Skip to main content

Gravity Dams

  • Chapter
  • First Online:
Hydraulic Structures
  • 5222 Accesses

Abstract

Gravity dam may be the earliest water retaining structure in the human history. As early as around 2950–2750 BC, the Egyptians built a masonry gravity dam of 14 m high at the Nile River, called in Arabic “Sadd el-Kafara” meaning “Dam of the Pagans,” which was discovered over 100 years ago in Egypt. The modern gravity dams made of concrete are widely exercised throughout the world and well known for their simplicity in design and facilitation in construction, high reliability at any dam height and in any climatic conditions inclusive of harsh winter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society of Civil Engineers, United States Army Corps of Engineers (1994) Roller-compacted concrete (Technical engineering and design guides as adapted from the US Army Corps of Engineers). ASCE Press, New York

    Google Scholar 

  • Bowen R (1981) Grouting in engineering practice, 2nd edn. Appl Sci, New York

    Google Scholar 

  • Bradley JN, Peterka AJ (1957a) The hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (Basin I). J Hydraulics Div ASCE 83(HY5):paper1401-1–1401-24

    Google Scholar 

  • Bradley JN, Peterka AJ (1957b) The hydraulic design of stilling basins: high dams, earth dams, and large canal structures (Basin II). J Hydraulics Div ASCE 83(HY5):paper 1402-1–1402-14

    Google Scholar 

  • Carlson RW, Houghton DL, Polivka M (1979) Causes and control of cracking in unreinforced mass concrete. ACI J 76(7):831–837

    Google Scholar 

  • Chanson H (2001–2002) Historical development of stepped cascades for the dissipation of hydraulic energy. Trans Newcomen Soc 71(2):295–318

    Google Scholar 

  • Chen SH, Yang ZM, Wang WM, Shahrour I (2012) Study on the rock bolt reinforcement for the gravity dam foundation. Rock Mech Rock Eng 45(1):75–87

    Article  Google Scholar 

  • Creager WP (1917) Engineering for masonry dams. Wiley, New York

    Book  Google Scholar 

  • Delocre FE (1866) Mémoire sur la Forme du Profil à Adopter pour les Grands Barrages en Maçonnerie des Réservoirs. Mémoires et Documents, Annales des Ponts et Chassées, 2nd Sem, pp 212–272

    Google Scholar 

  • Dunstan MRH (2007) Overview of RCC dams at the end of 2006. In: Jia J et al (eds) New progress on roller compacted concrete dams. China WaterPower Prees, Beijing, pp 9–17

    Google Scholar 

  • Egger P (1992) Ground improvement by passive rock bolts, experimental and theoretical studies, example. Memorie GEAM. 29(1):5–10

    MathSciNet  Google Scholar 

  • Elevatorsky EA (1959) Hydraulic energy dissipators. McGram Hill, New York

    Google Scholar 

  • Forbes BA (1999) Grout enriched RCC: a history and future. International water power & dam construction. Wilmington Business Publishing, Kent, pp 34–38

    Google Scholar 

  • Golzé AR (1977) Handbook of dam engineering. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Grishin MM (ed) (1982) Hydraulic structures. Mir Publishers, Moscow

    Google Scholar 

  • Hansen KD (1996) Roller—compacted concrete: a civil engineering innovation. Concr Int 15(3):49–53

    Google Scholar 

  • Hansen KD, Reinhardt WG (1991) Roller compacted concrete dams. McGraw-Hill, New York (USA)

    Google Scholar 

  • Harza LF (1949) The significance of pore pressure in hydraulic structures. Trans ASCE. 114(1):193–214

    Google Scholar 

  • Henny DC (1934) Stability of straight concrete gravity dams. Trans ASCE 99(1):1041–1061

    Google Scholar 

  • ICOLD (1989) Roller compacted concrete for gravity dams—State of the Art (Bulletin 75). ICOLD, Paris

    Google Scholar 

  • ICOLD (1993) Rock foundations for dams (Bulletin 88). ICOLD, Paris

    Google Scholar 

  • ICOLD (2000) The gravity dam: a dam for the future—review and recommendations (Bulletin 117). ICOLD, Paris

    Google Scholar 

  • ICOLD (2003) Roller-compacted concrete dams—state of the art and case histories (Bulletin 126). ICOLD, Paris

    Google Scholar 

  • ICOLD (2005) Dam foundations. Geologic considerations. Investigation methods. Treatment. Monitoring (Bulletin 129). ICOLD, Paris

    Google Scholar 

  • Iliev S, Kalchev L (1981) Selecting the optimum cross section of a concrete gravity dam. Water Power Dam Constr 33(12):23–27

    Google Scholar 

  • Iqbal A (1993) Irrigation and hydraulic structures—theory, design and practice. Institute of Environmental Engineering & Research, NED University of Engineering & Technology, Karachi

    Google Scholar 

  • Isao N, Shigeharu J (2003) 30 years’ history of roller-compacted concrete dams in Japan. In: Berga L et al (eds) Proceedings of the 4th international symp on RCC dams. AA Balkema, Madrid, pp 27–38

    Google Scholar 

  • Jansen RB (1980) Dams and public safety, a water resources technical publication. CO (Water and Power Resources Service, Bureau of Reclamation, US Department of the Interior), Denver

    Google Scholar 

  • Joshi CS (1980) Designing the profile of gravity dams. Int Water Power Dam Constr 31(1):28–30

    Google Scholar 

  • Karol RH (1990) Chemical grouting, 2nd edn. Marcel Dekker, New York (USA)

    Google Scholar 

  • Keener KB (1951) Uplift pressures in concrete dams. Trans ASCE 116(1):1218–1237

    Google Scholar 

  • Khatsuria RM (2004) Hydraulics of spillways and energy dissipators. CRC Press, New York

    Book  Google Scholar 

  • Lévy MM (1895) Quelques considérations sur la construction de grands barrages. Comptes-Rendus de l’Académie des Sciences 6:288–300

    Google Scholar 

  • Liu ZM, Wang DX, Wang DG (eds) (2013) Handbook of hydraulic structure design, vol 1—Fundamental theories. hina WaterPower Press, Beijing (in Chinese)

    Google Scholar 

  • Lo KY, Ogawa T, Lukajic B, Dupak DD (1991) Measurement of strength parameters of concrete-rock contact at the dam-foundation interface. Geotech Test J 14(4):383–394

    Article  Google Scholar 

  • Ma GY, Chang ZH (2007) Theory and practice of grouting drainage and anchorage of rock mass. China WaterPower Press, Beijing (in Chinese)

    Google Scholar 

  • Mason PJ (1993) Practical guidelines for the design of flip buckets and plunge pools. Int Water Power Dam Constr 45(9):40–45

    Google Scholar 

  • Ministry of Water Resources of the People’s Republic of China (SL319-2005) (2005) Design specification for concrete gravity dams. China WaterPower Press, Beijing (in Chinese)

    Google Scholar 

  • Ministry of Water Resources of the People’s Republic of China (GB 50487-2008) (2009) Code for engineering geological investigation of water resources and hydropower. China Planning Press, Beijing (China) (in Chinese)

    Google Scholar 

  • Nagayama I, Jikan S (2003) 30 years’ history of roller-compacted concrete dams in Japan. In: Key note paper in: 4th international symposium on roller compacted concrete (RCC) Dams. Balkema AA, Lisse, pp 27–38

    Google Scholar 

  • Novak P, Moffat AIB, Nalluri C, Narayanan R (1990) Hydraulic structures. The Academic Division of Unwin Hyman Ltd, London

    Google Scholar 

  • Pan JZ (1987) Design of gravity dams. Water Resources and Electric Power Press of China, Beijing (in Chinese)

    Google Scholar 

  • Panwar A, Tiwari HL (2014) Hydraulic energy dissipators—a review. Int J Sci Eng Technol 3(4):400–402

    Google Scholar 

  • Post-Tensioning Institute (1985) Recommendations for prestressed rock and soil anchors. Post-Tensioning Institute, Phoenix

    Google Scholar 

  • Price WH (1982) Control of cracking in mass concrete dams. Concr Int 4(4):36–44

    Google Scholar 

  • Rankine WJM (1881) Miscellaneous scientific papers: Report on the design and construction of masonry dams. Charles Griffin and Company, London

    Google Scholar 

  • Ru RH (1983) Gravity dams. Water Resources and Electric Power Press of China, Beijing

    Google Scholar 

  • Sazilly J (1853) Note sur un type de profil d’égale résistance proposé pour les murs de réservoirs d’eau. Annales des Ponts et Chassées. 6:191–222 (in French)

    Google Scholar 

  • Schnitter NJ (1994) A history of dams: the useful pyramids. Balkema AA, New York

    Google Scholar 

  • Soderberg AD (1988) Foundation treatment of karstic features under TVA dams. Geotechnical aspects of Karst Terrain. ASTM Geotechnical 14:149–165 (Special publication)

    Google Scholar 

  • State Economy and Trade Commission of the People’s Republic of China (DL5108-1999) (1999) Design specification for concrete gravity dams. China Electric Power Press, Beijing (in Chinese)

    Google Scholar 

  • State Economy and Trade Commission of the People’s Republic of China (DL 5073-2000) (2000) Specifications for seismic design of hydraulic structures. China Electric Power Press, Beijing (in Chinese)

    Google Scholar 

  • State Economy and Trade Commission of the People’s Republic of China (DL/T 5166-2002) (2008) Design specification for river-bank spillway. China Electric Power Press, Beijing (in Chinese)

    Google Scholar 

  • Stelle WW, Rubin DI, Buhas HJ (1983) Stability of concrete dam: case history. J Energy Eng ASCE 109(3):165–180

    Article  Google Scholar 

  • Sun GY, Wang SY, Feng SR (2004) High RCC gravity dams. China Electric Power Press, Beijing (in Chinese)

    Google Scholar 

  • Sun Z (2004) Grouting in dam’s rock foundation. China WaterPower Press, Beijing (in Chinese)

    Google Scholar 

  • Tatro SB, Schrader EK (1985) Thermal considerations for roller-compacted concrete. ACI J 82(2):119–128

    Google Scholar 

  • United States Bureau of Reclamation (2005) Roller-compacted concrete: design and construction considerations for hydraulic structures. US Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver

    Google Scholar 

  • USBR (1976) Design of gravity dams. US Government Printing Office, Denver

    Google Scholar 

  • USBR (1987) Design of small dams, 3rd edn. US Govt Printing Office, Denver

    Google Scholar 

  • Weaver K, Bruce D (2007) Dam foundation grouting. ASCE Press, Resto, No. 0-7844-0764-9

    Google Scholar 

  • Wise EC (2005) The day Austin died. Penn Lines 40(9):8–11

    Google Scholar 

  • Zhou JP, Dang LC (eds) (2011) Handbook of hydraulic structure design, vol 5—concrete dams. China WaterPower Press, Beijing (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Hong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, SH. (2015). Gravity Dams. In: Hydraulic Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47331-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47331-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47330-6

  • Online ISBN: 978-3-662-47331-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics