Skip to main content

Mutual Dimension and Random Sequences

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

If S and T are infinite sequences over a finite alphabet, then the lower and upper mutual dimensions mdim(S : T) and Mdim(S : T) are the upper and lower densities of the algorithmic information that is shared by S and T. In this paper we investigate the relationships between mutual dimension and coupled randomness, which is the algorithmic randomness of two sequences \(R_1\) and \(R_2\) with respect to probability measures that may be dependent on one another. For a restricted but interesting class of coupled probability measures we prove an explicit formula for the mutual dimensions \(mdim(R_1:R_2)\) and \(Mdim(R_1:R_2)\), and we show that the condition \(Mdim(R_1:R_2) = 0\) is necessary but not sufficient for \(R_1\) and \(R_2\) to be independently random.

We also identify conditions under which Billingsley generalizations of the mutual dimensions mdim(S : T) and Mdim(S : T) can be meaningfully defined; we show that under these conditions these generalized mutual dimensions have the “correct" relationships with the Billingsley generalizations of dim(S), Dim(S), dim(T), and Dim(T) that were developed and applied by Lutz and Mayordomo; and we prove a divergence formula for the values of these generalized mutual dimensions.

This research was supported in part by National Science Foundation Grants 0652519, 1143830, and 124705. Part of the second author’s work was done during a sabbatical at Caltech and the Isaac Newton Institute for Mathematical Sciences at the University of Cambridge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Billingsley, P.: Hausdorff dimension in probability theory. Ill. J. Math. 4, 187–209 (1960)

    MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Ergodic Theory and Information. R. E. Krieger Pub., Co., Huntington (1978)

    MATH  Google Scholar 

  3. Cajar, H.: Billingsley Dimension in Probability Spaces. Lecture Notes in Mathematics, vol. 892. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  4. Case, A., Lutz, J.H.: Mutual dimension. ACM Trans. Comput. Theory 7(12) July 2015

    Google Scholar 

  5. Cover, T.R., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons Inc., New York (2006)

    MATH  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. 2010 edn. Springer, Heidelberg (2010)

    Google Scholar 

  7. Eggleston, H.G.: The fractional dimension of a set defined by decimal properties. Q. J. Math. 20, 31–36 (1965)

    MathSciNet  MATH  Google Scholar 

  8. Xiaoyang, G., Lutz, J.H., Elvira Mayordomo, R., Moser, P.: Dimension spectra of random subfractals of self-similar fractals. Ann. Pure Appl. Logic 165, 1707–1726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, T.S., Kobayashi, K.: Mathematics of Information and Coding. Translations of Mathematical Monographs (Book 203). American Mathematical Society (2007)

    Google Scholar 

  10. Kakutani, S.: On equivalence of infinite product measures. Ann. Math. 49(1), 214–224 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  MATH  Google Scholar 

  12. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2009)

    Google Scholar 

  13. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. 3rd edn. Springer, Heidelberg (2008)

    Google Scholar 

  14. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32(5), 1235–1259 (2003)

    Article  MathSciNet  Google Scholar 

  15. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187(1), 49–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lutz, J.H.: A divergence formula for randomness and dimension. Theor. Comput. Sci. 412, 166–177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lutz, J.H., Mayordomo, E.: Dimensions of points in self-similar fractals. SIAM J. Comput. 38(3), 1080–1112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nies, A.: Computability and Randomness. Oxford University Press, New York (2009)

    Book  MATH  Google Scholar 

  20. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, New York (2014)

    Book  MATH  Google Scholar 

  21. Schnorr, C.-P.: A unified approach to the definition of random sequences. Math. Syst. Theory 5(3), 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schnorr, C.-P.: Zuflligkeit und Wahrscheinlichkeit: Eine algorithmische Begrndung der Wahrscheinlichkeitstheorie. 1971 edn. Springer (1971)

    Google Scholar 

  23. Schnorr, C.-P.: A survey of the theory of random sequences. In: Butts, R.E., Hintikka, J. (eds.) Basic Problems in Methodology and Linguistics, pp. 193–211. Springer, Netherlands (1977)

    Chapter  Google Scholar 

  24. van Lambalgen, M.: Random Sequences. Ph.D. thesis, University of Amsterdam (1987)

    Google Scholar 

  25. van Lambalgen, M.: Von mises’ definition of random sequences reconsidered. J. Symbolic Logic 52(3), 725–755 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vovk, V.G.: On a criterion for randomness. Dokl. Akad. Nauk SSSR 294(6), 1298–1302 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We thank an anonymous reviewer of [4] for posing the question answered by Corollary 3.11. We also thank anonymous reviewers of this paper for useful comments, especially including Observation 3.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Case .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Case, A., Lutz, J.H. (2015). Mutual Dimension and Random Sequences. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics