Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Graphene nanoribbons have intriguing electronic structures, which are large edge geometry dependent. Armchair-edged graphene nanoribbons, which are energetically stable, have a ribbon-width-dependent intrinsic energy gap, while zigzag-edged ones have spin-polarized nonbonding edge states in the vicinity of the edge region. The edge state is the origin of electronic, magnetic and chemical activities. These features of the electronic structures can be characterized using microprobe techniques such as scanning tunneling microscopy/spectroscopy (GlossaryTerm

STM

/GlossaryTerm

STS

), atomic force microscopy (GlossaryTerm

AFM

), transmission electron microscopy (GlossaryTerm

TEM

), Raman spectroscopy, x-ray absorption, angle-resolved photoemission spectroscopy, electron transport, and magnetic measurements. Graphene nanostructures are synthesized using top-down and bottom-up methods, in the latter of which graphene nanostructures with atomically precise edges can be created. The presence of bandgap, which varies depending on the ribbon width and the edge geometry, makes graphene an important candidate for electronics device applications. The spin-polarized edge states localized in the vicinity of edges in zigzag-edged nanoribbons are expected to be utilized for spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, P. Eklund: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic, San Diego 1996)

    Google Scholar 

  3. R. Saito, M.S. Dresselhaus, G. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  4. A.H.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  5. T. Enoki, T. Ando: Physics and Chemistry of Graphene; Graphene to Nanographene (Pan Stanford, Singapore 2013)

    Book  Google Scholar 

  6. S. Fujii, T. Enoki: Nanographene and graphene edges: Electronic structure and nanofabrication, Acc. Chem. Res. 46, 2202–2210 (2013)

    Article  Google Scholar 

  7. E. Clar: The Aromatic Sextet (Wiley, London 1972)

    Google Scholar 

  8. T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri: Clar’s theory, π-electron distribution and geometry of graphene nanoribbons, J. Am. Chem. Soc. 132, 3440–3451 (2010)

    Article  Google Scholar 

  9. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920–1923 (1996)

    Article  Google Scholar 

  10. S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki: Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173, 173–199 (2014)

    Article  Google Scholar 

  11. D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, C. Stampfer: Raman spectroscopy on etched graphene nanoribbons, J. Appl. Phys. 109, 073710 (2011)

    Article  Google Scholar 

  12. L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró: Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography, Nat. Nanotechnol. 3, 397–401 (2008)

    Article  Google Scholar 

  13. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319, 1229–1232 (2008)

    Article  Google Scholar 

  14. L. Chen, Y. Hernandez, X. Feng, K. Müllen: Bottom up from nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis, Angew. Chem. Int. Ed. 51, 7640–7654 (2012)

    Article  Google Scholar 

  15. K. Sasaki, R. Saito: Pseudospin and deformation-induced gauge field in graphene, Prog. Theor. Phys. Suppl. 176, 253–278 (2008)

    Article  Google Scholar 

  16. E. Lieb: Two theorems on the Hubbard model, Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  MathSciNet  Google Scholar 

  17. L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie: Quasiparticle energies and bandgaps in graphene nanoribbons, Phys. Rev. Lett. 99, 186801 (2007)

    Article  Google Scholar 

  18. Y.-W. Son, M.L. Cohen, S.G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)

    Article  Google Scholar 

  19. Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie: Tuning the bandgap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7, 6123–6128 (2013)

    Article  Google Scholar 

  20. P. Ruffieux, J. Cai, N.C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C.A. Pignedoli, R. Fasel: Electronic structure of atomically precise graphene nanoribbons, ACS Nano 8, 6930–6935 (2012)

    Article  Google Scholar 

  21. A.A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus: Raman Spectroscopy in Graphene Related System (Wiley, Weinheim 2011)

    Book  Google Scholar 

  22. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004)

    Article  Google Scholar 

  23. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, A. Jorio: Anisotropy of the Raman spectra of nanographite ribbons, Phys. Rev. Lett. 93, 047403 (2004)

    Article  Google Scholar 

  24. K. Sasaki, R. Saito, K. Wakabayashi, T. Enoki: Identifying the orientation of edge of graphene using G-band Raman spectra, J. Phys. Soc. Jpn. 79, 044603 (2010)

    Article  Google Scholar 

  25. M. Kiguchi, K. Takai, V.L.J. Joly, T. Enoki, R. Sumii, K. Amemiya: Magnetic edge state and dangling bond state on nanographene in activated carbon fibers, Phys. Rev. B 84, 045421 (2011)

    Article  Google Scholar 

  26. Z. Hou, X. Wang, T. Ikeda, S.-F. Huang, K. Terakura, M. Boero, M. Oshima, M. Kakimoto, S. Miyata: Effect of hydrogen termination on carbon K-edge x-ray absorption spectra of nanographene, J. Phys. Chem. C 115, 5392–5403 (2011)

    Article  Google Scholar 

  27. K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468, 1088–1090 (2010)

    Article  Google Scholar 

  28. K. Sugawara, T. Sato, S. Souma, T. Takahashi, H. Suematsu: Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy, Phys. Rev. B 73, 045124 (2006)

    Article  Google Scholar 

  29. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  30. D. Kondo, H. Nakano, B. Zhou, I.A.K. Hayashi, M. Takahashi, S. Sato, N. Yokoyama: Sub-10-nm-wide intercalated multi-layer graphene interconnects with low resistivity. In: IEEE Int. Interconnect Technol./Adv. Metallization Conf. (2014) pp. 189–192

    Chapter  Google Scholar 

  31. P. Gallagher, K. Todd, D. Goldhaber-Gordon: Disorder-induced gap behavior in graphene nanoribbons, Phys. Rev. B 81, 115409 (2010)

    Article  Google Scholar 

  32. M.Y. Han, J.C. Brant, P. Kim: Electron transport in disordered graphene nanoribbons, Phys. Rev. Lett. 104, 056801 (2010)

    Article  Google Scholar 

  33. X. Liang, S. Wi: Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons, ACS Nano 6, 9700–9710 (2012)

    Article  Google Scholar 

  34. H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, T. Kato: Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays, Nat. Commun. 7, 11797 (2016)

    Article  Google Scholar 

  35. S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama: Gating operation of transport current in graphene nanoribbon fabricated by helium ion microscope. In: Int. Conf. Solid State Devices Mater., Nagoya (2011) p. 1300

    Google Scholar 

  36. A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou: Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography, ACS Nano 8, 1538–1546 (2014)

    Article  Google Scholar 

  37. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470–473 (2010)

    Article  Google Scholar 

  38. P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C.A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel: On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531, 489–492 (2016)

    Article  Google Scholar 

  39. P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P.S. Weiss, N. Asao, T. Hitosugi: Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity, ACS Nano 8, 9181–9187 (2014)

    Article  Google Scholar 

  40. M. Koch, F. Ample, C. Joachim, L. Grill: Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nano 7, 713–717 (2012)

    Article  Google Scholar 

  41. J. Björk, S. Stafström, F. Hanke: Zipping up: Cooperativity drives the synthesis of graphene nanoribbons, J. Am. Chem. Soc. 133, 14884–14887 (2011)

    Article  Google Scholar 

  42. J. Björk, F. Hanke, S. Stafström: Mechanisms of halogen-based covalent self-assembly on metal surfaces, J. Am. Chem. Soc. 135, 5768–5775 (2013)

    Article  Google Scholar 

  43. K.A. Simonov, N.A. Vinogradov, A.S. Vinogradov, A.V. Generalov, E.M. Zagrebina, N. Mårtensson, A.A. Cafolla, T. Carpy, J.P. Cunniffe, A.B. Preobrajenski: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: Combined core-level spectroscopy and STM study, J. Phys. Chem. C 118, 12532–12540 (2014)

    Article  Google Scholar 

  44. C. Bronner, J. Björk, P. Tegeder: Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon, J. Phys. Chem. C 119, 486–493 (2015)

    Article  Google Scholar 

  45. J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen: Toward cove-edged low bandgap graphene nanoribbons, J. Am. Chem. Soc. 137, 6097–6103 (2015)

    Article  Google Scholar 

  46. R.R. Cloke, T. Marangoni, G.D. Nguyen, T. Joshi, D.J. Rizzo, C. Bronner, T. Cao, S.G. Louie, M.F. Crommie, F.R. Fischer: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons, J. Am. Chem. Soc. 137, 8872–8875 (2015)

    Article  Google Scholar 

  47. S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer: Atomically controlled substitutional boron-doping of graphene nanoribbons, Nat. Commun. 6, 8098 (2015)

    Article  Google Scholar 

  48. H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi: On-surface synthesis of rylene-type graphene nanoribbons, J. Am. Chem. Soc. 137, 4022–4025 (2015)

    Article  Google Scholar 

  49. A. Basagni, F. Sedona, C.A. Pignedoli, M. Cattelan, L. Nicolas, M. Casarin, M. Sambi: Molecules–oligomers–nanowires–graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order, J. Am. Chem. Soc. 137, 1802–1808 (2015)

    Article  Google Scholar 

  50. L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai: Facile synthesis of high-quality graphene nanoribbons, Nat. Nano 5, 321–325 (2010)

    Article  Google Scholar 

  51. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai: Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877–880 (2009)

    Article  Google Scholar 

  52. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872–876 (2009)

    Article  Google Scholar 

  53. Y. Gong, M. Long, G. Liu, S. Gao, C. Zhu, X. Wei, X. Geng, M. Sun, C. Yang, L. Lu, L. Liu: Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes, Phys. Rev. B 87, 165404 (2013)

    Article  Google Scholar 

  54. K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, N. Yokoyama: Selective graphene formation on copper twin crystals, J. Am. Chem. Soc. 134, 12492–12498 (2012)

    Article  Google Scholar 

  55. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Ultrahigh strength and high electrical conductivity in copper, Science 304, 422–426 (2004)

    Article  Google Scholar 

  56. R.M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P.L. Levesque, K.M. McElhinny, G.J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M.G. Lagally, P.G. Evans, P. Desjardins, R. Martel, M.C. Hersam, N.P. Guisinger, M.S. Arnold: Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)

    Article  Google Scholar 

  57. M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. de Heer: Scalable templated growth of graphene nanoribbons on SiC, Nat. Nano 5, 727–731 (2010)

    Article  Google Scholar 

  58. S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)

    Book  Google Scholar 

  59. Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 7, 1469–1473 (2007)

    Article  Google Scholar 

  60. Y. Ouyang, Y. Yoon, J. Guo: Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study, IEEE Trans. Electron Devices 54, 2223–2231 (2007)

    Article  Google Scholar 

  61. G. Fiori, G. Iannaccone: Simulation of graphene nanoribbon field-effect transistors, IEEE Electron Device Lett. 28, 760–762 (2007)

    Article  Google Scholar 

  62. N. Harada, S. Sato, N. Yokoyama: Theoretical investigation of graphene nanoribbon field-effect transistors designed for digital applications, Jpn. J. Appl. Phys. 52, 094301 (2013)

    Article  Google Scholar 

  63. S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J.H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias: Electronic structure of spatially aligned graphene nanoribbons on Au(788), Phys. Rev. Lett. 108, 216801 (2012)

    Article  Google Scholar 

  64. S. Souma, M. Ueyama, M. Ogawa: Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect, Appl. Phys. Lett. 104, 213505 (2014)

    Article  Google Scholar 

  65. A.M. Ionescu, H. Riel: Tunnel field-effect transistors as energy-efficient electronic switches, Nature 479, 329–337 (2011)

    Article  Google Scholar 

  66. K.T. Lam, D. Seah, S.K. Chin, S.B. Kumar, G. Samudra, Y.C. Yeo, G. Liang: A simulation study of graphene-nanoribbon tunneling FET with heterojunction channel, IEEE Electron Device Lett. 31, 555–557 (2010)

    Article  Google Scholar 

  67. R. Grassi, A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani: Simulation study of graphene nanoribbon tunneling transistors including edge roughness effects. In: 10th Int. Conf. Ultimate Integr. Silicon (2009) pp. 57–60

    Google Scholar 

  68. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6, 652–655 (2007)

    Article  Google Scholar 

  69. P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, J. Bokor: Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett. 103, 253114 (2013)

    Article  Google Scholar 

  70. J.P. Llinas, A. Fairbrother, G. Barin, P. Ruffieux, W. Shi, K. Lee, B.Y. Choi, R. Braganza, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, F. Fischer, K. Müllen, A. Zettl, M. Crommie, R. Fasel, J. Bokor: Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons, arXiv:1605.06730 (2016)

    Google Scholar 

  71. R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl: Breakdown current density of graphene nanoribbons, Appl. Phys. Lett. 94, 243114 (2009)

    Article  Google Scholar 

  72. D. Kondo, H. Nakano, B. Zhou, I. Kubota, K. Hayashi, K. Yagi, M. Takahashi, M. Sato, S. Sato, N. Yokoyama: Intercalated multi-layer graphene grown by CVD for LSI interconnects. In: IEEE Int. Interconnect Technol. Conf.-IITC (2013) pp. 1–3

    Google Scholar 

  73. S. Sato: Nanocarbon interconnects: Demonstration of properties better than Cu and remaining issues. In: IEEE Int. Interconnect Technol. Conf./IEEE Mater. Adv. Metallization Conf. (IITC/MAM) (2015) pp. 313–316

    Google Scholar 

  74. C. Xu, H. Li, K. Banerjee: Modeling, analysis and design of graphene nano-ribbon interconnects, IEEE Trans. Electron Devices 56, 1567–1578 (2009)

    Article  Google Scholar 

  75. A. Naeemi, J.D. Meindl: Compact physics-based circuit models for graphene nanoribbon interconnects, IEEE Trans. Electron Devices 56, 1822–1833 (2009)

    Article  Google Scholar 

  76. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, I. Taleb, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer: Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506, 349–354 (2014)

    Article  Google Scholar 

  77. M.S. Dresselhaus, G. Dresselhaus: Intercalation compounds of graphite, Adv. Phys. 51, 1–186 (2002)

    Article  Google Scholar 

  78. Y.-W. Son, M.L. Cohen, S.G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347–349 (2006)

    Article  Google Scholar 

  79. E. Kan, Z. Li, J. Yang, J.G. Hou: Half-metallicity in edge-modified zigzag graphene nanoribbons, J. Am. Chem. Soc. 130, 4224–4225 (2008)

    Article  Google Scholar 

  80. G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514, 608–611 (2014)

    Article  Google Scholar 

  81. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard: Spin qubits in graphene quantum dots, Nat. Phys. 3, 192–196 (2007)

    Article  Google Scholar 

  82. S. Konabe, N.T. Cuong, M. Otani, S. Okada: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations, Appl. Phys. Express 6, 045104 (2013)

    Article  Google Scholar 

  83. S. Konabe, S. Okada: Multiple exciton generation by a single photon in single-walled carbon nanotubes, Phys. Rev. Lett. 108, 227401 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Enoki, T., Sato, S. (2017). Nanoribbons. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics