Skip to main content

Abstract

This chapter presents the concept of joint possibility distribution from the point of view of fuzzy number membership. The concept of completely correlated fuzzy numbers is presented. Next, an interactive fuzzy number subtraction operator is discussed. Finally, two bio-mathematical models are studied using these concepts. The first models the risk of getting dengue fever and second is an epidemiological SI-model with completely correlated initial conditions.

“If you obey all the rules you miss all the fun”.

(Katharine Hepburn)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dengue is a mosquito borne disease that causes fever and in some cases death.

References

  1. L. Stefanini, A generalization of hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161(11), 1564–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Stefanini, B. Bede, Generalized hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory, Methods Appl 71(3–4), 1311–1328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.A. Lodwick, E.A. Untiedt, A comparison of interval analysis using constraint interval arithmetic and fuzzy interval analysis using gradual numbers, Fuzzy Information Processing Society, 2008. NAFIPS 2008. Annual Meeting of the North American (2008), pp. 1–6

    Google Scholar 

  5. C. Carlsson, R. Fuller, P. Majlender, Additions of completely correlated fuzzy numbers, in Proceedings of the IEEE International Conference on Fuzzy Systems, 2004 vol. 1 (2004), pp. 535–539

    Google Scholar 

  6. E. Esmi, G. Barroso, L.C. Barros, P. Sussner, A family of joint possibility distributions for adding interactive fuzzy numbers inspired by biomathematical models, in 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15) (Atlantis Press, France, 2015)

    Google Scholar 

  7. P. Sussner, E. Esmi, L.C. Barros, Controlling the width of the sum of interactive fuzzy numbers with applications to fuzzy initial value problems, in Proceedings in IEEE World Congress on Computational Intelligence (2016). (accepted for publication)

    Google Scholar 

  8. H.T. Nguyen, On conditional possibility distributions. Fuzzy Sets Syst. 1(4), 299–309 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. W.A. Lodwick, Constrained interval arithmetic, Technical report (Denver, Colorado, 1999)

    Google Scholar 

  10. L.T. Gomes, L.C. Barros, A note on the generalized difference and the generalized differentiability. Fuzzy Sets Syst. 280, 142–145 (2015)

    Article  MathSciNet  Google Scholar 

  11. V.M. Cabral, L.C. Barros, Fuzzy differential equation with completely correlated parameters. Fuzzy Sets Syst. 265, 86–98 (2015)

    Article  MathSciNet  Google Scholar 

  12. L.C. Barros, F.S. Pedro, Fuzzy differential equations with interactive derivative, in Fuzzy Sets and Systems (2016). (accepted for publication)

    Google Scholar 

  13. E. Esmi, F.S. Pedro, L.C. Barros, W.A. Lodwick, Frèchet derivative for linearly correlated fuzzy function (2016). (submitted for publication)

    Google Scholar 

  14. F.S. Pedro, Modelos matemáticos para dinâmica de doenças de transmissão direta e de presa-predador considerando parâmetros interativos e t-normas (Dissertação de Mestrado, IMECC-UNICAMP, Campinas, 2013)

    Google Scholar 

  15. F.S. Pedro, L.C. Barros, The use of t-norms in mathematical models of epidemics, in 2013 IEEE International Conference on Fuzzy Systems (FUZZ) (2013), pp. 1–4

    Google Scholar 

  16. L. Edelstein-Keshet, Mathematical Models in Biology (McGraw-Hill, México, 1988)

    MATH  Google Scholar 

  17. V. Kreinovich, O. Fuentes, High-concentration Chemical Computing Techniques for Solving Hard-to-solve Problems, and their Relation to Numerical Optimization, Neural Computing, Reasoning Under Uncertainty, and Freedom of Choice (Wiley-VCH Verlag GmbH and Co. KGaA, 2012), pp. 209–235

    Google Scholar 

  18. O. Kosheleva, V. Kreinovich, L.C. Barros, Chemical kinetics in situations intermediate between usual and high concentrations: fuzzy-motivated derivation of the formulas, in Proceedings of the 2016 World Conference on Soft Computing (Berkeley, California, 2016)

    Google Scholar 

  19. L.C. Barros, M.B.F. Leite, R.C. Bassanezi, The SI epidemiological models with a fuzzy transmission parameter. Int. J. Comput. Math. Appl. 45, 1619–1628 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. R.M. Jafelice, L.C. Barros, R.C. Bassanezi, F. Gomide, Fuzzy modeling in symptomatic HIV virus infected population. Bull. Math. Biol. 66, 1597–1620 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.M. Anderson, G.F. Medley, R.M. May, A.M. Johnson, A preliminaire study of the transmission dynamics of the human immunodeficiency virus (HIV), the causitive agent of AIDS. IMA J. Math. Med. Biol. 3, 229–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Murray, Mathematical Biology (Springer, USA, 1990)

    MATH  Google Scholar 

  23. J.M. Baetens, B.D. Baets, Incorporating fuzziness in spatial susceptible-infected epidemic models, in Proceedings of IFSA-EUSFLAT Conference on Cd-rom (Lisbon, 2009)

    Google Scholar 

  24. G.P. Silveira, Métodos numéricos integrados à lógica fuzzy e método estocástico para solução de edp’s: uma aplicação à dengue, Phd thesis, IMECC–UNICAMP, Campinas (2011). (in portuguese)

    Google Scholar 

  25. G.P. Silveira, L.C. Barros, Analysis of the dengue risk in a model of the kind takagi-sugeno. Fuzzy Sets Syst. 277, 122–137 (2015)

    Article  Google Scholar 

  26. B.S. Chen, Y.T. Chang, Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems. IEEE Trans. Fuzzy Syst. 17(5), 1025–1043 (2009)

    Article  Google Scholar 

  27. J.-W. Wang, H.-N. Wu, H.-X. Li, Distributed fuzzy control design of nonlinear hyperbolic pde systems with application to nonisothermal plug-flow reactor. IEEE Trans. Fuzzy Syst. 19(3), 514–526 (2011)

    Article  Google Scholar 

  28. H.-N. Wu, H.-X. Li, H\(_{\infty }\) fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints. IEEE Trans. Fuzzy Syst. 16(2), 502–516 (2008)

    Article  Google Scholar 

  29. R. Cordeiro, M. Donalisio, V. Andrade, A. Mafra, L. Nucci, J. Brown, C. Stephan, Spatial Distribution of the Risk of Dengue Fever in Southeast Brazil, 2006–2007, vol. 11(1) (BMC Public Health, (2011), p. 355

    Google Scholar 

  30. V.M. Cabral, L.C. Barros, The SI epidemiological model withinteractive fuzzy parameters, in 2012 Annual meeting of the North American Fuzzy Information Processing Society (NAFIPS) (IEEE, New York, 2012), pp. 1–4

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and thank the partial support received from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laécio Carvalho de Barros .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Barros, L.C., Bassanezi, R.C., Lodwick, W.A. (2017). End Notes. In: A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics. Studies in Fuzziness and Soft Computing, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53324-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53324-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53322-2

  • Online ISBN: 978-3-662-53324-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics