Skip to main content

Application of Multiple Sound Representations in Multipitch Estimation Using Shift-Invariant Probabilistic Latent Component Analysis

  • Conference paper
  • First Online:
  • 985 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9587))

Abstract

Probabilistic analysis has become one of the most important directions for development of new methods in Music Information Retrieval (MIR) field. Its ability to correctly find necessary information in the music audio recordings is especially useful in multipitch estimation, a vital task belonging to the MIR field. Since the multipitch estimation is still far from being resolved, it is important to enhance the existing state-of-the-art methods. Usually, a spectrogram, generated from the Constant-Q transform (CQT) is used as a basis for the SI-PLCA method. The new approach involves application of more than one method (cepstrum and CQT) in association of the shift-invariant probabilistic latent component analysis approach and additional processing of all the sound representations, in order to achieve better results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benetos, E., Dixon, S., Giannoulis, D., Kirchoff, H., Klapuri, A.: Automatic music transcription: challenges and future directions. J. Intell. Inf. Syst. 41(3), 407–434 (2013)

    Article  Google Scholar 

  2. Stasiak, B.: Follow that tune - dynamic time warping refinement for query by Humming. In: Proceeding of Joint conference NTAV/SPA 2012. New Trends in Audio and Video Signal Processing: Algorithms, Architectures, Arrangements, and Applications, pp. 109–114 (2012)

    Google Scholar 

  3. Stolarek, J., Lipiński, P.: Improving digital watermarking fidelity using fast neural network for adaptive wavelet synthesis. J. Appl. Comput. Sci. 18(1), 61–74 (2010)

    Google Scholar 

  4. Stasiak, B., Rychlicki-Kicior, K.: Fundamental frequency extraction in speech emotion recognition. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 292–303. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Salomon, J., Gomez, E., Ellis, D.P.W., Richard, G.: Melody extraction from polyphonic music signals. IEEE Signal Process. Mag. 31(2), 118–134 (2014)

    Article  Google Scholar 

  6. Davy, M., Klapuri, A.: Signal Processing Methods for Music Transcription. Springer-Verlag, Heidelberg (2006)

    Google Scholar 

  7. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: music genre database and musical instrument sound database. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR 2003), pp. 229–230 (2003)

    Google Scholar 

  8. Argenti, F., Nesi, P., Pantaleo, G.: Automatic music transcription: from monophonic to polyphonic. In: Solis, J., Ng, K. (eds.) Musical Robots and Interactive Multimodal Systems. STAR, vol. 74, pp. 27–46. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Dressler, K.: Multiple fundamental frequency extraction for MIREX 2012. In: The 13th International Conference on Music Information Retrieval (2012)

    Google Scholar 

  10. Klapuri, A.: Multiple fundamental frequency estimation by summing harmonic amplitudes. In: Proceedings of 7th International Conference on Music Information Retrieval, pp. 216–221 (2006)

    Google Scholar 

  11. Benetos, E., Dixon, S.: Multiple-F0 estimation and note tracking for MIREX 2012 using a shift-invariant latent variable model. In: Music Information Retrieval Evaluation Exchange (2015). http://www.music-ir.org/mirex/abstracts/2012/BD1.pdf

  12. Smaragdis, P., Bhiksha, R.: Shift-invariant probabilistic latent component analysis. Technical report (2007)

    Google Scholar 

  13. Weiss, R.J., Bello., J.P.: Identifying repeated patterns in music using sparse convolutive non-negative matrix factorization. In: Proceedings of International Conference on Music Information Retrieval (ISMIR) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rychlicki-Kicior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rychlicki-Kicior, K., Stasiak, B., Yatsymirskyy, M. (2016). Application of Multiple Sound Representations in Multipitch Estimation Using Shift-Invariant Probabilistic Latent Component Analysis. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics