Skip to main content

Cell-Specific Aptamer Characterization

  • Chapter
  • First Online:
Aptamers Selected by Cell-SELEX for Theranostics
  • 1791 Accesses

Abstract

The functional diversity of cell-specific aptamers has enabled their use for a broad spectrum of biomedical applications. A thorough characterization of aptamers would provide better and deeper understanding and facilitate the development of customized aptamer-based diagnostics and therapeutics with enhanced performance. In this chapter, key properties of cell-specific aptamers and their characterization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li X-F, Le XC (2014) Aptamer binding assays for proteins: the thrombin example—a review. Anal Chim Acta 837:1–15

    Article  CAS  Google Scholar 

  2. Deng Q, German I, Buchanan D, Kennedy RT (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal Chem 73(22):5415–5421

    Article  CAS  Google Scholar 

  3. Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions. J Chromatogr B: Biomed Sci Appl 699(1–2):499–525

    Article  CAS  Google Scholar 

  4. Hagestam IH, Pinkerton TC (1985) Internal surface reversed-phase silica supports for liquid chromatography. Anal Chem 57(8):1757–1763

    Article  CAS  Google Scholar 

  5. Drabovich AP, Berezovski M, Okhonin V, Krylov SN (2006) Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal Chem 78(9):3171–3178

    Article  CAS  Google Scholar 

  6. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56(22):10456–10461

    Article  CAS  Google Scholar 

  7. Hall B, Arshad S, Seo K, Bowman C, Corley M, Jhaveri SD, Ellington AD (2001) In vitro selection of RNA aptamers to a protein target by filter immobilization. In: Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  8. Ryan PC, Lu M, Draper DE (1991) Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 221(4):1257–1268

    Article  CAS  Google Scholar 

  9. Carey J, Cameron V, De Haseth PL, Uhlenbeck OC (1983) Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22(11):2601–2610

    Article  CAS  Google Scholar 

  10. Hall K, Kranz J (1999) Nitrocellulose filter binding for determination of dissociation constants. In: Haynes S (ed) RNA-protein interaction protocols, vol 118. Humana Press, New York, pp 105–114

    Google Scholar 

  11. Oehler S, Alex R, Barker A (1999) Is nitrocellulose filter binding really a universal assay for protein–DNA interactions? Anal Biochem 268(2):330–336

    Article  CAS  Google Scholar 

  12. Jaouen S, de Koning L, Gaillard C, Muselíková-Polanská E, Štros M, Strauss F (2005) Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops. J Mol Biol 353(4):822–837

    Article  CAS  Google Scholar 

  13. Tahiri-Alaoui A, Frigotto L, Manville N, Ibrahim J, Romby P, James W (2002) High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res 30(10):e45

    Article  Google Scholar 

  14. Flinders J, DeFina SC, Brackett DM, Baugh C, Wilson C, Dieckmann T (2004) Recognition of planar and nonplanar ligands in the malachite green–RNA aptamer complex. ChemBioChem 5(1):62–72

    Article  CAS  Google Scholar 

  15. Nag A, Bhattacharyya K (1989) Fluorescence enhancement of p-toluidino naphthalenesulphonate in a micellar environment. J Photochem Photobiol A: Chem 47(1):97–102

    Article  CAS  Google Scholar 

  16. Nakayama K, Endo M, Fujitsuka M, Majima T (2006) Detection of the local structural changes in the dimer interface of BamHI initiated by DNA binding and dissociation using a solvatochromic fluorophore. J Phys Chem B 110(42):21311–21318

    Article  CAS  Google Scholar 

  17. Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8(5):547–553

    Article  CAS  Google Scholar 

  18. Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855

    Article  CAS  Google Scholar 

  19. Guédin A, Lacroix L, Mergny J-L (2010) Thermal melting studies of ligand DNA interactions. In: Fox KR (ed) Drug-DNA interaction protocols, vol 613. Humana Press, New York, pp 25–35

    Google Scholar 

  20. Lin P-H, Chen R-H, Lee C-H, Chang Y, Chen C-S, Chen W-Y (2011) Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry. Colloids Surf B: Biointerfaces 88(2):552–558

    Article  CAS  Google Scholar 

  21. Jing M, Bowser MT (2011) Methods for measuring aptamer-protein equilibria: a review. Anal Chim Acta 686(1–2):9–18

    Article  CAS  Google Scholar 

  22. Wang J, Lv R, Xu J, Xu D, Chen H (2008) Characterizing the interaction between aptamers and human IgE by use of surface plasmon resonance. Anal Bioanal Chem 390(4):1059–1065

    Article  CAS  Google Scholar 

  23. Fägerstam LG, Frostell-Karlsson Å, Karlsson R, Persson B, Rönnberg I (1992) Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr A 597(1–2):397–410

    Article  Google Scholar 

  24. Win MN, Klein JS, Smolke CD (2006) Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res 34(19):5670–5682

    Article  CAS  Google Scholar 

  25. Sultan Y, Walsh R, Monreal C, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromolecules 10(5):1149–1154

    Article  CAS  Google Scholar 

  26. Potty ASR, Kourentzi K, Fang H, Jackson GW, Zhang X, Legge GB, Willson RC (2009) Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91(2):145–156

    Article  CAS  Google Scholar 

  27. Yoshida W, Sode K, Ikebukuro K (2006) Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers. Biochem Biophys Res Commun 348(1):245–252

    Article  CAS  Google Scholar 

  28. Regulski E, Breaker R (2008) In-line probing analysis of riboswitches. In: Wilusz J (ed) post-transcriptional gene regulation, vol 419. Humana Press, New York, pp 53–67

    Google Scholar 

  29. Oh SS, Plakos K, Lou X, Xiao Y, Soh HT (2010) In vitro selection of structure-switching, self-reporting aptamers. Proc Nat Acad Sci 107(32):14053–14058

    Article  CAS  Google Scholar 

  30. Davis KA, Abrams B, Lin Y, Jayasena SD (1996) Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res 24(4):702–706

    Article  CAS  Google Scholar 

  31. Davis KA, Abrams B, Lin Y, Jayasena SD (1998) Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 26(17):3915–3924

    Article  CAS  Google Scholar 

  32. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci 103(32):11838–11843

    Article  CAS  Google Scholar 

  33. Chen Y, Munteanu AC, Huang Y-F, Phillips J, Zhu Z, Mavros M, Tan W (2009) Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chem Eur J 15(21):5327–5336

    Article  CAS  Google Scholar 

  34. Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56(1):555–583

    Article  CAS  Google Scholar 

  35. Takayama S, Shimosato H, Shiba H, Funato M, Che F-S, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls brassica self-incompatibility. Nature 413(6855):534–538

    Article  CAS  Google Scholar 

  36. Osborne SE, Ellington AD (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 97(2):349–370

    Article  CAS  Google Scholar 

  37. Colabufo NA, Berardi F, Calò R, Leopoldo M, Perrone R, Tortorella V (2001) Determination of dopamine D4 receptor density in rat striatum using PB12 as a probe. Eur J Pharmacol 427(1):1–5

    Article  CAS  Google Scholar 

  38. Huang Y-F, Chang H-T, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572

    Article  CAS  Google Scholar 

  39. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34(3):383–408

    Article  CAS  Google Scholar 

  40. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Meth 4(11):963–973

    Article  CAS  Google Scholar 

  41. Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12(35):10

    Google Scholar 

  42. Zheng J (2006) Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. In: Stockand JD, Shapiro MS (eds) Ion channels: methods and protocols, vol 337. Humana Press, New York

    Google Scholar 

  43. Blanchard SC, Kim HD, Gonzalez RL, Puglisi JD, Chu S (2004) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101(35):12893–12898

    Article  CAS  Google Scholar 

  44. Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single-molecule study of rna catalysis and folding. Science 288(5473):2048–2051

    Article  CAS  Google Scholar 

  45. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297

    Article  CAS  Google Scholar 

  46. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706(1):8–24

    Article  CAS  Google Scholar 

  47. Liu GL, Yin Y, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FF (2006) A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat Nano 1(1):47–52

    Article  CAS  Google Scholar 

  48. Persson BNJ, Lang ND (1982) Electron-hole-pair quenching of excited states near a metal. Phys Rev B 26(10):5409–5415

    Article  CAS  Google Scholar 

  49. Chen Y, O’Donoghue MB, Huang Y-F, Kang H, Phillips JA, Chen X, Estevez MC, Yang CJ, Tan W (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132(46):16559–16570

    Article  CAS  Google Scholar 

  50. Stark RW (2007) Atomic force microscopy: getting a feeling for the nanoworld. Nat Nano 2(8):461–462

    Article  CAS  Google Scholar 

  51. Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nano 4(5):307–310

    Article  CAS  Google Scholar 

  52. O’Donoghue M, Shi X, Fang X, Tan W (2012) Single-molecule atomic force microscopy on live cells compares aptamer and antibody rupture forces. Anal Bioanal Chem 402(10):3205–3209

    Article  Google Scholar 

  53. Munz M, Murr A, Kvesic M, Rau D, Mangold S, Pflanz S, Lumsden J, Volkland J, Fagerberg J, Riethmuller G, Ruttinger D, Kufer P, Baeuerle P, Raum T (2010) Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int 10(1):44

    Article  Google Scholar 

  54. Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang CJ (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85(8):4141–4149

    Article  CAS  Google Scholar 

  55. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, Marks JD, Adams GP (2011) Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259

    Article  CAS  Google Scholar 

  56. Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X, Yang X-D (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10(1):148

    Article  CAS  Google Scholar 

  57. Kalai M, Montero-Julian FA, Grötzinger J, Fontaine V, Vandenbussche P, Deschuyteneer R, Wollmer A, Brailly H, Content J (1997) Analysis of the human interleukin-6/human interleukin-6 receptor binding interface at the amino acid level: proposed mechanism of interaction. Blood 89:1319–1333

    Google Scholar 

  58. Meyer C, Eydeler K, Magbanua E, Zivkovic T, Piganeau N, Lorenzen I, Grötzinger J, Mayer G, Rose-John S, Hahn U (2012) Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol 9(1):67–80

    Article  CAS  Google Scholar 

  59. Eble JA, Wucherpfennig KW, Gauthier L, Dersch P, Krukonis E, Isberg RR, Hemler ME (1998) Recombinant soluble human α3β1 integrin: purification, processing, regulation, and specific binding to laminin-5 and invasin in a mutually exclusive manner. Biochemistry 37(31):10945–10955

    Article  CAS  Google Scholar 

  60. Mi J, Zhang X, Giangrande PH, McNamara Ii JO, Nimjee SM, Sarraf-Yazdi S, Sullenger BA, Clary BM (2005) Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun 338(2):956–963

    Article  CAS  Google Scholar 

  61. Lavrsen K, Madsen C, Rasch M, Woetmann A, Ødum N, Mandel U, Clausen H, Pedersen A, Wandall H (2013) Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 30(3):227–236

    Article  CAS  Google Scholar 

  62. Ferreira CSM, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol 27(6):289–301

    Article  CAS  Google Scholar 

  63. Fretto LJ, Snape AJ, Tomlinson JE, Seroogy JJ, Wolf DL, LaRochelle WJ, Giese NA (1993) Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to alpha and beta PDGF receptor. J Biol Chem 268(5):3625–3631

    CAS  Google Scholar 

  64. Green LS, Jellinek D, Jenison R, Östman A, Heldin C-H, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424

    Article  CAS  Google Scholar 

  65. Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, Bander NH (2000) In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res 60(18):5237–5243

    CAS  Google Scholar 

  66. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62(14):4029–4033

    CAS  Google Scholar 

  67. Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter C, Al-Quran S, Li Y (2014) Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 7(1):5

    Article  CAS  Google Scholar 

  68. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci 93(20):10657–10661

    Article  CAS  Google Scholar 

  69. Cerchia L, Ducongé F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3(4):e123

    Article  Google Scholar 

  70. Witte L, Hicklin D, Zhu Z, Pytowski B, Kotanides H, Rockwell P, Böhlen P (1998) Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 17(2):155–161

    Article  CAS  Google Scholar 

  71. Green LS, Jellinek D, Bell C, Beebe LA, Feistner BD, Gill SC, Jucker FM, Janjić N (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2(10):683–695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, T., Wu, C., Tan, W. (2015). Cell-Specific Aptamer Characterization. In: Tan, W., Fang, X. (eds) Aptamers Selected by Cell-SELEX for Theranostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46226-3_4

Download citation

Publish with us

Policies and ethics