Skip to main content

Computing the Gromov-Hausdorff Distance for Metric Trees

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

The Gromov-Hausdorff distance is a natural way to measure distance between two metric spaces. We give the first proof of hardness and first non-trivial approximation algorithm for computing the Gromov-Hausdorff distance for geodesic metrics in trees. Specifically, we prove it is \(\mathrm {NP}\)-hard to approximate the Gromov-Hausdorff distance better than a factor of 3. We complement this result by providing a polynomial time \(O(\min \{n, \sqrt{rn}\})\)-approximation algorithm where r is the ratio of the longest edge length in both trees to the shortest edge length. For metric trees with unit length edges, this yields an \(O(\sqrt{n})\)-approximation algorithm.

Work on this paper by P. K. Agarwal, K. Fox and A. Nath was supported by NSF under grants CCF-09-40671, CCF-10-12254, CCF-11-61359, and IIS-14-08846, and by Grant 2012/229 from the U.S.-Israel Binational Science Foundation. A. Sidiropoulos was supported by NSF under grants CAREER-1453472 and CCF-1423230. Y. Wang was supported by NSF under grant CCF–1319406.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A graphic metric measures the shortest path distance between vertices of a graph with unit length edges.

  2. 2.

    In fact, our hardness result can be easily extended to the GH distance between discrete tree metrics and the interleaving distance between merge trees.

References

  1. Agarwal, P.K., Fox, K., Nath, A., Sidiropoulos, A., Wang, Y.: Computing the Gromov-Hausdorff distance for metric trees (2015). CoRR, abs/1509.05751

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  3. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: 30th Annual Symposium on Computational Geometry, p. 464 (2014)

    Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence (2001)

    Book  MATH  Google Scholar 

  6. Carlsson, G., Mémoli, F.: Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res. 11, 1425–1470 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Disc. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Silva, V., Munch, E., Patel, A.: Categorification of Reeb graphs, Preprint (2014)

    Google Scholar 

  9. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser Basel, Basel (2007)

    MATH  Google Scholar 

  10. Hall, A., Papadimitriou, C.: Approximating the distortion. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 111–122. Springer, Heidelberg (2005)

    Google Scholar 

  11. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comp. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets. SIAM J. Comp. 39(4), 1617–1636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Memoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Eurographics Symposium on Point-Based Graphics (2007)

    Google Scholar 

  14. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morozov, D., Beketayev, K., Weber, G.H.: Interleaving distance between merge trees. In: Workshop on Topological Methods in Data Analysis and Visualization: Theory, Algorithms and Applications (2013)

    Google Scholar 

  16. Papadimitriou, C., Safra, S.: The complexity of low-distortion embeddings between point sets. In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 112–118 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Fox, K., Nath, A., Sidiropoulos, A., Wang, Y. (2015). Computing the Gromov-Hausdorff Distance for Metric Trees. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics