Skip to main content

Automated Benchmarking of Incremental SAT and QBF Solvers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9450))

Abstract

Incremental SAT and QBF solving potentially yields improvements when sequences of related formulas are solved. An incremental application is usually tailored towards some specific solver and decomposes a problem into incremental solver calls. This hinders the independent comparison of different solvers, particularly when the application program is not available. As a remedy, we present an approach to automated benchmarking of incremental SAT and QBF solvers. Given a collection of formulas in (Q)DIMACS format generated incrementally by an application program, our approach automatically translates the formulas into instructions to import and solve a formula by an incremental SAT/QBF solver. The result of the translation is a program which replays the incremental solver calls and thus allows to evaluate incremental solvers independently from the application program. We illustrate our approach by different hardware verification problems for SAT and QBF solvers.

This work was supported by the Austrian Science Fund (FWF) under grant S11409-N23. An extended version with proofs and detailed experimental results can be found in [8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://baldur.iti.kit.edu/sat-race-2015/.

  2. 2.

    http://lonsing.github.io/depqbf/.

  3. 3.

    http://fmv.jku.at/hwmcc14cav/.

  4. 4.

    Part of the AIGER package (http://fmv.jku.at/aiger/).

  5. 5.

    http://www.qbflib.org.

References

  1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)

    MATH  Google Scholar 

  3. Biere, A.: Lingeling essentials, a tutorial on design and implementation aspects of the the SAT solver lingeling. In: Berre, D.L. (ed.) Pragmatics of SAT (POS) Workshop. EPiC Series, vol. 27, p. 88. EasyChair (2014)

    Google Scholar 

  4. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-Based methods for circuit synthesis. In: FMCAD, pp. 31–34. IEEE (2014)

    Google Scholar 

  5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

    Article  Google Scholar 

  7. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. In: Aranda-Corral, G.A., Calmet, J., Martín-Mateos, F.J. (eds.) AISC 2014. LNCS, vol. 8884, pp. 120–131. Springer, Heidelberg (2014)

    Google Scholar 

  8. Egly, U., Lonsing, F., Oetsch, J.: Automated benchmarking of incremental SAT and QBF solvers. CoRR abs/1506.08563 (2015). http://arxiv.org/abs/1506.08563, LPAR 2015 proceedings version (short paper) with appendix

  9. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0. JSAT 7(2–3), 83–88 (2010)

    Google Scholar 

  10. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Lonsing, F., Egly, U.: Incremental QBF solving. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 514–530. Springer, Heidelberg (2014)

    Google Scholar 

  12. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs using incremental QBF solving. In: Rosenstiel, W., Thiele, L. (ed.) DATE, pp. 623–628. IEEE (2012)

    Google Scholar 

  13. Miller, C., Marin, P., Becker, B.: Verification of partial designs using incremental QBF. AI Commun. 28(2), 283–307 (2015)

    MathSciNet  Google Scholar 

  14. Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 206–218. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lonsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Egly, U., Lonsing, F., Oetsch, J. (2015). Automated Benchmarking of Incremental SAT and QBF Solvers. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics