano Lett. 11, 5558–5563 (2011)

    Article  Google Scholar 

  43. P.W.K. Rothemund: Folding DNA to create nanoscale shapes and patterns, Nature 440, 297–302 (2006)

    Article  Google Scholar 

  44. P. Yin, R.F. Hariadi, S. Sahu, H.M.T. Choi, S.H. Park, T.H. LaBean, J.H. Reif: Programming DNA tube circumferences, Science 321, 824–826 (2008)

    Article  Google Scholar 

  45. C. Schuldt, J. Schnauß, T. Händler, M. Glaser, J. Lorenz, T. Golde, J.A. Käs, D.M. Smith: Tuning synthetic semiflexible networks by bending stiffness, Phys. Rev. Lett. 117, 197801 (2016)

    Article  Google Scholar 

  46. D. Smith, V. Schüller, C. Engst, J. Rädler, T. Liedl: Nucleic acid nanostructures for biomedical applications, Nanomedicine 8, 105–121 (2013)

    Article  Google Scholar 

  47. D. Schiffels, T. Liedl, D.K. Fygenson: Nanoscale structure and microscale stiffness of DNA nanotubes, ACS Nano 7, 6700–6710 (2013)

    Article  Google Scholar 

  48. M. Glaser, J. Schnauß, T. Tschirner, B.U.S. Schmidt, M. Moebius-Winkler, J.A. Käs, D.M. Smith: Self-assembly of hierarchically ordered structures in DNA nanotube systems, New J. Phys. 18, 55001 (2016)

    Article  Google Scholar 

  49. E. Pfitzner, C. Wachauf, F. Kilchherr, B. Pelz, W.M. Shih, M. Rief, H. Dietz: Rigid DNA beams for high-resolution single-molecule mechanics, Angew. Chem. Int. Ed. 52, 7766–7771 (2013)

    Article  Google Scholar 

  50. D. Koirala, P. Shrestha, T. Emura, K. Hidaka, S. Mandal, M. Endo, H. Sugiyama, H. Mao: Single-molecule mechanochemical sensing using DNA origami nanostructures, Angew. Chem. 126, 8275–8279 (2014)

    Article  Google Scholar 

  51. J. Guck, R. Ananthakrishnan, T.J. Moon, C.C. Cunningham, J. Käs: Optical deformability of soft biological dielectrics, Phys. Rev. Lett. 84, 5451–5454 (2000)

    Article  Google Scholar 

  52. J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs: The optical stretcher: A novel laser tool to micromanipulate cells, Biophys. J. 81, 767–784 (2001)

    Article  Google Scholar 

  53. P.B. Bareil, Y. Sheng, A. Chiou: Local scattering stress distribution on surface of a spherical cell in optical stretcher, Opt. Express 14, 12503–12509 (2006)

    Article  Google Scholar 

  54. A.E. Ekpenyong, C.L. Posey, J.L. Chaput, A.K. Burkart, M.M. Marquardt, T.J. Smith, M.G. Nichols: Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher, Appl. Opt. 48, 6344 (2009)

    Article  Google Scholar 

  55. L. Boyde, K.J. Chalut, J. Guck: Interaction of Gaussian beam with near-spherical particle: An analytic-numerical approach for assessing scattering and stresses, J. Opt. Soc. Am. A 26, 1814 (2009)

    Article  MathSciNet  Google Scholar 

  56. F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, J. Guck: Characterizing single suspended cells by optorheology, Acta Biomater. 1, 263–271 (2005)

    Article  Google Scholar 

  57. R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, J. Kas: Modelling the structural response of an eukaryotic cell in the optical stretcher, Curr. Sci. 88, 1434–1440 (2005)

    Google Scholar 

  58. R.E. Mahaffy, C.K. Shih, F.C. MacKintosh, J. Käs: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett. 85, 880–883 (2000)

    Article  Google Scholar 

  59. U. Delabre, K. Feld, E. Crespo, G. Whyte, C. Sykes, U. Seifert, J. Guck: Deformation of phospholipid vesicles in an optical stretcher, Soft Matter 11, 6075–6088 (2015)

    Article  Google Scholar 

  60. K.J. Chalut, M. Höpfler, F. Lautenschläger, L. Boyde, C.J. Chan, A. Ekpenyong, A. Martinez-Arias, J. Guck: Chromatin decondensation and nuclear softening accompany nanog downregulation in embryonic stem cells, Biophys. J. 103, 2060–2070 (2012)

    Article  Google Scholar 

  61. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, C. Bilby: Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence, Biophys. J. 88, 3689–3698 (2005)

    Article  Google Scholar 

  62. S. Grosser, A.W. Fritsch, T.R. Kießling, R. Stange, J.A. Käs: The lensing effect of trapped particles in a dual-beam optical trap, Opt. Express 23, 5221 (2015)

    Article  Google Scholar 

  63. S. Ebert, K. Travis, B. Lincoln, J. Guck: Fluorescence ratio thermometry in a microfluidic dual-beam laser trap, Opt. Express 15, 15493 (2007)

    Article  Google Scholar 

  64. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, J. Käs: Single cell viability and impact of heating by laser absorption, Eur. Biophys. J. 40, 1109–1114 (2011)

    Article  Google Scholar 

  65. T.R. Kießling, R. Stange, J.A. Käs, A.W. Fritsch: Thermorheology of living cells – Impact of temperature variations on cell mechanics, New J. Phys. 15, 45026 (2013)

    Article  Google Scholar 

  66. B.U.S. Schmidt, T.R. Kießling, E. Warmt, A.W. Fritsch, R. Stange, J.A. Käs: Complex thermorheology of living cells, New J. Phys. 17, 73010 (2015)

    Article  Google Scholar 

  67. V.L. Sukhorukov, H. Mussauer, U. Zimmermann: The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media, J. Membr. Biol. 163, 235–245 (1998)

    Article  Google Scholar 

  68. I. Guido, M.S. Jaeger, C. Duschl: Dielectrophoretic stretching of cells allows for characterization of their mechanical properties, Eur. Biophys. J. 40, 281–288 (2011)

    Article  Google Scholar 

  69. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein: Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria, Acta Biomater. 1, 15–30 (2005)

    Article  Google Scholar 

  70. M. Dao, C.T. Lim, S. Suresh: Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids 51, 2259–2280 (2003)

    Article  Google Scholar 

  71. F. Schlosser, F. Rehfeldt, C.F. Schmidt: Force fluctuations in three-dimensional suspended fibroblasts, Philos. Trans. R. Soc. B 370, 20140028 (2014)

    Article  Google Scholar 

  72. H. Kress, E.H.K. Stelzer, D. Holzer, F. Buss, G. Griffiths, A. Rohrbach: Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity, Proc. Natl. Acad. Sci. 104, 11633–11638 (2007)

    Article  Google Scholar 

  73. J. Peukes, T. Betz: Direct measurement of the cortical tension during the growth of membrane blebs, Biophys. J. 107, 1810–1820 (2014)

    Article  Google Scholar 

  74. H. Turlier, D.A. Fedosov, B. Audoly, T. Auth, N.S. Gov, C. Sykes, J.-F. Joanny, G. Gompper, T. Betz: Equilibrium physics breakdown reveals the active nature of red blood cell flickering, Nat. Phys. 12, 513–519 (2016)

    Article  Google Scholar 

  75. A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M.G. Raizen, J. Käs: Guiding neuronal growth with light, Proc. Natl. Acad. Sci. 99, 16024–16028 (2002)

    Article  Google Scholar 

  76. S. Yamada, D. Wirtz, S.C. Kuo: Mechanics of living cells measured by laser tracking microrheology, Biophys. J. 78, 1736–1747 (2000)

    Article  Google Scholar 

  77. B.D. Hoffman, G. Massiera, K.M. van Citters, J.C. Crocker: The consensus mechanics of cultured mammalian cells, Proc. Natl. Acad. Sci. 103, 10259–10264 (2006)

    Article  Google Scholar 

  78. C. Xie, M.A. Dinno, Y.-Q. Li: Near-infrared Raman spectroscopy of single optically trapped biological cells, Opt. Lett. 27, 249–251 (2002)

    Article  Google Scholar 

  79. J.W. Chan, D.S. Taylor, T. Zwerdling, S.M. Lane, K. Ihara, T. Huser: Micro-raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J. 90, 648–656 (2006)

    Article  Google Scholar 

  80. G.P. Singh, C.M. Creely, G. Volpe, H. Grötsch, D. Petrov: Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using raman microspectroscopy, Anal. Chem. 77, 2564–2568 (2005)

    Article  Google Scholar 

  81. E.R. Dufresne, D.G. Grier: Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Sci. Instrum. 69, 1974–1977 (1998)

    Article  Google Scholar 

  82. D.G. Grier, Y. Roichman: Holographic optical trapping, Appl. Opt. 45, 880–887 (2006)

    Article  Google Scholar 

  83. D.G. Grier: A revolution in optical manipulation, Nature 424, 810–816 (2003)

    Article  Google Scholar 

  84. M. Reicherter, J. Liesener, T. Haist, H.J. Tiziani: Advantages of holographic optical tweezers, Proc. SPIE 5143, 76–83 (2003)

    Article  Google Scholar 

  85. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksör, D. Hanstorp, A. Wright, J. Girkin, J. Cooper: Creating permanent 3D arrangements of isolated cells using holographic optical tweezers, Lab Chip 5, 1224–1228 (2005)

    Article  Google Scholar 

  86. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, Z. Laczik: 3D manipulation of particles into crystal structures using holographic optical tweezers, Opt. Express 12, 220–226 (2004)

    Article  Google Scholar 

  87. C. Creely, G. Volpe, G. Singh, M. Soler, D. Petrov: Raman imaging of floating cells, Opt. Express 13, 6105–6110 (2005)

    Article  Google Scholar 

  88. T.R. Kießling, M. Herrera, K.D. Nnetu, E.M. Balzer, M. Girvan, A.W. Fritsch, S.S. Martin, J.A. Käs, W. Losert: Analysis of multiple physical parameters for mechanical phenotyping of living cells, Eur. Biophys. J. 42, 383–394 (2013)

    Article  Google Scholar 

  89. D.R. Gossett, H.T.K. Tse, S.A. Lee, Y. Ying, A.G. Lindgren, O.O. Yang, J. Rao, A.T. Clark, D. Di Carlo: Hydrodynamic stretching of single cells for large population mechanical phenotyping, Proc. Natl. Acad. Sci. 109, 7630–7635 (2012)

    Article  Google Scholar 

  90. O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U.F. Keyser, J. Mansfeld, E. Fischer-Friedrich, J. Guck: Real-time deformability cytometry: On-the-fly cell mechanical phenotyping, Nat. Methods 12, 199–202 (2015)

    Article  Google Scholar 

  91. A. Mietke, O. Otto, S. Girardo, P. Rosendahl, A. Taubenberger, S. Golfier, E. Ulbricht, S. Aland, J. Guck, E. Fischer-Friedrich: Extracting cell stiffness from real-time deformability cytometry: Theory and experiment, Biophys. J. 109, 2023–2036 (2015)

    Article  Google Scholar 

  92. C.J. Chan, A.E. Ekpenyong, S. Golfier, W. Li, K.J. Chalut, O. Otto, J. Elgeti, J. Guck, F. Lautenschläger: Myosin II activity softens cells in suspension, Biophys. J. 108, 1856–1869 (2015)

    Article  Google Scholar 

  93. A.E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U.F. Keyser, E.R. Chilvers, J. Guck, W. Lam: Viscoelastic properties of differentiating blood cells are fate- and function-dependent, PLoS ONE 7, e45237 (2012)

    Article  Google Scholar 

  94. J. Runge, T.E. Reichert, A. Fritsch, J. Käs, J. Bertolini, T.W. Remmerbach: Evaluation of single-cell biomechanics as potential marker for oral squamous cell carcinomas: A pilot study, Oral Dis. 20, e120–e127 (2014)

    Article  Google Scholar 

  95. A. Fritsch, M. Höckel, T. Kiessling, K.D. Nnetu, F. Wetzel, M. Zink, J.A. Käs: Are biomechanical changes necessary for tumour progression?, Nat. Phys. 6, 730–732 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Schnauß, J., Käs, J.A., Smith, D.M. (2017). Contact-free Mechanical Manipulation of Biological Materials. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics