Skip to main content

New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

Halldórsson, Sun, Szegedy, and Wang (ICALP 2012) [16] investigated the space complexity of the following problem CLIQUE-GAP(rs): given a graph stream G, distinguish whether \(\omega (G) \ge r\) or \(\omega (G) \le s\), where \(\omega (G)\) is the clique-number of G. In particular, they give matching upper and lower bounds for CLIQUE-GAP(rs) for any r and \(s =c\log (n)\), for some constant c. The space complexity of the CLIQUE-GAP problem for smaller values of s is left as an open question. In this paper, we answer this open question. Specifically, for \(s=\tilde{O}(\log (n))\) and for any \(r>s\), we prove that the space complexity of CLIQUE-GAP problem is \(\tilde{\varTheta }(\frac{ms^2}{r^2})\). Our lower bound is based on a new connection between graph decomposition theory (Chung, Erdös, and Spencer [11], and Chung [10]) and the multi-party set disjointness problem in communication complexity.

V. Braverman—This material is based upon work supported in part by the National Science Foundation under Grant No. 1447639, by the Google Faculty Award and by DARPA grant N660001-1-2-4014. Its contents are solely the responsibility of the authors and do not represent the official view of DARPA or the Department of Defense.

Z. Liu—This work is supported in part by DARPA grant N660001-1-2-4014.

N.V. Vinodchandran—Research supported in part by National Science Foundation grant CCF-1422668.

L.F. Yang—This work is supported in part by NSF grant No. 1447639.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this and following theorems, the constants we choose are only for demonstrative convenience.

  2. 2.

    In this and following theorems, the constants we choose are only for demonstrative convenience.

  3. 3.

    Note that some papers define the decomposition on connected graph. We here use a more general statement.

References

  1. Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 594–598. ACM/SIAM (1998). http://dl.acm.org/citation.cfm?id=314613.315014

  3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing. pp. 20–29. ACM (1996)

    Google Scholar 

  4. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 623–632. SODA, Society for Industrial and Applied Mathematics (2002)

    Google Scholar 

  5. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Computing clustering coefficients in data streams. In: European Conference on Complex Systems (ECCS) (2006)

    Google Scholar 

  6. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in data streams. In: Proceedings of the Twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pp. 253–262. ACM (2006)

    Google Scholar 

  7. Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating clustering indexes in data streams. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 618–632. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Buriol, L.S., Frahling, G., Leonardi, S., Spaccamela, A.M., Sohler, C.: Counting graph minors in data streams. Technical report, DELIS - Dynamically Evolving, Large-Scale Information Systems (2005)

    Google Scholar 

  9. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In: IEEE Conference on Computational Complexity, pp. 107–117. IEEE Computer Society (2003)

    Google Scholar 

  10. Chung, F.: On the decomposition of graphs. SIAM J. Algebraic Discrete Methods 2(1), 1–12 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, F., Erdős, P., Spencer, J.: On the decomposition of graphs into complete bipartite subgraphs. In: Erdős, P., Alpár, L., Halász, H., SárkÖz, A. (eds.) Studies in Pure Mathematics, pp. 95–101. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  12. Cormode, G., Jowhari, H.: A second look at counting triangles in graph streams. Theoret. Comput. Sci. 552, 44–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms. pp. 714–723. ACM (2006)

    Google Scholar 

  14. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite matching. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 468–485. SIAM (2012)

    Google Scholar 

  16. Halldórsson, M.M., Sun, X., Szegedy, M., Wang, C.: Streaming and communication complexity of clique approximation. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 449–460. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Jha, M., Seshadhri, C., Pinar, A.: When a graph is not so simple: Counting triangles in multigraph streams. CoRR abs/1310.7665 (2013). http://arxiv.org/abs/1310.7665

  18. Jowhari, H., Ghodsi, M.: New Streaming algorithms for counting triangles in graphs. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 710–716. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Kapralov, M., Khanna, S., Sudan, M.: Streaming lower bounds for approximating MAX-CUT. CoRR abs/1409.2138 (2014). http://arxiv.org/abs/1409.2138

  20. Kutzkov, K., Pagh, R.: On the streaming complexity of computing local clustering coefficients. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM), pp. 677–686. ACM (2013)

    Google Scholar 

  21. Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate counting of cycles in streams. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 677–688. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014). http://doi.acm.org/10.1145/2627692.2627694

    Article  Google Scholar 

  23. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling triangles from a graph stream. Proc. VLDB Endowment 6(14), 1870–1881 (2013)

    Article  Google Scholar 

  24. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. CoRR abs/1111.4503 (2011). http://arxiv.org/abs/1111.4503

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaoxing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braverman, V., Liu, Z., Singh, T., Vinodchandran, N.V., Yang, L.F. (2015). New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics