Skip to main content

Immunology of Cutaneous Tumors and Immunotherapy for Melanoma

  • Chapter
Cancer Immunology

Abstract

This chapter provides an account of the most important immune aspects of cutaneous tumors with emphasis on the viewpoint of dual behavior of immune system in the context of non-melanoma skin cancers (NMSCs) and melanoma skin cancers.

This chapter starts with an introduction to the epidemiology of skin cancers and skin immune system. Then, the role of tumor immunity, immunosuppression, and inflammation in skin carcinogenesis would be discussed. This is followed by a brief discussion on photoimmunology due to UV radiation which is known as an important risk factor of skin cancers.

The last part of this chapter has risen to challenge the immunotherapeutic approaches for melanomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA. Increasing burden of melanoma in the United States. J Invest Dermatol. 2009;129(7):1666–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Chen ST, Geller AC, Tsao H. Update on the epidemiology of melanoma. Curr Dermatol Rep. 2013;2(1):24–34.

    PubMed Central  PubMed  Google Scholar 

  3. Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. Cancer. 2012;62(2):118–28.

    Google Scholar 

  4. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.

    CAS  PubMed  Google Scholar 

  5. Dacosta Byfield S, Chen D, Yim Y, Reyes C. Age distribution of patients with advanced non-melanoma skin cancer in the United States. Arch Dermatol Res. 2013;305:1–6.

    Google Scholar 

  6. Bleyer A, Viny A, Barr R. Cancer in 15- to 29-year-olds by primary site. Oncologist. 2006;11(6):590–601.

    PubMed  Google Scholar 

  7. Balch CM, Gershenwald JE, Soong S-J, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.

    PubMed Central  PubMed  Google Scholar 

  8. Francken A, Shaw H, Thompson J, Soong S-J, Accortt N, Azzola M, et al. The prognostic importance of tumor mitotic rate confirmed in 1317 patients with primary cutaneous melanoma and long follow-up. Ann Surg Oncol. 2004;11(4):426–33.

    PubMed  Google Scholar 

  9. Gimotty PA, Guerry D, Ming ME, Elenitsas R, Xu X, Czerniecki B, et al. Thin primary cutaneous malignant melanoma: a prognostic tree for 10-year metastasis is more accurate than American Joint Committee on cancer staging. J Clin Oncol. 2004;22(18):3668–76.

    PubMed  Google Scholar 

  10. Callahan MK, Postow MA, Wolchok JD. Immunomodulatory therapy for melanoma: ipilimumab and beyond. Clin Dermatol. 2013;31(2):191–9.

    PubMed Central  PubMed  Google Scholar 

  11. Raaijmakers MI, Rozati S, Goldinger SM, Widmer DS, Dummer R, Levesque MP. Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy. 2013;5(2):169–82.

    CAS  PubMed  Google Scholar 

  12. Kostovic K, Pastar Z, Ceovic R, Mokos ZB, Buzina DS, Stanimirovic A. Photodynamic therapy in dermatology: current treatments and implications. Coll Antropol. 2012;36(4):1477–81.

    PubMed  Google Scholar 

  13. Dubas LE, Ingraffea A. Nonmelanoma skin cancer. Facial Plast Surg Clin North Am. 2013;21(1):43–53.

    PubMed  Google Scholar 

  14. Mihm MC, Soter NA, Dvorak HF, Austen KF. The structure of normal skin and the morphology of atopic eczema. J Invest Dermatol. 1976;67(3):305–12.

    PubMed  Google Scholar 

  15. Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kündig T, Hengartner H. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev. 1997;156(1):199–209.

    CAS  PubMed  Google Scholar 

  16. Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsenberg ML. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol. 1987;88(5):569–73.

    CAS  PubMed  Google Scholar 

  17. Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immunol Today. 1993;14(2):75–8.

    CAS  PubMed  Google Scholar 

  18. Bos JD, Kapsenberg ML. The skin immune system its cellular constituents and their interactions. Immunol Today. 1986;7(7–8):235–40.

    CAS  PubMed  Google Scholar 

  19. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    CAS  PubMed  Google Scholar 

  20. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    CAS  PubMed  Google Scholar 

  21. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22(1):329–60.

    CAS  PubMed  Google Scholar 

  22. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    CAS  PubMed  Google Scholar 

  24. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    CAS  PubMed  Google Scholar 

  25. Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM, Mueller MM. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol. 2012;227(1):17–28.

    CAS  PubMed  Google Scholar 

  26. De Palma M. Partners in crime: VEGF and IL-4 conscript tumour-promoting macrophages. J Pathol. 2012;227(1):4–7.

    PubMed  Google Scholar 

  27. Yim C-Y, Bastian NR, Smith JC, Hibbs JB, Samlowski WE. Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res. 1993;53(22):5507–11.

    CAS  PubMed  Google Scholar 

  28. Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA) Mol Cell Res. 2010;1803(1):3–19.

    Google Scholar 

  29. Kerkelä E, Ala-aho R, Jeskanen L, Rechardt O, Grénman R, Shapiro SD, et al. Expression of human macrophage metalloelastase (MMP-12) by tumor cells in skin cancer. J Invest Dermatol. 2000;114(6):1113–9.

    PubMed  Google Scholar 

  30. Tjiu J-W, Chen J-S, Shun C-T, Lin S-J, Liao Y-H, Chu C-Y, et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2008;129(4):1016–25.

    PubMed  Google Scholar 

  31. Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, et al. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFα and IL-1α. Int J Cancer. 2000;85(2):182–8.

    CAS  PubMed  Google Scholar 

  32. Jensen TO, Schmidt H, Møller HJ, Høyer M, Maniecki MB, Sjoegren P, et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on cancer stage I/II melanoma. J Clin Oncol. 2009;27(20):3330–7.

    PubMed  Google Scholar 

  33. Martin J, Duncan FJ, Keiser T, Shin S, Kusewitt DF, Oberyszyn T, et al. Macrophage migration inhibitory factor (MIF) plays a critical role in pathogenesis of ultraviolet-B (UVB) -induced nonmelanoma skin cancer (NMSC). FASEB J. 2009;23(3):720–30.

    CAS  PubMed  Google Scholar 

  34. Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol. 1992;148(4):1280–5.

    CAS  PubMed  Google Scholar 

  35. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.

    CAS  PubMed  Google Scholar 

  36. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1–9.

    PubMed  Google Scholar 

  37. Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, Pierson KC, Pitts-Kiefer A, Fan L, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol. 2011;131(6):1322–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    CAS  PubMed  Google Scholar 

  39. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    CAS  PubMed  Google Scholar 

  40. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001;22(7):394–400.

    CAS  PubMed  Google Scholar 

  41. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445–9.

    CAS  PubMed  Google Scholar 

  42. Steinman RM, Hawiger D, Nussenzweig MC Tolerogenic dendritic cells*. Ann Rev Immunol. 2003;21(1):685–711.

    CAS  Google Scholar 

  43. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell. 2001;106(3):271–4.

    CAS  PubMed  Google Scholar 

  44. Enk AH, Angeloni VL, Udey MC, Katz SI. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. J Immunol. 1993;151(5):2390–8.

    CAS  PubMed  Google Scholar 

  45. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol. 1997;159(10):4772–80.

    CAS  PubMed  Google Scholar 

  46. Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 1997;73(3):309–16.

    CAS  PubMed  Google Scholar 

  47. Steinbrink K, Jonuleit H, Müller G, Schuler G, Knop J, Enk AH. Interleukin-10–treated human dendritic cells induce a melanoma-antigen–specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells. Blood. 1999;93(5):1634–42.

    CAS  PubMed  Google Scholar 

  48. Koch NF, Stanzl U, Jennewein P, Janke K, Heufler C, Kämpgen E, et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med. 1996;184(2):74–6.

    Google Scholar 

  49. Ladányi A, Kiss J, Somlai B, Gilde K, Fejős Z, Mohos A, et al. Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother. 2007;56(9):1459–69.

    PubMed  Google Scholar 

  50. Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, Lewis J, et al. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. J Exp Med. 2003;198(5):747–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Moodycliffe AM, Nghiem D, Clydesdale G, Ullrich SE Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol. 2000;1(6):521–5.

    CAS  PubMed  Google Scholar 

  52. Marks R, Foley P, Goodman G, Hage BH, Selwood TS. Spontaneous remission of solar keratoses: the case for conservative management. Br J Dermatol. 1986;115(6):649–55.

    CAS  PubMed  Google Scholar 

  53. McGovern VJ. Spontaneous regression of melanoma. Pathology. 1975;7(2):91–9.

    CAS  PubMed  Google Scholar 

  54. Curson C, Weedon D. Spontaneous regression in basal cell carcinomas. J Cutan Pathol. 1979;6(5):432–7.

    CAS  PubMed  Google Scholar 

  55. Halliday G, Patel A, Hunt M, Tefany F, Barnetson RC. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg. 1995;19(3):352–8.

    CAS  PubMed  Google Scholar 

  56. McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Biol. 1999;77(1):1–10.

    CAS  Google Scholar 

  57. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    CAS  PubMed  Google Scholar 

  58. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174(3):561–9.

    CAS  PubMed  Google Scholar 

  59. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.

    CAS  PubMed  Google Scholar 

  60. Prieto PA, Yang JC, Sherry RM, Hughes MS, Kammula US, White DE, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res. 2012;18(7):2039–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.

    CAS  PubMed  Google Scholar 

  62. Miracco C, Mourmouras V, Biagioli M, Rubegni P, Mannucci S, Monciatti I, et al. Utility of tumour-infiltrating CD25+ FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep. 2007;18(5):1115–22.

    PubMed  Google Scholar 

  63. Clemente CG, Mihm MC, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303–10.

    CAS  PubMed  Google Scholar 

  64. Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS. Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol. 2007;25(7):869–75.

    PubMed  Google Scholar 

  65. Clark WH, Elder DE, Guerry D, Braitman LE, Trock BJ, Schultz D, et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989;81(24):1893–904.

    PubMed  Google Scholar 

  66. Busam KJ, Antonescu CR, Marghoob AA, Nehal KS, Sachs DL, Shia J, et al. Histologic classification of tumor-infiltrating lymphocytes in primary cutaneous malignant melanoma: a study of interobserver agreement. Am J Clin Pathol. 2001;115(6):856–60.

    CAS  PubMed  Google Scholar 

  67. de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7(5):411–23.

    PubMed  Google Scholar 

  68. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5(4):296–306.

    CAS  PubMed  Google Scholar 

  69. Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.

    CAS  PubMed  Google Scholar 

  70. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol. 2005;175(9):6169–76.

    CAS  PubMed  Google Scholar 

  71. Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol. 2011;18(1):23–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.

    PubMed  Google Scholar 

  73. Bakker A, Schreurs M, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med. 1994;179(3):1005–9.

    CAS  PubMed  Google Scholar 

  74. Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med. 1994;179(3):921–30.

    CAS  PubMed  Google Scholar 

  75. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 1995;269(5228):1281–4.

    CAS  PubMed  Google Scholar 

  76. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci. 1994;91(14):6458–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med. 1995;182(3):689–98.

    PubMed  Google Scholar 

  78. Wang RF, Robbins PF, Kawakami Y, Kang XQ, Rosenberg SA. Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. J Exp Med. 1995;181(2):799–804.

    CAS  PubMed  Google Scholar 

  79. Rivoltini L, Kawakami Y, Sakaguchi K, Southwood S, Sette A, Robbins PF, et al. Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol. 1995;154(5):2257–65.

    CAS  PubMed  Google Scholar 

  80. Kawakami Y, Eliyahu S, Jennings C, Sakaguchi K, Kang X, Southwood S, et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol. 1995;154(8):3961–8.

    CAS  PubMed  Google Scholar 

  81. Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol. 2005;174(5):3080–6.

    CAS  PubMed  Google Scholar 

  82. Boon T, Coulie PG, Eynde BJV, Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208.

    CAS  PubMed  Google Scholar 

  83. Kunstfeld R, Hirakawa S, Hong Y-K, Schacht V, Lange-Asschenfeldt B, Velasco P, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood. 2004;104(4):1048–57.

    CAS  PubMed  Google Scholar 

  84. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146(5):1029.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene. 1998;17(3):303.

    CAS  PubMed  Google Scholar 

  86. Johnson KE, Wilgus TA. Multiple roles for VEGF in non-melanoma skin cancer: angiogenesis and beyond. J Skin Cancer. 2012;2012:6.

    Google Scholar 

  87. Larcher F, Robles AI, Duran H, Murillas R, Quintanilla M, Cano A, et al. Up-regulation of vascular endothelial growth factor/vascular permeability factor in mouse skin carcinogenesis correlates with malignant progression state and activated H-ras expression levels. Cancer Res. 1996;56(23):5391–6.

    CAS  PubMed  Google Scholar 

  88. Dhabhar FS, Saul AN, Holmes TH, Daugherty C, Neri E, Tillie JM, et al. High-anxious individuals show increased chronic stress burden, decreased protective immunity, and increased cancer progression in a mouse model of squamous cell carcinoma. PLoS One. 2012;7(4):e33069.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Alitalo AK, Proulx ST, Karaman S, Aebischer D, Martino S, Jost M, et al. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis. Cancer Res. 2013;73(14):4212–21.

    CAS  PubMed  Google Scholar 

  90. Rajabi P, Neshat A, Mokhtari M, Rajabi MA, Eftekhari M, Tavakoli P. The role of VEGF in melanoma progression. J Res Med Sci. 2012;17(6):534–9.

    PubMed Central  PubMed  Google Scholar 

  91. Bowden J, Brennan PA, Umar T, Cronin A. Expression of vascular endothelial growth factor in basal cell carcinoma and cutaneous squamous cell carcinoma of the head and neck. J Cutan Pathol. 2002;29(10):585–9.

    PubMed  Google Scholar 

  92. Viac J, Palacio S, Schmitt D, Claudy A. Expression of vascular endothelial growth factor in normal epidermis, epithelial tumors and cultured keratinocytes. Arch Dermatol Res. 1997;289(3):158–63.

    CAS  PubMed  Google Scholar 

  93. Srivastava A, Hughes LE, Woodcock JP, Shedden EJ. The significance of blood flow in cutaneous malignant melanoma demonstrated by Doppler flowmetry. Eur J Surg Oncol. 1986;12(1):13–8.

    CAS  PubMed  Google Scholar 

  94. Gibot L, Galbraith T, Huot J, Auger F. Development of a tridimensional microvascularized human skin substitute to study melanoma biology. Clin Exp Metastasis. 2013;30(1):83–90.

    PubMed  Google Scholar 

  95. Dewing D, Emmett M, Pritchard Jones R. The roles of angiogenesis in malignant melanoma: trends in basic science research over the last 100 years. ISRN Oncol. 2012;2012:546927.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Howell WM, Bateman AC, Turner SJ, Collins A, Theaker JM. Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumour development in cutaneous malignant melanoma. Genes Immun. 2002;3(4):229–32.

    CAS  PubMed  Google Scholar 

  97. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–8.

    CAS  PubMed  Google Scholar 

  98. Kripke ML. Immunological unresponsiveness induced by ultraviolet radiation. Immunol Rev. 1984;80(1):87–102.

    CAS  PubMed  Google Scholar 

  99. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348(17):1681–91.

    PubMed  Google Scholar 

  100. Long MD, Herfarth HH, Pipkin CA, Porter CQ, Sandler RS, Kappelman MD. Increased risk for non-melanoma skin cancer in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2010;8(3):268–74.

    PubMed Central  PubMed  Google Scholar 

  101. Singh S, Nagpal SJS, Murad MH, Yadav S, Kane SV, Pardi DS, et al. Inflammatory bowel disease is associated with an increased risk of melanoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2014;12(2):210–8.

    PubMed  Google Scholar 

  102. Penn I. De novo malignances in pediatric organ transplant recipients. Pediatr Transplant. 1998;2(1):56–63.

    CAS  PubMed  Google Scholar 

  103. Bordea C, Wojnarowska F, Millard PR, Doll H, Welsh K, Morris PJ. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation. 2004;77(4):574–9.

    CAS  PubMed  Google Scholar 

  104. Boukamp P. Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis. 2005;26(10):1657–67.

    CAS  PubMed  Google Scholar 

  105. Kasiske BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am J Transplant. 2004;4(6):905–13.

    PubMed  Google Scholar 

  106. Adami J, Gabel H, Lindelof B, Ekstrom K, Rydh B, Glimelius B, et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer. 2003;89(7):1221–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Lindelöf B, Sigurgeirsson B, Gäbel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143(3):513–9.

    PubMed  Google Scholar 

  108. Francis S, Berg D. Reducing skin malignancy risk in organ transplant recipients. Skin Ther Lett. 2013;18(1):1–3.

    Google Scholar 

  109. Guba M, Graeb C, Jauch K-W, Geissler EK. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation. 2004;77(12):1777–82.

    CAS  PubMed  Google Scholar 

  110. Bachelor MA, Bowden GT. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004;14(2):131–8.

    CAS  PubMed  Google Scholar 

  111. Meunier L, Bata-Csorgo Z, Cooper KD. In human dermis, ultraviolet radiation induces expansion of a CD36+; CD11b+; CD1− macrophage subset by infiltration and proliferation; CD1+; langerhans-like dendritic antigen-presenting cells are concomitantly depleted. J Invest Dermatol. 1995;105(6):782–8.

    CAS  PubMed  Google Scholar 

  112. Cooper KD, Duraiswamy N, Hammerberg C. Neutrophils, differentiated macrophages, and monocyte/macrophage antigen presenting cells infiltrate murine epidermis after UV injury. J Invest Dermatol. 1993;101(2):155–63.

    CAS  PubMed  Google Scholar 

  113. de Gruijl FR, Forbes PD. UV-induced skin cancer in a hairless mouse model. Bioessays. 1995;17(7):651–60.

    PubMed  Google Scholar 

  114. Grossman D, Leffell DJ. The molecular basis of nonmelanoma skin cancer: new understanding. Arch Dermatol. 1997;133(10):1263–70.

    CAS  PubMed  Google Scholar 

  115. Kripke ML. Ultraviolet radiation and immunology: something new under the sun-presidential address. Cancer Res. 1994;54(23):6102–5.

    CAS  PubMed  Google Scholar 

  116. Clemens K, Churchill G, Bhatt N, Richardson K, Noonan F. Genetic control of susceptibility to UV-induced immunosuppression by interacting quantitative trait loci. Genes Immun. 1999;1(4):251–9.

    Google Scholar 

  117. Noonan FP, Hoffman HA. Control of UVB immunosuppression in the mouse by autosomal and sex-linked genes. Immunogenetics. 1994;40(4):247–56.

    CAS  PubMed  Google Scholar 

  118. Noonan FP, Muller HK, Fears TR, Kusewitt DF, Johnson TM, De Fabo EC. Mice with genetically determined high susceptibility to ultraviolet (UV)-induced immunosuppression show enhanced UV carcinogenesis. J Invest Dermatol. 2003;121(5):1175–81.

    CAS  PubMed  Google Scholar 

  119. Nishigori C, Yarosh D, Donawho C, Kripke M. The immune system in ultraviolet carcinogenesis. J Invest Dermatol Symp Proc. 1996;1(2):143–6.

    CAS  Google Scholar 

  120. de Gruijl FR. Photocarcinogenesis: UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol. 2002;15(5):316–20.

    PubMed  Google Scholar 

  121. Feig DI, Reid TM, Loeb LA. Reactive oxygen species in tumorigenesis. Cancer Res. 1994;54(7 Supplement):1890s–4.

    CAS  PubMed  Google Scholar 

  122. Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol. 2000;32(2):157–70.

    PubMed  Google Scholar 

  123. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5(1):14.

    PubMed Central  PubMed  Google Scholar 

  124. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995;9(9):726–35.

    CAS  PubMed  Google Scholar 

  125. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    CAS  PubMed  Google Scholar 

  126. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5.

    CAS  PubMed  Google Scholar 

  127. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Alcalá AM, Flaherty KT. BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance. Clin Cancer Res. 2012;18(1):33–9.

    PubMed  Google Scholar 

  129. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.

    CAS  PubMed  Google Scholar 

  133. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    CAS  PubMed  Google Scholar 

  135. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366(3):207–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18(5):1386–94.

    CAS  PubMed  Google Scholar 

  137. Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Xia J, Song X, Bi Z, Chu W, Wan Y. UV-induced NF-κB activation and expression of IL-6 is attenuated by (−)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro. Int J Mol Med. 2005;16(5):943–50.

    CAS  PubMed  Google Scholar 

  139. Hanahan D, Weinberg R. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  140. Heng HHQ, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ. The evolutionary mechanism of cancer. J Cell Biochem. 2010;109(6):1072–84.

    CAS  PubMed  Google Scholar 

  141. Mueller MM, Fusenig NE. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839–49.

    CAS  PubMed  Google Scholar 

  142. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol Mech Dis. 2006;1:119–50.

    CAS  Google Scholar 

  143. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.

    CAS  PubMed  Google Scholar 

  144. Mueller MM, Fusenig NE. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation. 2002;70(9–10):486–97.

    PubMed  Google Scholar 

  145. Mueller MM, Peter W, Mappes M, Huelsen A, Steinbauer H, Boukamp P, et al. Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol. 2001;159(4):1567–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Leccia MT. Skin, sun exposure and vitamin D: facts and controversies. Ann Dermatol Venereol. 2013;140(3):176–82.

    PubMed  Google Scholar 

  147. Chen AC, Halliday GM, Damian DL. Non-melanoma skin cancer: carcinogenesis and chemoprevention. Pathology. 2013;45(3):331–41.

    CAS  PubMed  Google Scholar 

  148. Kripke ML. Effects of UV radiation on tumor immunity. J Natl Cancer Inst. 1990;82(17):1392–6.

    CAS  PubMed  Google Scholar 

  149. De Fabo EC, Noonan FP. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med. 1983;158(1):84–98.

    PubMed  Google Scholar 

  150. Greenblatt M, Bennett W, Hollstein M, Harris C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54(18):4855–78.

    CAS  PubMed  Google Scholar 

  151. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photobiol B Biol. 2001;63(1–3):8–18.

    CAS  Google Scholar 

  152. McGregor JM, Yu CCW, Dublin EA, Levison DA, MacDonald DM. Aberrant expression of p53 tumour-suppressor protein in non-melanoma skin cancer. Br J Dermatol. 1992;127(5):463–9.

    CAS  PubMed  Google Scholar 

  153. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351(6326):453–6.

    CAS  PubMed  Google Scholar 

  154. Campbell C, Quinn AG, Angus B, Rees JL. The relation between p53 mutation and p53 immunostaining in non-melanoma skin cancer. Br J Dermatol. 1993;129(3):235–41.

    CAS  PubMed  Google Scholar 

  155. Kubo Y, Urano Y, Yoshimoto K, Iwahana H, Fukuhara K, Arase S, et al. p53 gene mutations in human skin cancers and precancerous lesions: comparison with immunohistochemical analysis. J Invest Dermatol. 1994;102(4):440–4.

    CAS  PubMed  Google Scholar 

  156. Ananthaswamy HN, Loughlin SM, Cox P, Evans RL, Ullrich SE, Kripke ML. Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens. Nat Med. 1997;3(5):510–4.

    CAS  PubMed  Google Scholar 

  157. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002;10(5):995–1005.

    CAS  PubMed  Google Scholar 

  158. DeYoung MP, Johannessen CM, Leong C-O, Faquin W, Rocco JW, Ellisen LW. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res. 2006;66(19):9362–8.

    CAS  PubMed  Google Scholar 

  159. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–8.

    CAS  PubMed  Google Scholar 

  161. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–30.

    CAS  PubMed  Google Scholar 

  162. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.

    PubMed  Google Scholar 

  163. Akgül B, Pfefferle R, Marcuzzi GP, Zigrino P, Krieg T, Pfister H, et al. Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol. 2006;15(1):35–42.

    PubMed  Google Scholar 

  164. Kerkelä E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol. 2003;12(2):109–25.

    PubMed  Google Scholar 

  165. Zhang G, Luo X, Sumithran E, Pua VSC, Barnetson RSC, Halliday GM, et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene. 2006;25(55):7260–6.

    CAS  PubMed  Google Scholar 

  166. Akgül B, García-Escudero R, Ghali L, Pfister HJ, Fuchs PG, Navsaria H, et al. The E7 protein of cutaneous human papillomavirus type 8 causes invasion of human keratinocytes into the dermis in organotypic cultures of skin. Cancer Res. 2005;65(6):2216–23.

    PubMed  Google Scholar 

  167. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow–derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    CAS  PubMed  Google Scholar 

  169. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    CAS  PubMed  Google Scholar 

  170. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.

    CAS  PubMed  Google Scholar 

  171. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  172. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    CAS  PubMed  Google Scholar 

  173. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Schäfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9(8):628–38.

    PubMed  Google Scholar 

  175. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn J-I, Cheng P, et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207(11):2439–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Dolcetti L, Marigo I, Mantelli B, Peranzoni E, Zanovello P, Bronte V. Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett. 2008;267(2):216–25.

    CAS  PubMed  Google Scholar 

  177. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci. 2011;108(41):17111–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006;176(1):284–90.

    CAS  PubMed  Google Scholar 

  179. Teunissen MBM, Piskin G, Nuzzo S, Sylva-Steenland RMR, de Rie MA, Bos JD. Ultraviolet B radiation induces a transient appearance of IL-4+ neutrophils, which support the development of Th2 responses. J Immunol. 2002;168(8):3732–9.

    CAS  PubMed  Google Scholar 

  180. Yoshida Y, Kang K, Berger M, Chen G, Gilliam AC, Moser A, et al. Monocyte induction of IL-10 and down-regulation of IL-12 by iC3b deposited in ultraviolet-exposed human skin. J Immunol. 1998;161(11):5873–9.

    CAS  PubMed  Google Scholar 

  181. Kang K, Gilliam AC, Chen G, Tootell E, Cooper KD. In human skin, UVB initiates early induction of IL-10 over IL-12 preferentially in the expanding dermal monocytic/macrophagic population. J Invest Dermatol. 1998;111(1):31–8.

    CAS  PubMed  Google Scholar 

  182. Song H, Kim J, Lee HK, Park HJ, Nam J, Park GB, et al. Selenium inhibits migration of murine melanoma cells via down-modulation of IL-18 expression. Int Immunopharmacol. 2011;11(12):2208–13.

    CAS  PubMed  Google Scholar 

  183. Wang L, Yi T, Zhang W, Pardoll DM, Yu H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010;70(24):10112–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Lee C, Collichio F, Ollila D, Moschos S. Historical review of melanoma treatment and outcomes. Clin Dermatol. 2013;31(2):141–7.

    PubMed  Google Scholar 

  185. Vaishampayan U, Abrams J, Darrah D, Jones V, Mitchell MS. Active immunotherapy of metastatic melanoma with allogeneic melanoma lysates and interferon α. Clin Cancer Res. 2002;8(12):3696–701.

    CAS  PubMed  Google Scholar 

  186. Mukherji B. Immunology of melanoma. Clin Dermatol. 2013;31(2):156–65.

    PubMed  Google Scholar 

  187. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.

    CAS  PubMed  Google Scholar 

  188. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86(15):1159–66.

    CAS  PubMed  Google Scholar 

  189. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323(9):570–8.

    CAS  PubMed  Google Scholar 

  191. Mazumder A, Rosenberg SA. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J Exp Med. 1984;159(2):495–507.

    CAS  PubMed  Google Scholar 

  192. Smith FO, Downey SG, Klapper JA, Yang JC, Sherry RM, Royal RE, et al. Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin Cancer Res. 2008;14(17):5610–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Chan AD, Morton DL. Active immunotherapy with allogeneic tumor cell vaccines: present status. Semin Oncol. 1998;25(6):611–22.

    CAS  PubMed  Google Scholar 

  194. Sondak VK, Sabel MS, Mulé JJ. Allogeneic and autologous melanoma vaccines: where have we been and where are we going? Clin Cancer Res. 2006;12(7):2337s–41.

    CAS  PubMed  Google Scholar 

  195. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Gruijl T, den Eertwegh AM, Pinedo H, Scheper R. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother. 2008;57(10):1569–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Yannelli JR, Wroblewski JM. On the road to a tumor cell vaccine: 20 years of cellular immunotherapy. Vaccine. 2004;23(1):97–113.

    CAS  PubMed  Google Scholar 

  198. Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau H, Lind S. Active specific immunotherapy for melanoma: phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res. 1988;48(20):5883–93.

    CAS  PubMed  Google Scholar 

  199. Mitchell MS, Harel W, Kempf RA, Hu E, Kan-Mitchell J, Boswell WD, et al. Active-specific immunotherapy for melanoma. J Clin Oncol. 1990;8(5):856–69.

    CAS  PubMed  Google Scholar 

  200. Melanoma Study Group of the Mayo Clinic Cancer Center, Celis E. Overlapping human leukocyte antigen class I/II binding peptide vaccine for the treatment of patients with stage IV melanoma. Cancer. 2007;110(1):203–14.

    Google Scholar 

  201. Salgaller ML, Marincola FM, Cormier JN, Rosenberg SA. Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res. 1996;56(20):4749–57.

    CAS  PubMed  Google Scholar 

  202. Slingluff CL, Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, et al. Phase I trial of a melanoma vaccine with gp100280–288 peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 2001;7(10):3012–24.

    CAS  PubMed  Google Scholar 

  203. Rosenberg SA, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther. 2003;14(8):709–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  204. Triozzi PL, Aldrich W, Allen KO, Carlisle RR, LoBuglio AF, Conry RM. Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J Immunother. 2005;28(4):382–8.

    CAS  PubMed  Google Scholar 

  205. Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, et al. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother. 2008;31(2):215–23.

    CAS  PubMed  Google Scholar 

  206. Timmerman MDJM, Levy MDR. Dendritic cell vaccines for cancer immunotherapy. Ann Rev Med. 1999;50(1):507–29.

    CAS  PubMed  Google Scholar 

  207. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med. 1998;4(5):594–600.

    CAS  PubMed  Google Scholar 

  208. Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med. 2005;3(1):10.

    PubMed Central  PubMed  Google Scholar 

  209. Rodríguez-Villanueva J, McDonnell TJ. Induction of apoptotic cell death in non-melanoma skin cancer by interferon-α. Int J Cancer. 1995;61(1):110–4.

    PubMed  Google Scholar 

  210. Steitz J, Brück J, Lenz J, Knop J, Tüting T. Depletion of CD25+ CD4+ T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon α-induced, CD8+ T-cell-dependent immune defense of B16 melanoma. Cancer Res. 2001;61(24):8643–6.

    CAS  PubMed  Google Scholar 

  211. Eggermont AMM, Suciu S, MacKie R, Ruka W, Testori A, Kruit W, et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet. 2005;366(9492):1189–96.

    CAS  PubMed  Google Scholar 

  212. Garbe C, Radny P, Linse R, Dummer R, Gutzmer R, Ulrich J, et al. Adjuvant low-dose interferon α2a with or without dacarbazine compared with surgery alone: a prospective-randomized phase III DeCOG trial in melanoma patients with regional lymph node metastasis. Ann Oncol. 2008;19(6):1195–201.

    CAS  PubMed  Google Scholar 

  213. Creagan ET, Dalton RJ, Ahmann DL, Jung SH, Morton RF, Langdon RM, et al. Randomized, surgical adjuvant clinical trial of recombinant interferon alfa-2a in selected patients with malignant melanoma. J Clin Oncol. 1995;13(11):2776–83.

    CAS  PubMed  Google Scholar 

  214. Pehamberger H, Soyer HP, Steiner A, Kofler R, Binder M, Mischer P, et al. Adjuvant interferon alfa-2a treatment in resected primary stage II cutaneous melanoma. Austrian malignant Melanoma Cooperative Group. J Clin Oncol. 1998;16(4):1425–9.

    CAS  PubMed  Google Scholar 

  215. Hancock BW, Wheatley K, Harris S, Ives N, Harrison G, Horsman JM, et al. Adjuvant interferon in high-risk melanoma: the AIM HIGH study – United Kingdom coordinating committee on cancer research randomized study of adjuvant low-dose extended-duration interferon alfa-2a in high-risk resected malignant melanoma. J Clin Oncol. 2004;22(1):53–61.

    CAS  PubMed  Google Scholar 

  216. Cameron DA, Cornbleet MC, Mackie RM, Hunter JA, Gore M, Hancock B, et al. Adjuvant interferon alpha 2b in high risk melanoma – the Scottish study. Br J Cancer. 2001;84(9):1146–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Cascinelli N, Belli F, MacKie RM, Santinami M, Bufalino R, Morabito A. Effect of long-term adjuvant therapy with interferon alpha-2a in patients with regional node metastases from cutaneous melanoma: a randomised trial. Lancet. 2001;358(9285):866–9.

    CAS  PubMed  Google Scholar 

  218. Kleeberg UR, Suciu S, Brocker EB, Ruiter DJ, Chartier C, Lienard D, et al. Final results of the EORTC 18871/DKG 80-1 randomised phase III trial. rIFN-alpha2b versus rIFN-gamma versus ISCADOR M versus observation after surgery in melanoma patients with either high-risk primary (thickness >3 mm) or regional lymph node metastasis. Eur J Cancer. 2004;40(3):390–402.

    CAS  PubMed  Google Scholar 

  219. Grob JJ, Dreno B, de la Salmoniere P, Delaunay M, Cupissol D, Guillot B, et al. Randomised trial of interferon?-2a as adjuvant therapy in resected primary melanoma thicker than 1.5mm without clinically detectable node metastases. Lancet. 1998;351(9120):1905–10.

    CAS  PubMed  Google Scholar 

  220. Kirkwood JM, Ibrahim JG, Sondak VK, Richards J, Flaherty LE, Ernstoff MS, et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol. 2000;18(12):2444–58.

    CAS  PubMed  Google Scholar 

  221. Eggermont AMM, Suciu S, Santinami M, Testori A, Kruit WHJ, Marsden J, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 2008;372(9633):117–26.

    CAS  PubMed  Google Scholar 

  222. Kirkwood JM, Ibrahim J, Lawson DH, Atkins MB, Agarwala SS, Collins K, et al. High-dose interferon alfa-2b does not diminish antibody response to GM2 vaccination in patients with resected melanoma: results of the multicenter eastern cooperative oncology group phase II trial E2696. J Clin Oncol. 2001;19(5):1430–6.

    CAS  PubMed  Google Scholar 

  223. Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010;102(7):493–501.

    CAS  PubMed  Google Scholar 

  224. Wheatley K, Ives N, Hancock B, Gore M, Eggermont A, Suciu S. Does adjuvant interferon-α for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat Rev. 2003;29(4):241–52.

    CAS  PubMed  Google Scholar 

  225. Lens MB, Dawes M. Interferon alfa therapy for malignant melanoma: a systematic review of randomized controlled trials. J Clin Oncol. 2002;20(7):1818–25.

    CAS  PubMed  Google Scholar 

  226. Mackensen A, Herbst B, Chen J-L, Köhler G, Noppen C, Herr W, et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Int J Cancer. 2000;86(3):385–92.

    CAS  PubMed  Google Scholar 

  227. Paczesny S, Shi H, Saito H, Mannoni P, Fay J, Banchereau J, et al. Measuring melanoma-specific cytotoxic T lymphocytes elicited by dendritic cell vaccines with a tumor inhibition assay in vitro. J Immunother. 2005;28(2):148–57.

    PubMed  Google Scholar 

  228. Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H, et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol. 2000;165(6):3492–6.

    CAS  PubMed  Google Scholar 

  229. Kyte JA, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther. 2006;13(10):905–18.

    CAS  PubMed  Google Scholar 

  230. O’Rourke ME, Johnson M, Lanagan C, See J, Yang J, Bell J, et al. Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother. 2003;52(6):387–95.

    PubMed  Google Scholar 

  231. Fay J, Palucka AK, Paczesny S, Dhodapkar M, Johnston D, Burkeholder S, et al. Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34+ progenitor-derived dendritic cells. Cancer Immunol Immunother. 2006;55(10):1209–18.

    CAS  PubMed  Google Scholar 

  232. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61(17):6451–8.

    CAS  PubMed  Google Scholar 

  233. Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res. 2003;9(3):998–1008.

    CAS  PubMed  Google Scholar 

  234. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med. 1996;183(1):283–7.

    CAS  PubMed  Google Scholar 

  235. Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, et al. Vaccination with mage-3a1 peptide–pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999;190(11):1669–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  236. Berard F, Blanco P, Davoust J, Neidhart-Berard E-M, Nouri-Shirazi M, Taquet N, et al. Cross-priming of naive Cd8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med. 2000;192(11):1535–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  237. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17(4):563–70.

    CAS  PubMed  Google Scholar 

  238. Engell-Noerregaard L, Hansen T, Andersen M, Thor Straten P, Svane I. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother. 2009;58(1):1–14.

    CAS  PubMed  Google Scholar 

  239. Eggert AAO, Schreurs MWJ, Boerman OC, Oyen WJC, de Boer AJ, Punt CJA, et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res. 1999;59(14):3340–5.

    CAS  PubMed  Google Scholar 

  240. de Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407–13.

    PubMed  Google Scholar 

  241. de Vries IJM, Krooshoop DJEB, Scharenborg NM, Lesterhuis WJ, Diepstra JHS, van Muijen GNP, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 2003;63(1):12–7.

    PubMed  Google Scholar 

  242. Dranoff G. GM-CSF-secreting melanoma vaccines. Oncogene. 2003;22(20):3188–92.

    CAS  PubMed  Google Scholar 

  243. Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Ann Rev Immunol. 2000;18(1):245–73.

    CAS  Google Scholar 

  244. Aarntzen EHJG, Figdor CG, Adema GJ, Punt CJA, Vries IJM. Dendritic cell vaccination and immune monitoring. Cancer Immunol Immunother. 2008;57(10):1559–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Lesterhuis WJ, Aarntzen EHJG, De Vries IJM, Schuurhuis DH, Figdor CG, Adema GJ, et al. Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol. 2008;66(2):118–34.

    CAS  PubMed  Google Scholar 

  246. Yang JC. Melanoma vaccines. Cancer J. 2011;17(5):277–82.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saghazadeh, A., Saghazadeh, M., Rezaei, N. (2015). Immunology of Cutaneous Tumors and Immunotherapy for Melanoma. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46410-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46410-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46409-0

  • Online ISBN: 978-3-662-46410-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics