Skip to main content

Prostatic Tumors

  • Chapter
  • First Online:
Oncologic Imaging: Urology

Abstract

Prostate cancer is the second most frequently diagnosed cancer worldwide and the sixth leading cause of cancer death in men, accounting for 14 % of total new cancer cases and 6 % of total cancer deaths [1]. In Europe and America, prostate cancer is the most common neoplasm occupying about two or three times more than lung and colorectal cancer [2, 3]. The cancer shows highest prevalence in men occupying 417,000 cases and 22.8 % of all incidental cases in Europe [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Heidenreich A, Bellmunt J, Bolla M, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59(1):61–71.

    Article  PubMed  Google Scholar 

  3. Watanabe H, Igari D, Tanahasi Y, et al. Development and application of new equipment for transrectal ultrasonography. J Clin Ultrasound. 1974;2(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  PubMed  Google Scholar 

  5. National Cancer Institute. Available at: http://www.cancer.gov/cancertopics/types/prostate. Accessed 23 Jan 2015.

  6. Bjurlin MA, Meng X, Le NJ, et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J Urol. 2014;192(3):648–58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. National Institute for Health and Care Excellence (NICE). NICE CG58 prostate cancer: full guidance. London: NICE; 2008. URL: http://guidance.nice.org.uk/CG58/Guidance/pdf/English. Accessed June 2012.

  8. Franks LM. Latent carcinoma of the prostate. J Pathol Bacteriol. 1954;68(2):603–16.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon DK, Kim WJ, Kim CS, et al. The incidence of Urogenital tumor during recent five years in Korea. Korean J Urol. 2003;44:203.

    Google Scholar 

  10. Thompson I, Thrasher JB, Aus G, et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. 2007;177(6):2106–31.

    Article  PubMed  Google Scholar 

  11. Ferlay J, Shin H, Bray F. Globocan 2008. Prostate cancer incidence, mortality and prevalence worldwide in 2008. 2008. Available at: http://globocan.iarc.fr. Accessed 18 Aug 2012.

  12. Smith DS, Catalona WJ. Interexaminer variability of digital rectal examination in detecting prostate cancer. Urology. 1995;45(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  13. Mowatt G, Scotland G, Boachie C, et al. The diagnostic accuracy and cost-effectiveness of magnetic resonance spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate abnormalities for biopsy: a systematic review and economic evaluation. Health Technol Assess. 2013;17(20):1–281.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jung AJ, Westphalen AC. Imaging prostate cancer. Radiol Clin North Am. 2012;50(6):1043–59.

    Article  PubMed  Google Scholar 

  15. Coakley FV, Hricak H. Radiologic anatomy of the prostate gland: a clinical approach. Radiol Clin North Am. 2000;38(1):15–30.

    Article  CAS  PubMed  Google Scholar 

  16. Rifkin MD, Dahnert W, Kurtz AB. State of the art: endorectal sonography of the prostate gland. AJR Am J Roentgenol. 1990;154(4):691–700.

    Article  CAS  PubMed  Google Scholar 

  17. Dahnert WF, Hamper UM, Eggleston JC, et al. Prostatic evaluation by transrectal sonography with histopathologic correlation: the echopenic appearance of early carcinoma. Radiology. 1986;158(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  18. Vo T, Rifkin MD, Peters TL. Should ultrasound criteria of the prostate be redefined to better evaluate when and where to biopsy. Ultrasound Q. 2001;17(3):171–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ismail M, Gomella LG. Ultrasound for prostate imaging and biopsy. Curr Opin Urol. 2001;11(5):471–7.

    Article  CAS  PubMed  Google Scholar 

  20. Onur R, Littrup PJ, Pontes JE, et al. Contemporary impact of transrectal ultrasound lesions for prostate cancer detection. J Urol. 2004;172(2):512–4.

    Article  PubMed  Google Scholar 

  21. Eichler K, Hempel S, Wilby J, et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol. 2006;175(5):1605–12.

    Article  PubMed  Google Scholar 

  22. Lee HY, Lee HJ, Byun SS, et al. Classification of focal prostatic lesions on transrectal ultrasound (TRUS) and the accuracy of TRUS to diagnose prostate cancer. Korean J Radiol. 2009;10(3):244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Smeenge M, de la Rosette JJ, Wijkstra H. Current status of transrectal ultrasound techniques in prostate cancer. Curr Opin Urol. 2012;22(4):297–302.

    Article  PubMed  Google Scholar 

  24. Kapoor A, Kapoor A, Mahajan G, et al. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol. 2011;37(9):1374–81.

    Article  PubMed  Google Scholar 

  25. Ginat DT, Destounis SV, Barr RG, et al. US elastography of breast and prostate lesions. Radiographics. 2009;29(7):2007–16.

    Article  PubMed  Google Scholar 

  26. Zhang M, Nigwekar P, Castaneda B, et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34(7):1033–42.

    Article  PubMed  Google Scholar 

  27. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28(1):13–20.

    Article  PubMed  Google Scholar 

  28. Aboumarzouk OM, Ogston S, Huang Z, et al. Diagnostic accuracy of transrectal elastosonography (TRES) imaging for the diagnosis of prostate cancer: a systematic review and meta-analysis. BJU Int. 2012;110(10):1414–23; discussion 1423.

    Article  PubMed  Google Scholar 

  29. Hong CW, Amalou H, Xu S, et al. Prostate biopsy for the interventional radiologist. J Vasc Interv Radiol. 2014;25(5):675–84.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kurhanewicz J, Swanson MG, Nelson SJ, et al. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging. 2002;16(4):451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ismail MT, Gomella LG. Transrectal prostate biopsy. Urol Clin North Am. 2013;40(4):457–72.

    Article  PubMed  Google Scholar 

  32. Pallwein L, Mitterberger M, Struve P, et al. Comparison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection. Eur Radiol. 2007;17(9):2278–85.

    Article  PubMed  Google Scholar 

  33. Brock M, von Bodman C, Palisaar RJ, et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol. 2012;187(6):2039–43.

    Article  PubMed  Google Scholar 

  34. Aigner F, Pallwein L, Schocke M, et al. Comparison of real-time sonoelastography with T2-weighted endorectal magnetic resonance imaging for prostate cancer detection. J Ultrasound Med. 2011;30(5):643–9.

    PubMed  Google Scholar 

  35. Zhang Y, Tang J, Li YM, et al. Differentiation of prostate cancer from benign lesions using strain index of transrectal real-time tissue elastography. Eur J Radiol. 2012;81(5):857–62.

    Article  PubMed  Google Scholar 

  36. Ahmad S, Cao R, Varghese T, et al. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc. 2013;27(9):3280–7.

    Article  PubMed  Google Scholar 

  37. Woo S, Kim S, Cho J, et al. Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol. 2014;15(3):346–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trabulsi EJ, Sackett D, Gomella LG, et al. Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology. 2010;76(5):1025–33.

    Article  PubMed  Google Scholar 

  39. Burns PN, Wilson SR. Microbubble contrast for radiological imaging: 1. Principles. Ultrasound Q. 2006;22(1):5–13.

    PubMed  Google Scholar 

  40. Lee HJ, Han JG. A study of parameters in spiral CT volumetry using balloon phantoms. J Korean Radiol Soc. 2001;45(2):221–8.

    Article  Google Scholar 

  41. Choi JI, Kim SH, Seong CK, et al. Recurrent uterine cervical carcinoma: spectrum of imaging findings. Korean J Radiol. 2000;1(4):198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brawer MK, Deering RE, Brown M, et al. Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer. 1994;73(3):678–87.

    Article  CAS  PubMed  Google Scholar 

  43. Ismail M, Petersen RO, Alexander AA, et al. Color Doppler imaging in predicting the biologic behavior of prostate cancer: correlation with disease-free survival. Urology. 1997;50(6):906–12.

    Article  CAS  PubMed  Google Scholar 

  44. Furlow B. Contrast-enhanced ultrasound. Radiol Technol. 2009;80(6):547s–61.

    PubMed  Google Scholar 

  45. Weidner N, Carroll PR, Flax J, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee HJ, Hwang SI, Chung JH, et al. Evaluation of tumor angiogenesis in a mouse PC-3 prostate cancer model using dynamic contrast-enhanced sonography. J Ultrasound Med. 2012;31(8):1223–31.

    PubMed  Google Scholar 

  47. Sedelaar JP, van Leenders GJ, Hulsbergen-van de Kaa CA, et al. Microvessel density: correlation between contrast ultrasonography and histology of prostate cancer. Eur Urol. 2001;40(3):285–93.

    Article  CAS  PubMed  Google Scholar 

  48. Mitterberger M, Pinggera G, Horninger W, et al. Comparison of contrast enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on Gleason score. J Urol. 2007;178:464–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang J, Chen Y, Zhu Y, et al. Contrast-enhanced ultrasonography for the detection and characterization of prostate cancer: correlation with microvessel density and Gleason score. Clin Radiol. 2011;66:732–7.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Tang J, Fei X, et al. Diagnostic performance of contrast enhanced ultrasound in patients with prostate cancer: a meta-analysis. Acad Radiol. 2013;20(2):156–64.

    Article  PubMed  Google Scholar 

  51. Smeenge M, Mischi M, Laguna Pes MP, et al. Novel contrast-enhanced ultrasound imaging in prostate cancer. World J Urol. 2011;29(5):581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fischer T, Thomas A, Tardy I, et al. Vascular endothelial growth factor receptor 2-specific microbubbles for molecular ultrasound detection of prostate cancer in a rat model. Invest Radiol. 2010;45(10):675–84.

    Article  CAS  PubMed  Google Scholar 

  53. Perner S, Hofer MD, Kim R, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38(5):696–701.

    Article  CAS  PubMed  Google Scholar 

  54. Wang L, Li L, Guo Y, et al. Construction and in vitro/in vivo targeting of PSMA-targeted nanoscale microbubbles in prostate cancer. Prostate. 2013;73(11):1147–58.

    Article  CAS  PubMed  Google Scholar 

  55. Stroumbakis N, Cookson MS, Reuter VE, et al. Clinical significance of repeat sextant biopsies in prostate cancer patients. Urology. 1997;49(3A Suppl):113–8.

    Article  CAS  PubMed  Google Scholar 

  56. Halpern EJ, Strup SE. Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol. 2000;174(3):623–7.

    Article  CAS  PubMed  Google Scholar 

  57. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22(4):746–57.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hricak H, Choyke PL, Eberhardt SC, et al. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243(1):28–53.

    Article  PubMed  Google Scholar 

  59. Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011;59(4):477–94.

    Article  PubMed  Google Scholar 

  60. Westphalen AC, Reed GD, Vinh PP, et al. Multiparametric 3T endorectal mri after external beam radiation therapy for prostate cancer. J Magn Reson Imaging. 2012;36(2):430–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sonn GA, Natarajan S, Margolis DJ, et al. Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device. J Urol. 2013;189(1):86–91.

    Article  PubMed  Google Scholar 

  62. Labanaris AP, Engelhard K, Zugor V, et al. Prostate cancer detection using an extended prostate biopsy schema in combination with additional targeted cores from suspicious images in conventional and functional endorectal magnetic resonance imaging of the prostate. Prostate Cancer Prostatic Dis. 2010;13(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  63. Kasivisvanathan V, Dufour R, Moore CM, et al. Transperineal magnetic resonance image targeted prostate biopsy versus transperineal template prostate biopsy in the detection of clinically significant prostate cancer. J Urol. 2013;189(3):860–6.

    Article  PubMed  Google Scholar 

  64. Stephenson SK, Chang EK, Marks LS. Screening and detection advances in magnetic resonance image-guided prostate biopsy. Urol Clin North Am. 2014;41(2):315–26.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sonn GA, Chang E, Natarajan S, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol. 2014;65(4):809–15.

    Article  PubMed  Google Scholar 

  66. Ukimura O, Desai MM, Palmer S, et al. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J Urol. 2012;187(3):1080–6.

    Article  PubMed  Google Scholar 

  67. Rabbani F, Stroumbakis N, Kava BR, et al. Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol. 1998;159(4):1247–50.

    Article  CAS  PubMed  Google Scholar 

  68. Kvale R, Moller B, Wahlqvist R, et al. Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int. 2009;103(12):1647–54.

    Article  PubMed  Google Scholar 

  69. Park EA, Lee HJ, Kim KG, et al. Prediction of pathological stages before prostatectomy in prostate cancer patients: analysis of 12 systematic prostate needle biopsy specimens. Int J Urol. 2007;14(8):704–8.

    Article  PubMed  Google Scholar 

  70. D’Amico AV, Tempany CM, Cormack R, et al. Transperineal magnetic resonance image guided prostate biopsy. J Urol. 2000;164(2):385–7.

    Article  PubMed  Google Scholar 

  71. Epstein JI, Walsh PC, Carmichael M, et al. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271(5):368–74.

    Article  CAS  PubMed  Google Scholar 

  72. Punglia RS, D’Amico AV, Catalona WJ, et al. Effect of verification bias on screening for prostate cancer by measurement of prostate-specific antigen. N Engl J Med. 2003;349(4):335–42.

    Article  PubMed  Google Scholar 

  73. NCCN guidelines: prostate cancer early detection (v.2.2012). Comprehensive Cancer Network Website. Available at: http://www.nccn.org. Accessed 28 Apr 2013.

  74. Bertaccini A, Fandella A, Prayer-Galetti T, et al. Systematic development of clinical practice guidelines for prostate biopsies: a 3-year Italian project. Anticancer Res. 2007;27(1b):659–66.

    PubMed  Google Scholar 

  75. Presti Jr JC, Chang JJ, Bhargava V, et al. The optimal systematic prostate biopsy scheme should include 8 rather than 6 biopsies: results of a prospective clinical trial. J Urol. 2000;163(1):163–6; discussion 166–167.

    Article  PubMed  Google Scholar 

  76. Ozden E, Yaman O, Gogus C, et al. The optimum doses of and injection locations for periprostatic nerve blockade for transrectal ultrasound guided biopsy of the prostate: a prospective, randomized, placebo controlled study. J Urol. 2003;170(6 Pt 1):2319–22.

    Article  PubMed  Google Scholar 

  77. Seymour H, Perry MJ, Lee-Elliot C, et al. Pain after transrectal ultrasonography-guided prostate biopsy: the advantages of periprostatic local anaesthesia. BJU Int. 2001;88(6):540–4.

    Article  CAS  PubMed  Google Scholar 

  78. Schostak M, Christoph F, Muller M, et al. Optimizing local anesthesia during 10-core biopsy of the prostate. Urology. 2002;60(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  79. Alavi AS, Soloway MS, Vaidya A, et al. Local anesthesia for ultrasound guided prostate biopsy: a prospective randomized trial comparing 2 methods. J Urol. 2001;166(4):1343–5.

    Article  CAS  PubMed  Google Scholar 

  80. Addla SK, Adeyoju AA, Wemyss-Holden GD, et al. Local anaesthetic for transrectal ultrasound-guided prostate biopsy: a prospective, randomized, double blind, placebo-controlled study. Eur Urol. 2003;43(5):441–3.

    Article  CAS  PubMed  Google Scholar 

  81. Cormio L, Lorusso F, Selvaggio O, et al. Noninfiltrative anesthesia for transrectal prostate biopsy: a randomized prospective study comparing lidocaine-prilocaine cream and lidocaine-ketorolac gel. Urol Oncol. 2013;31(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  82. Leibovici D, Zisman A, Siegel YI, et al. Local anesthesia for prostate biopsy by periprostatic lidocaine injection: a double-blind placebo controlled study. J Urol. 2002;167(2 Pt 1):563–5.

    PubMed  Google Scholar 

  83. Ismail T, Janane A, Dakkak Y. The contribution of periapical nerve block in transrectal ultrasoundguided prostate biopsy: results from a prospective randomized trial. Afr J Urol. 2012;18:78–81.

    Article  Google Scholar 

  84. Lee HY, Lee HJ, Byun SS, et al. Effect of intraprostatic local anesthesia during transrectal ultrasound guided prostate biopsy: comparison of 3 methods in a randomized, double-blind, placebo controlled trial. J Urol. 2007;178(2):469–72; discussion 472.

    Article  CAS  PubMed  Google Scholar 

  85. Chun FK, Epstein JI, Ficarra V, et al. Optimizing performance and interpretation of prostate biopsy: a critical analysis of the literature. Eur Urol. 2010;58(6):851–64.

    Article  PubMed  Google Scholar 

  86. Delongchamps NB, de la Roza G, Jones R, et al. Saturation biopsies on autopsied prostates for detecting and characterizing prostate cancer. BJU Int. 2009;103(1):49–54.

    Article  PubMed  Google Scholar 

  87. Jones JS. Prostate cancer: are we over-diagnosing-or under-thinking? Eur Urol. 2008;53(1):10–2.

    Article  PubMed  Google Scholar 

  88. Campos-Fernandes JL, Bastien L, Nicolaiew N, et al. Prostate cancer detection rate in patients with repeated extended 21-sample needle biopsy. Eur Urol. 2009;55(3):600–6.

    Article  PubMed  Google Scholar 

  89. Zaytoun OM, Moussa AS, Gao T, et al. Office based transrectal saturation biopsy improves prostate cancer detection compared to extended biopsy in the repeat biopsy population. J Urol. 2011;186(3):850–4.

    Article  PubMed  Google Scholar 

  90. Desmond PM, Clark J, Thompson IM, et al. Morbidity with contemporary prostate biopsy. J Urol. 1993;150(5 Pt 1):1425–6.

    CAS  PubMed  Google Scholar 

  91. Ajzen SA, Goldenberg SL, Allen GJ, et al. Palpable prostatic nodules: comparison of US and digital guidance for fine-needle aspiration biopsy. Radiology. 1989;171(2):521–3.

    Article  CAS  PubMed  Google Scholar 

  92. Berger AP, Gozzi C, Steiner H, et al. Complication rate of transrectal ultrasound guided prostate biopsy: a comparison among 3 protocols with 6, 10 and 15 cores. J Urol. 2004;171(4):1478–80; discussion 1480–1471.

    Article  PubMed  Google Scholar 

  93. Hegde JV, Mulkern RV, Panych LP, et al. Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging. 2013;37(5):1035–54.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hricak H, Dooms GC, McNeal JE, et al. MR imaging of the prostate gland: normal anatomy. AJR Am J Roentgenol. 1987;148(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  95. Durmus T, Baur A, Hamm B. Multiparametric magnetic resonance imaging in the detection of prostate cancer. Rofo. 2014;186(3):238–46.

    Article  CAS  PubMed  Google Scholar 

  96. Nakashima J, Tanimoto A, Imai Y, et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology. 2004;64(1):101–5.

    Article  PubMed  Google Scholar 

  97. Beyersdorff D, Taupitz M, Winkelmann B, et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology. 2002;224(3):701–6.

    Article  PubMed  Google Scholar 

  98. Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010;255(2):485–94.

    Article  PubMed  Google Scholar 

  99. Bourne R, Kurniawan N, Cowin G, et al. 16 T diffusion microimaging of fixed prostate tissue: preliminary findings. Magn Reson Med. 2011;66(1):244–7.

    Article  PubMed  Google Scholar 

  100. Neto JA, Parente DB. Multiparametric magnetic resonance imaging of the prostate. Magn Reson Imaging Clin N Am. 2013;21(2):409–26.

    Article  PubMed  Google Scholar 

  101. Cruz M, Tsuda K, Narumi Y, et al. Characterization of low-intensity lesions in the peripheral zone of prostate on pre-biopsy endorectal coil MR imaging. Eur Radiol. 2002;12(2):357–65.

    Article  CAS  PubMed  Google Scholar 

  102. Ikonen S, Kivisaari L, Tervahartiala P, et al. Prostatic MR imaging. Accuracy in differentiating cancer from other prostatic disorders. Acta radiologica (Stockholm, Sweden: 1987). 2001;42(4):348–54.

    CAS  Google Scholar 

  103. Shukla-Dave A, Hricak H, Eberhardt SC, et al. Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings – initial observations. Radiology. 2004;231(3):717–24.

    Article  PubMed  Google Scholar 

  104. Tamada T, Sone T, Toshimitsu S, et al. Age-related and zonal anatomical changes of apparent diffusion coefficient values in normal human prostatic tissues. J Magn Reson Imaging. 2008;27(3):552–6.

    Article  PubMed  Google Scholar 

  105. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239(3):784–92.

    Article  PubMed  Google Scholar 

  106. Purysko AS, Herts BR. Prostate MRI: the hemorrhage exclusion sign. J Urol. 2012;188(5):1946–7.

    Article  PubMed  Google Scholar 

  107. Turkbey B, Aras O, Karabulut N, et al. Diffusion-weighted MRI for detecting and monitoring cancer: a review of current applications in body imaging. Diagn Interv Radiol. 2012;18(1):46–59.

    PubMed  Google Scholar 

  108. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.

    Article  PubMed  Google Scholar 

  109. Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging. 2002;16(2):196–200.

    Article  PubMed  Google Scholar 

  110. Rosenkrantz AB, Kong X, Niver BE, et al. Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map. AJR Am J Roentgenol. 2011;196(1):123–9.

    Article  PubMed  Google Scholar 

  111. Yagci AB, Ozari N, Aybek Z, et al. The value of diffusion-weighted MRI for prostate cancer detection and localization. Diagn Interv Radiol. 2011;17(2):130–4.

    PubMed  Google Scholar 

  112. Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189(2):323–8.

    Article  PubMed  Google Scholar 

  113. Kim CK, Park BK, Lee HM, et al. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol. 2007;42(12):842–7.

    Article  PubMed  Google Scholar 

  114. Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol. 2010;194(1):W33–7.

    Article  PubMed  Google Scholar 

  115. Metens T, Miranda D, Absil J, et al. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol. 2012;22(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  116. Kim JH, Kim JK, Park BW, et al. Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region. J Magn Reson Imaging. 2008;28(5):1173–9.

    Article  PubMed  Google Scholar 

  117. Hambrock T, Somford DM, Huisman HJ, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259(2):453–61.

    Article  PubMed  Google Scholar 

  118. Vargas HA, Akin O, Franiel T, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology. 2011;259(3):775–84.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Oto A, Yang C, Kayhan A, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol. 2011;197(6):1382–90.

    Article  PubMed  Google Scholar 

  120. Turkbey B, Shah VP, Pang Y, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258(2):488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Turkbey B, Bernardo M, Merino MJ, et al. MRI of localized prostate cancer: coming of age in the PSA era. Diagn Interv Radiol. 2012;18(1):34–45.

    PubMed  Google Scholar 

  122. Durmus T, Vollnberg B, Schwenke C, et al. Dynamic contrast enhanced MRI of the prostate: comparison of gadobutrol and Gd-DTPA. Rofo. 2013;185(9):862–8.

    Article  CAS  PubMed  Google Scholar 

  123. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.

    Article  CAS  PubMed  Google Scholar 

  124. Franiel T, Hamm B, Hricak H. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol. 2011;21(3):616–26.

    Article  PubMed  Google Scholar 

  125. Futterer JJ, Heijmink SW, Scheenen TW, et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology. 2006;241(2):449–58.

    Article  PubMed  Google Scholar 

  126. Hara N, Okuizumi M, Koike H, et al. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate. 2005;62(2):140–7.

    Article  PubMed  Google Scholar 

  127. Cirillo S, Petracchini M, Scotti L, et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol. 2009;19(3):761–9.

    Article  PubMed  Google Scholar 

  128. Haider MA, Chung P, Sweet J, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(2):425–30.

    Article  PubMed  Google Scholar 

  129. Ocak I, Bernardo M, Metzger G, et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol. 2007;189(4):849.

    Article  PubMed  Google Scholar 

  130. Kozlowski P, Chang SD, Jones EC, et al. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis – correlation with biopsy and histopathology. J Magn Reson Imaging. 2006;24(1):108–13.

    Article  PubMed  Google Scholar 

  131. Delongchamps NB, Rouanne M, Flam T, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011;107(9):1411–8.

    Article  PubMed  Google Scholar 

  132. Bloch BN, Furman-Haran E, Helbich TH, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging – initial results. Radiology. 2007;245(1):176–85.

    Article  PubMed  Google Scholar 

  133. Kurhanewicz J, Vigneron DB. Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin N Am. 2008;16(4):697–710, ix–x.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Scheenen TW, Futterer J, Weiland E, et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol. 2011;46(1):25–33.

    Article  PubMed  Google Scholar 

  135. Hoeks CM, Barentsz JO, Hambrock T, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261(1):46–66.

    Article  PubMed  Google Scholar 

  136. Kaji Y, Kurhanewicz J, Hricak H, et al. Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging. Radiology. 1998;206(3):785–90.

    Article  CAS  PubMed  Google Scholar 

  137. Girouin N, Mege-Lechevallier F, Tonina Senes A, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol. 2007;17(6):1498–509.

    Article  PubMed  Google Scholar 

  138. Tanimoto A, Nakashima J, Kohno H, et al. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging. 2007;25(1):146–52.

    Article  PubMed  Google Scholar 

  139. Turkbey B, Pinto PA, Mani H, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection – histopathologic correlation. Radiology. 2010;255(1):89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Puech P, Betrouni N, Makni N, et al. Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. Int J Comput Assist Radiol Surg. 2009;4(1):1–10.

    Article  PubMed  Google Scholar 

  141. Vos PC, Hambrock T, Hulsbergen-van de Kaa CA, et al. Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI. Med Phys. 2008;35(3):888–99.

    Article  PubMed  Google Scholar 

  142. Vos P. Combining T2-weighted with dynamic MR images for computerized classification of prostate lesions. In: Editor A, Editor B, editors. Proceedings of SPIE: medical imaging 2008. Bellingham: SPIE-The International Society for Optical Engineering.

    Google Scholar 

  143. Ruprecht O, Weisser P, Bodelle B, et al. MRI of the prostate: interobserver agreement compared with histopathologic outcome after radical prostatectomy. Eur J Radiol. 2012;81(3):456–60.

    Article  PubMed  Google Scholar 

  144. Rothke M, Blondin D, Schlemmer HP, et al. PI-RADS classification: structured reporting for MRI of the prostate. Rofo. 2013;185(3):253–61.

    Article  CAS  PubMed  Google Scholar 

  145. Takeuchi M, Matsuzaki K, Nishitani H. Hyperintense uterine myometrial masses on T2-weighted magnetic resonance imaging: differentiation with diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr. 2009;33(6):834–7.

    Article  PubMed  Google Scholar 

  146. Rechichi G, Galimberti S, Signorelli M, et al. Myometrial invasion in endometrial cancer: diagnostic performance of diffusion-weighted MR imaging at 1.5-T. Eur Radiol. 2010;20(3):754–62.

    Article  PubMed  Google Scholar 

  147. Punwani S. Diffusion weighted imaging of female pelvic cancers: concepts and clinical applications. Eur J Radiol. 2011;78(1):21–9.

    Article  PubMed  Google Scholar 

  148. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 2011;108(8 Pt 2):E171–8.

    Article  PubMed  Google Scholar 

  149. Bott SR, Young MP, Kellett MJ, et al. Anterior prostate cancer: is it more difficult to diagnose? BJU Int. 2002;89(9):886–9.

    Article  CAS  PubMed  Google Scholar 

  150. Ouzzane A, Puech P, Lemaitre L, et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology. 2011;78(6):1356–62.

    Article  PubMed  Google Scholar 

  151. Klotz L. Active surveillance for favorable-risk prostate cancer: background, patient selection, triggers for intervention, and outcomes. Curr Urol Rep. 2012;13(2):153–9.

    Article  PubMed  Google Scholar 

  152. Lees K, Durve M, Parker C. Active surveillance in prostate cancer: patient selection and triggers for intervention. Curr Opin Urol. 2012;22(3):210–5.

    Article  PubMed  Google Scholar 

  153. de la Rosette J, Ahmed H, Barentsz J, et al. Focal therapy in prostate cancer-report from a consensus panel. J Endourol. 2010;24(5):775–80.

    Article  PubMed  Google Scholar 

  154. Cooperberg MR, Lubeck DP, Meng MV, et al. The changing face of low-risk prostate cancer: trends in clinical presentation and primary management. J Clin Oncol. 2004;22(11):2141–9.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sella T, Schwartz LH, Hricak H. Retained seminal vesicles after radical prostatectomy: frequency, MRI characteristics, and clinical relevance. AJR Am J Roentgenol. 2006;186(2):539–46.

    Article  PubMed  Google Scholar 

  156. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol. 2010;28(7):1117–23.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Fraass BA. The development of conformal radiation therapy. Med Phys. 1995;22(11 Pt 2):1911–21.

    Article  CAS  PubMed  Google Scholar 

  158. Vargas HA, Wassberg C, Akin O, Hricak H. MR imaging of treated prostate cancer. Radiology. 2012;262(1):26–42.

    Article  PubMed  Google Scholar 

  159. Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA. 2005;294(2):238–44.

    Article  CAS  PubMed  Google Scholar 

  160. Yen YF, Nagasawa K, Nakada T. Promising application of dynamic nuclear polarization for in vivo (13)C MR imaging. Magn Reson Med Sci. 2011;10(4):211–7.

    Article  CAS  PubMed  Google Scholar 

  161. Franiel T, Ludemann L, Rudolph B, et al. Differentiation of prostate cancer from normal prostate tissue: role of hotspots in pharmacokinetic MRI and histologic evaluation. AJR Am J Roentgenol. 2010;194(3):675–81.

    Article  PubMed  Google Scholar 

  162. Delongchamps NB, Beuvon F, Eiss D, et al. Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer. Prostate Cancer Prostatic Dis. 2011;14(3):232–7.

    Article  CAS  PubMed  Google Scholar 

  163. Arani A, Plewes D, Krieger A, et al. The feasibility of endorectal MR elastography for prostate cancer localization. Magn Reson Med. 2011;66(6):1649–57.

    Article  PubMed  Google Scholar 

  164. Li S, Chen M, Wang W, et al. A feasibility study of MR elastography in the diagnosis of prostate cancer at 3.0T. Acta Radiol. 2011;52(3):354–8.

    Article  PubMed  Google Scholar 

  165. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  166. Kem EE, Lee MC, Inoue T, Wong WH, editors. Clinical PET and PET/CT: principles and applications. New York: Springer; 2013.

    Google Scholar 

  167. Rahim MK, Kim SE, So H, et al. Recent trends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl Med Mol Imaging. 2014;48:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Jadvar H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013;40:5–10.

    Article  CAS  PubMed Central  Google Scholar 

  169. Liu IJ, Zafar MB, Lai YH, et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11.

    Article  CAS  PubMed  Google Scholar 

  170. Oyama N, Akino H, Suzuki Y, et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol. 1999;29:623–9.

    Article  CAS  PubMed  Google Scholar 

  171. Hillner BE, Siegel BA, Shields AF, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49:1926–35.

    Article  Google Scholar 

  172. Inoue T, Oriuchi N, Tomiyoshi K, et al. A shifting landscape: what will be next FDG in PET oncology. Ann Nucl Med. 2002;16:1–9.

    Article  PubMed  Google Scholar 

  173. Jadvar H. Molecular imaging of prostate cancer: PET radiotracers. AJR Am J Roentgenol. 2012;199:278–91.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hong H, Zhang Y, Sun J, Cai W. Positron emission tomography imaging of prostate cancer. Amino Acids. 2010;39:11–27.

    Article  CAS  PubMed  Google Scholar 

  175. Umbehr MH, Muntener M, Hany T, et al. The role of choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 2013;64:106–17.

    Article  PubMed  Google Scholar 

  176. Jadvar H. Molecular imaging of prostate cancer with PET. J Nucl Med. 2013;54:1685–8.

    Article  CAS  PubMed  Google Scholar 

  177. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.

    CAS  PubMed  Google Scholar 

  178. Okudaira H, Nakanishi T, Oka S, et al. Kinetic analyses of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2. Nucl Med Biol. 2013;40:670–5.

    Article  CAS  PubMed  Google Scholar 

  179. Castellucci P, Jadvar H. PET/CT in prostate cancer: non-choline radiopharmaceuticals. Q J Nucl Med Mol Imaging. 2012;56:367–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem. 2013;13:951–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med. 2010;16:508–15.

    Article  PubMed  Google Scholar 

  182. Kim YI, Cheon GJ, Paeng JC, et al. Usefulness of MTI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization. Eur J Nucl Med Mol Imaging. 2015;42:1247–56.

    Article  CAS  PubMed  Google Scholar 

  183. Wetter A, Lipponer C, Nensa F, et al. Simultaneous 18F choline positron emission tomography/magnetic resonance imaging of the prostate: initial results. Invest Radiol. 2013;48:256–62.

    Article  PubMed  Google Scholar 

  184. Choi J, Park JC, Nah H, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl. 2008;47:6259–62.

    Article  CAS  PubMed  Google Scholar 

  185. Andreoiu M, Cheng L. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol. 2010;41(6):781–93.

    Article  PubMed  Google Scholar 

  186. Huang CC, Deng FM, Kong MX, et al. Re-evaluating the concept of “dominant/index tumor nodule” in multifocal prostate cancer. Virchows Arch Int J Pathol. 2014;464(5):589–94.

    Article  CAS  Google Scholar 

  187. Noguchi M, Stamey TA, McNeal JE, et al. Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J Urol. 2003;170(2 Pt 1):459–63.

    Article  PubMed  Google Scholar 

  188. Parsons JK, Gage WR, Nelson WG, et al. p63 protein expression is rare in prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. Urology. 2001;58(4):619–24.

    Article  CAS  PubMed  Google Scholar 

  189. Shah RB, Zhou M, LeBlanc M, et al. Comparison of the basal cell-specific markers, 34betaE12 and p63, in the diagnosis of prostate cancer. Am J Surg Pathol. 2002;26(9):1161–8.

    Article  PubMed  Google Scholar 

  190. Bailar 3rd JC, Mellinger GT, Gleason DF. Survival rates of patients with prostatic cancer, tumor stage, and differentiation – preliminary report. Cancer Chemother Rep 1. 1966;50(3):129–36.

    Google Scholar 

  191. Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep 1. 1966;50(3):125–8.

    CAS  Google Scholar 

  192. Epstein JI, Allsbrook Jr WC, Amin MB, et al. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29(9):1228–42.

    Article  PubMed  Google Scholar 

  193. Jung DC, Lee HJ, Kim SH, et al. Preoperative MR imaging in the evaluation of seminal vesicle invasion in prostate cancer: pattern analysis of seminal vesicle lesions. J Magn Reson Imaging. 2008;28(1):144–50.

    Article  PubMed  Google Scholar 

  194. Edge SB, Byrd DR, Carducci MA, Compton CC, editors. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  195. Welch HG, Albertsen PC. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst. 2009;101(19):1325–9.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Klotz L. Active surveillance for favorable-risk prostate cancer: who, how and why? Nat Clin Pract Oncol. 2007;4(12):692–8.

    Article  PubMed  Google Scholar 

  197. Choo R, Klotz L, Danjoux C, Morton GC, DeBoer G, Szumacher E, Fleshner N, Bunting P, Hruby G. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J Urol. 2002;167(4):1664–9.

    Article  PubMed  Google Scholar 

  198. Klotz L. Active surveillance for prostate cancer: for whom? J Clin Oncol. 2005;23(32):8165–9.

    Article  PubMed  Google Scholar 

  199. Bastian PJ, Mangold LA, Epstein JI, Partin AW. Characteristics of insignificant clinical T1c prostate tumors. Cancer. 2004;101(9):2001–5.

    Article  PubMed  Google Scholar 

  200. Jeldres C, Suardi N, Walz J, Hutterer GC, Ahyai S, Lattouf J-B, Haese A, Graefen M, Erbersdobler A, Heinzer H. Validation of the contemporary epstein criteria for insignificant prostate cancer in European men. Eur Urol. 2008;54(6):1306–13.

    Article  PubMed  Google Scholar 

  201. Mohler JL, Armstrong AJ, Bahnson RR, Boston B, Busby JE, D’Amico AV, Eastham JA, Enke CA, Farrington T, Higano CS. Prostate cancer, version 3.2012 featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2012;10(9):1081–7.

    CAS  PubMed  Google Scholar 

  202. Lee SE, Kim DS, Lee WK, Park HZ, Lee CJ, Doo SH, Jeong SJ, Yoon CY, Byun SS, Choe G. Application of the Epstein criteria for prediction of clinically insignificant prostate cancer in Korean men. BJU Int. 2010;105(11):1526–30.

    Article  PubMed  Google Scholar 

  203. Boorjian SA, Karnes RJ, Rangel LJ, Bergstralh EJ, Blute ML. Mayo Clinic validation of the D’amico risk group classification for predicting survival following radical prostatectomy. J Urol. 2008;179(4):1354–61.

    Article  PubMed  Google Scholar 

  204. Hardie C, Parker C, Norman A, Eeles R, Horwich A, Huddart R, Dearnaley D. Early outcomes of active surveillance for localized prostate cancer. BJU Int. 2005;95(7):956–60.

    Article  PubMed  Google Scholar 

  205. Roemeling S, Roobol MJ, de Vries SH, Wolters T, Gosselaar C, van Leenders GJ, Schröder FH. Active surveillance for prostate cancers detected in three subsequent rounds of a screening trial: characteristics, PSA doubling times, and outcome. Eur Urol. 2007;51(5):1244–51.

    Article  PubMed  Google Scholar 

  206. Dall’Era MA, Konety BR, Cowan JE, Shinohara K, Stauf F, Cooperberg MR, Meng MV, Kane CJ, Perez N, Master VA. Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer. 2008;112(12):2664–70.

    Article  PubMed  Google Scholar 

  207. Klotz L, Zhang L, Lam A, Nam R, Mamedov A, Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28(1):126–31.

    Article  PubMed  Google Scholar 

  208. Tosoian JJ, Trock BJ, Landis P, Feng Z, Epstein JI, Partin AW, Walsh PC, Carter HB. Active surveillance program for prostate cancer: an update of the Johns Hopkins experience. J Clin Oncol. 2011;29(16):2185–90.

    Article  PubMed  Google Scholar 

  209. Carter HB, Kettermann A, Warlick C, Metter EJ, Landis P, Walsh PC, Epstein JI. Expectant management of prostate cancer with curative intent: an update of the Johns Hopkins experience. J Urol. 2007;178(6):2359–65.

    Article  PubMed  PubMed Central  Google Scholar 

  210. van den Bergh RC, Roemeling S, Roobol MJ, Aus G, Hugosson J, Rannikko AS, Tammela TL, Bangma CH, Schröder FH. Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur Urol. 2009;55(1):1–8.

    Article  PubMed  Google Scholar 

  211. Soloway MS, Soloway CT, Eldefrawy A, Acosta K, Kava B, Manoharan M. Careful selection and close monitoring of low-risk prostate cancer patients on active surveillance minimizes the need for treatment. Eur Urol. 2010;58(6):831–5.

    Article  PubMed  Google Scholar 

  212. Kakehi Y, Kamoto T, Shiraishi T, Ogawa O, Suzukamo Y, Fukuhara S, Saito Y, Tobisu K-i, Kakizoe T, Shibata T. Prospective evaluation of selection criteria for active surveillance in Japanese patients with stage T1cN0M0 prostate cancer. Jpn J Clin Oncol. 2008;38(2):122–8.

    Article  PubMed  Google Scholar 

  213. Hadway P, Barrett LK, Waghorn DJ, Hasan K, Bdesha A, Haldar N, Kelleher J. Urodepsis ams bacteraemia caused by antibiotic-resistant organisms after transrectal ultrasonography-guided prostate biopsy. BJU Int. 2009;104(11):1556–8.

    Article  PubMed  Google Scholar 

  214. Loeb S, Carter HB, Berndt SI, Ricker W, Schaeffer EM. Complications after prostate biopsy: data from SEER-Medicare. J Urol. 2011;186(5):1830–4.

    Article  PubMed  Google Scholar 

  215. Mouraviev V, Mayes JM, Polascik TJ. Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol. 2009;6(4):205–15.

    Article  PubMed  Google Scholar 

  216. Cooperberg MR, Broering JM, Kantoff PW, Carroll PR. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol. 2007;178(3):S14–9.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Beerlage H, Thüroff S, Madersbacher S, Zlotta A, Aus G, de Reijke TM, de la Rosette J. Current status of minimally invasive treatment options for localized prostate carcinoma. Eur Urol. 2000;37(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  218. Rees J, Patel B, MacDonagh R, Persad R. Cryosurgery for prostate cancer. BJU Int. 2004;93(6):710–4.

    Article  CAS  PubMed  Google Scholar 

  219. Han KR, Belldegrun AS. Third-generation cryosurgery for primary and recurrent prostate cancer. BJU Int. 2004;93(1):14–8.

    Article  PubMed  Google Scholar 

  220. Chaussy C, Thüroff S. The status of high-intensity focused ultrasound in the treatment of localized prostate cancer and the impact of a combined resection. Curr Urol Rep. 2003;4(3):248–52.

    Article  PubMed  Google Scholar 

  221. Long JP, Bahn D, Lee F, Shinohara K, Chinn DO, Macaluso Jr JN. Five-year retrospective, multi-institutional pooled analysis of cancer-related outcomes after cryosurgical ablation of the prostate. Urology. 2001;57(3):518–23.

    Article  CAS  PubMed  Google Scholar 

  222. Donnelly BJ, Saliken JC, Ernst DS, Ali-Ridha N, Brasher PM, Robinson JW, Rewcastle JC. Prospective trial of cryosurgical ablation of the prostate: five-year results. Urology. 2002;60(4):645–9.

    Article  CAS  PubMed  Google Scholar 

  223. Han KR, Cohen JK, Miller RJ, Pantuck AJ, Freitas DG, et al. Treatment of organ confined prostate cancer with third generation cryosurgery: preliminary multicenter experience. J Urol. 2003;170(4 Pt 1):1126–30.

    Article  PubMed  Google Scholar 

  224. Bahn DK, Lee F, Badalament R, Kumar A, Greski J, Chernick M. Targeted cryoablation of the prostate: 7-year outcomes in the primary treatment of prostate cancer. Urology. 2002;60(2 Suppl 1):3–11.

    Article  PubMed  Google Scholar 

  225. Cohen JK, Miller RJ, Ahmed S, Lotz MJ, Baust J. Ten-year biochemical disease control for patients with prostate cancer treated with cryosurgery as primary therapy. Urology. 2008;71(3):515–8.

    Article  PubMed  Google Scholar 

  226. Levy DA, Pisters LL, Jones JS. Primary cryoablation nadir prostate specific antigen and biochemical failure. J Urol. 2009;182(3):931–7. 34. Madersbacher S, Marberger M. High-energy shockwaves and extracorporeal high-intensity focused ultrasound. J Endourol. 2003;17(8):667–72.

    Google Scholar 

  227. Foster RS, Bihrle R, Sanghvi N, Fry F, Kopecky K, Regan J, et al. Production of prostatic lesions in canines using transrectallky administrated high-intensity focused ultrasound. Eur Urol. 1993;23:330–6.

    CAS  PubMed  Google Scholar 

  228. Uchida T, Nakano M, Hongo S, Shoji S, Nagata Y, Satoh T, Baba S, Usui Y, Terachi T. High-intensity focused ultrasound therapy for prostate cancer. Int J Urol. 2012;19(3):187–201.

    Article  PubMed  Google Scholar 

  229. Ahmed HU, Freeman A, Kirkham A, Sahu M, Scott R, Allen C, Van der Meulen J, Emberton M. Focal therapy for localized prostate cancer: a phase I/II trial. J Urol. 2011;185(4):1246–54.

    Article  CAS  PubMed  Google Scholar 

  230. Murat FJ, Poissonnier L, Rabilloud M, Belot A, Bouvier R, Rouviere O, Chapelon JY, Gelet A. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol. 2009;55(3):640–9.

    Article  PubMed  Google Scholar 

  231. Zacharakis E, Ahmed HU, Ishaq A, Scott R, Illing R, Freeman A, Allen C, Emberton M. The feasibility and safety of high-intensity focused ultrasound as salvage therapy for recurrent prostate cancer following external beam radiotherapy. BJU Int. 2008;102(7):786–92.

    Article  PubMed  Google Scholar 

  232. Uchida T, Shoji S, Nakano M, Hongo S, Nitta M, Usui Y, Nagata Y. High-intensity focused ultrasound as salvage therapy for patients with recurrent prostate cancer after external beam radiation, brachytherapy or proton therapy. BJU Int. 2011;107(3):378–82.

    Article  PubMed  Google Scholar 

  233. Hayashi M, Shinmei S, Asano K. Transrectal high-intensity focused ultrasound for treatment for patients with biochemical failure after radical prostatectomy. Int J Urol. 2007;14(11):1048–50.

    Article  PubMed  Google Scholar 

  234. Murota-Kawano A, Nakano M, Hongo S, Shoji S, Nagata Y, Uchida T. Salvage high-intensity focused ultrasound for biopsy-confirmed local recurrence of prostate cancer after radical prostatectomy. BJU Int. 2010;105(12):1642–5.

    Article  PubMed  Google Scholar 

  235. Uchida T, Illing RO, Cathcart PJ, Emberton M. To what extent does the prostate-specific antigen nadir predict subsequent treatment failure after transrectal high-intensity focused ultrasound therapy for presumed localized adenocarcinoma of the prostate? BJU Int. 2006;98(3):537–9.

    Article  CAS  PubMed  Google Scholar 

  236. Ganzer R, Rogenhofer S, Walter B, Lunz JC, Schostak M, Wieland WF, Blana A. PSA nadir is a significant predictor of treatment failure after high-intensity focussed ultrasound (HIFU) treatment of localised prostate cancer. Eur Urol. 2008;53(3):547–53.

    Article  CAS  PubMed  Google Scholar 

  237. Crouzet S, Rebillard X, Chevallier D, Rischmann P, Pasticier G, Garcia G, Rouviere O, Chapelon JY, Gelet A. Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients. Eur Urol. 2010;58(4):559–66.

    Article  PubMed  Google Scholar 

  238. Blana A, Rogenhofer S, Ganzer R, Lunz JC, Schostak M, Wieland WF, Walter B. Eight years’ experience with high-intensity focused ultrasonography for treatment of localized prostate cancer. Urology. 2008;72(6):1329–33.

    Article  PubMed  Google Scholar 

  239. Misrai V, Roupret M, Chartier-Kastler E, Comperat E, Renard-Penna R, Haertig A, Bitker MO, Richard F, Conort P. Oncologic control provided by HIFU therapy as single treatment in men with clinically localized prostate cancer. World J Urol. 2008;26(5):481–5.

    Article  PubMed  Google Scholar 

  240. Uchida T, Shoji S, Nakano M, Hongo S, Nitta M, Murota A, Nagata Y. Transrectal high-intensity focused ultrasound for the treatment of localized prostate cancer: eight-year experience. Int J Urol. 2009;16(11):881–6.

    Article  PubMed  Google Scholar 

  241. Inoue Y, Goto K, Hayashi T, Hayashi M. Transrectal high-intensity focused ultrasound for treatment of localized prostate cancer. Int J Urol. 2011;18(5):358–63.

    Article  PubMed  Google Scholar 

  242. Kupelian PA, Ciezki J, Reddy CA, Klein EA, Mahadevan A. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;71(1):16–22. doi:10.1016/j.ijrobp.2007.09.020.

  243. Zelefsky MJ, Yamada Y, Fuks Z et al. Long-Term Results of Conformal Radiotherapy for Prostate Cancer: Impact of Dose Escalation on Biochemical Tumor Control and Distant Metastases-Free Survival Outcomes. Int J Radiat Oncol Biol Phys. 2008;71(4):1028–33. doi:10.1016/j.ijrobp.2007.11.066.

  244. Bianco Jr FJ, Scardino PT, Eastham JA. Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function (“trifecta”). Urology. 2005;66(5 Suppl):83–94.

    Article  PubMed  Google Scholar 

  245. Bill-Axelson A, Holmberg L, Filen F, Ruutu M, Garmo H, Busch C, Nordling S, Haggman M, Andersson SO, Bratell S, Spangberg A, Palmgren J, Adami HO, Johansson JE, Scandinavian Prostate Cancer Group Study N. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J Natl Cancer Inst. 2008;100(16):1144–54.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Tewari A, Johnson CC, Divine G, Crawford ED, Gamito EJ, Demers R, Menon M. Long-term survival probability in men with clinically localized prostate cancer: a case–control, propensity modeling study stratified by race, age, treatment and comorbidities. J Urol. 2004;171(4):1513–9.

    Article  PubMed  Google Scholar 

  247. Augustin H, Hammerer P, Graefen M, Palisaar J, Noldus J, Fernandez S, Huland H. Intraoperative and perioperative morbidity of contemporary radical retropubic prostatectomy in a consecutive series of 1243 patients: results of a single center between 1999 and 2002. Eur Urol. 2003;43(2):113–8.

    Article  PubMed  Google Scholar 

  248. Lepor H, Nieder AM, Ferrandino MN. Intraoperative and postoperative complications of radical retropubic prostatectomy in a consecutive series of 1,000 cases. J Urol. 2001;166(5):1729–33.

    Article  CAS  PubMed  Google Scholar 

  249. Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, Guazzoni G, Guillonneau B, Menon M, Montorsi F, Patel V, Rassweiler J, Van Poppel H. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55(5):1037–63.

    Article  PubMed  Google Scholar 

  250. Parsons JK, Bennett JL. Outcomes of retropubic, laparoscopic, and robotic-assisted prostatectomy. Urology. 2008;72(2):412–6.

    Article  PubMed  Google Scholar 

  251. Hu JC, Wang Q, Pashos CL, Lipsitz SR, Keating NL. Utilization and outcomes of minimally invasive radical prostatectomy. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(14):2278–84.

    Article  Google Scholar 

  252. Hu JC, Gu X, Lipsitz SR, Barry MJ, D’Amico AV, Weinberg AC, Keating NL. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302(14):1557–64.

    Article  CAS  PubMed  Google Scholar 

  253. Walsh PC, Donker PJ. Impotence following radical prostatectomy: insight into etiology and prevention. J Urol. 1982;128(3):492–7.

    CAS  PubMed  Google Scholar 

  254. Loughlin KR, Prasad MM. Post-prostatectomy urinary incontinence: a confluence of 3 factors. J Urol. 2010;183(3):871–7.

    Article  PubMed  Google Scholar 

  255. Tal R, Alphs HH, Krebs P, Nelson CJ, Mulhall JP. Erectile function recovery rate after radical prostatectomy: a meta-analysis. J Sex Med. 2009;6(9):2538–46.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Briganti A, Chun FK, Salonia A, Gallina A, Farina E, Da Pozzo LF, Rigatti P, Montorsi F, Karakiewicz PI. Validation of a nomogram predicting the probability of lymph node invasion based on the extent of pelvic lymphadenectomy in patients with clinically localized prostate cancer. BJU Int. 2006;98(4):788–93.

    Article  PubMed  Google Scholar 

  257. Cagiannos I, Karakiewicz P, Eastham JA, Ohori M, Rabbani F, Gerigk C, Reuter V, Graefen M, Hammerer PG, Erbersdobler A, Huland H, Kupelian P, Klein E, Quinn DI, Henshall SM, Grygiel JJ, Sutherland RL, Stricker PD, Morash CG, Scardino PT, Kattan MW. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol. 2003;170(5):1798–803.

    Article  PubMed  Google Scholar 

  258. Joslyn SA, Konety BR. Impact of extent of lymphadenectomy on survival after radical prostatectomy for prostate cancer. Urology. 2006;68(1):121–5.

    Article  PubMed  Google Scholar 

  259. Bader P, Burkhard FC, Markwalder R, Studer UE. Disease progression and survival of patients with positive lymph nodes after radical prostatectomy. Is there a chance of cure? J Urol. 2003;169(3):849–54.

    Article  PubMed  Google Scholar 

  260. Daneshmand S, Quek ML, Stein JP, Lieskovsky G, Cai J, Pinski J, Skinner EC, Skinner DG. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J Urol. 2004;172(6 Pt 1):2252–5.

    Article  PubMed  Google Scholar 

  261. Wagner M, Sokoloff M, Daneshmand S. The role of pelvic lymphadenectomy for prostate cancer – therapeutic? J Urol. 2008;179(2):408–13.

    Article  CAS  PubMed  Google Scholar 

  262. Briganti A, Blute ML, Eastham JH, Graefen M, Heidenreich A, Karnes JR, Montorsi F, Studer UE. Pelvic lymph node dissection in prostate cancer. Eur Urol. 2009;55(6):1251–65.

    Article  PubMed  Google Scholar 

  263. Heidenreich A, Ohlmann CH, Polyakov S. Anatomical extent of pelvic lymphadenectomy in patients undergoing radical prostatectomy. Eur Urol. 2007;52(1):29–37.

    Article  PubMed  Google Scholar 

  264. Steiner MS. The puboprostatic ligament and the male urethral suspensory mechanism: an anatomic study. Urology. 1994;44(4):530–4.

    Article  CAS  PubMed  Google Scholar 

  265. Poore RE, McCullough DL, Jarow JP. Puboprostatic ligament sparing improves urinary continence after radical retropubic prostatectomy. Urology. 1998;51(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  266. Deliveliotis C, Protogerou V, Alargof E, Varkarakis J. Radical prostatectomy: bladder neck preservation and puboprostatic ligament sparing – effects on continence and positive margins. Urology. 2002;60(5):855–8.

    Article  CAS  PubMed  Google Scholar 

  267. Costello AJ, Brooks M, Cole OJ. Anatomical studies of the neurovascular bundle and cavernosal nerves. BJU Int. 2004;94(7):1071–6.

    Article  PubMed  Google Scholar 

  268. Rogers CG, Trock BP, Walsh PC. Preservation of accessory pudendal arteries during radical retropubic prostatectomy: surgical technique and results. Urology. 2004;64(1):148–51.

    Article  PubMed  Google Scholar 

  269. Huggins C, Stevens R, Hodges CV. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg. 1941;43(2):209–23.

    Article  CAS  Google Scholar 

  270. Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J Urol. 2002;167(2):948–51.

    Article  CAS  PubMed  Google Scholar 

  271. Mcleod DG. Hormonal therapy: historical perspective to future directions. Urology. 2003;61(2):3–7.

    Article  PubMed  Google Scholar 

  272. Menon M, Walsh PC. Hormonal therapy for prostatic cancer. Prostatic cancer. Littleton: PSG; 1979. p. 175.

    Google Scholar 

  273. Russell DW, Wilson JD. Steroid 5alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63(1):25–61.

    Article  CAS  PubMed  Google Scholar 

  274. Desmond A, Arnold A, Hastie K. Subcapsular orchiectomy under local anaesthesia technique, results and implications. Br J Urol. 1988;61(2):143–5.

    Article  CAS  PubMed  Google Scholar 

  275. Oh WK. The evolving role of estrogen therapy in prostate cancer. Clin Prostate Cancer. 2002;1(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  276. Jordan WP, Blackard CE, Byar DP. Reconsideration of orchiectomy in the treatment of advanced prostatic carcinoma. South Med J. 1977;70(12):1411.

    Article  PubMed  Google Scholar 

  277. Scherr DS, PITTS JRW. The nonsteroidal effects of diethylstilbestrol: the rationale for androgen deprivation therapy without estrogen deprivation in the treatment of prostate cancer. J Urol. 2003;170(5):1703–8.

    Article  CAS  PubMed  Google Scholar 

  278. Oefelein MG, Resnick MI. Effective testosterone suppression for patients with prostate cancer: is there a best castration? Urology. 2003;62(2):207–13.

    Article  PubMed  Google Scholar 

  279. McLeod DG. Tolerability of nonsteroidal antiandrogens in the treatment of advanced prostate cancer. Oncologist. 1997;2(1):18–27.

    CAS  PubMed  Google Scholar 

  280. Schally AV. Luteinizing hormone-releasing hormone analogs: their impact on the control of tumorigenesis. Peptides. 1999;20(10):1247–62.

    Article  CAS  PubMed  Google Scholar 

  281. Seidenfeld J, Samson DJ, Hasselblad V, Aronson N, Albertsen PC, Bennett CL, Wilt TJ. Single-therapy androgen suppression in men with advanced prostate cancera systematic review and meta-analysis. Ann Intern Med. 2000;132(7):566–77.

    Article  CAS  PubMed  Google Scholar 

  282. Bubley GJ. Is the flare phenomenon clinically significant? Urology. 2001;58(2):5–9.

    Article  CAS  PubMed  Google Scholar 

  283. McLeod D, Zinner N, Tomera K, Gleason D, Fotheringham N, Campion M, Garnick MB. A phase 3, multicenter, open-label, randomized study of abarelix versus leuprolide acetate in men with prostate cancer. Urology. 2001;58(5):756–61.

    Article  CAS  PubMed  Google Scholar 

  284. Trachtenberg J, Gittleman M, Steidle C, Barzell W, Friedel W, Pessis D, Fotheringham N, Campion M, Garnick MB, Group AS. A phase 3, multicenter, open label, randomized study of abarelix versus leuprolide plus daily antiandrogen in men with prostate cancer. J Urol. 2002;167(4):1670–4.

    Article  CAS  PubMed  Google Scholar 

  285. Van Poppel H, Tombal B, de la Rosette JJ, Persson B-E, Jensen J-K, Kold Olesen T. Degarelix: a novel gonadotropin-releasing hormone (GnRH) receptor blocker – results from a 1-yr, multicentre, randomised, phase 2 dosage-finding study in the treatment of prostate cancer. Eur Urol. 2008;54(4):805–15.

    Article  PubMed  CAS  Google Scholar 

  286. Anderson J. The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int. 2003;91(5):455–61.

    Article  CAS  PubMed  Google Scholar 

  287. Iversen P. Antiandrogen monotherapy: indications and results. Urology. 2002;60(3):64–71.

    Article  PubMed  Google Scholar 

  288. Cabot RC, Harris NL, Rosenberg ES, Shepard J-AO, Cort AM, Ebeling SH, McDonald EK, Scher HI, Fizazi K, Saad F. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97.

    Article  CAS  Google Scholar 

  289. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48.

    Article  CAS  PubMed  Google Scholar 

  290. Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, Blumenstein BA, Davis MA, Goodman PJ. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med. 1989;321(7):419–24.

    Article  CAS  PubMed  Google Scholar 

  291. Eisenberger MA, Blumenstein BA, Crawford ED, Miller G, McLeod DG, Loehrer PJ, Wilding G, Sears K, Culkin DJ, Thompson Jr IM. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med. 1998;339(15):1036–42.

    Article  CAS  PubMed  Google Scholar 

  292. Samson DJ, Seidenfeld J, Schmitt B, Hasselblad V, Albertsen PC, Bennett CL, Wilt TJ, Aronson N. Systematic review and meta‐analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer. 2002;95(2):361–76.

    Article  CAS  PubMed  Google Scholar 

  293. Verhagen P, Wissenburg L, Wildhagen M, Bolle W, Verkerk A, Schröder F, Bangma C, Mickisch G. Quality of life effects of intermittent and continuous hormonal therapy by cyproterone acetate (CPA) for metastatic prostate cancer. Eur Urol Suppl. 2008;7(3):206.

    Article  Google Scholar 

  294. Adib R, Anderson J, Ashken M, Baumber C, Bevis C, Beynon L, Blaxland J, Boag V, Bolger J, Boreham J. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council trial. Br J Urol. 1997;79(2):235–46.

    Article  Google Scholar 

  295. Messing EM, Manola J, Sarosdy M, Wilding G, Crawford ED, Trump D. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J Med. 1999;341(24):1781–8.

    Article  CAS  PubMed  Google Scholar 

  296. Wilt T, Nair B, MacDonald R, Rutks I. Early versus deferred androgen suppression in the treatment of advanced prostatic cancer. Cochrane Database Syst Rev. 2001;4.

    Google Scholar 

  297. Varghese SL, Grossfeld GD. The prostatic gland: malignancies other than adenocarcinomas. Radiol Clin North Am. 2000;38(1):179–202.

    Article  CAS  PubMed  Google Scholar 

  298. Hansel DE, Herawi M, Montgomery E, et al. Spindle cell lesions of the adult prostate. Mod Pathol Off J United States Can Acad Pathol. 2007;20(1):148–58.

    Article  CAS  Google Scholar 

  299. Tavora F, Kryvenko ON, Epstein JI. Mesenchymal tumours of the bladder and prostate: an update. Pathology. 2013;45(2):104–15.

    Article  PubMed  Google Scholar 

  300. Bartolozzi C, Selli C, Olmastroni M, et al. Rhabdomyosarcoma of the prostate: MR findings. AJR Am J Roentgenol. 1988;150(6):1333–4.

    Article  CAS  PubMed  Google Scholar 

  301. Mott LJ. Squamous cell carcinoma of the prostate: report of 2 cases and review of the literature. J Urol. 1979;121(6):833–5.

    CAS  PubMed  Google Scholar 

  302. Terris MK, Villers A, Freiha FS. Transrectal ultrasound appearance of transitional cell carcinoma involving the prostate. J Urol. 1990;143(5):952–6.

    CAS  PubMed  Google Scholar 

  303. Eble J, Epstein J, Sesterhenn I, World Health Organization classification of tumours. Pathology and genetics of tumours of the urinary system and male genital organs. Lyon: IARC Press; 2004.

    Google Scholar 

  304. Schwartz LH, LaTrenta LR, Bonaccio E, et al. Small cell and anaplastic prostate cancer: correlation between CT findings and prostate-specific antigen level. Radiology. 1998;208(3):735–8.

    Article  CAS  PubMed  Google Scholar 

  305. Cho J. In: Kim SH, editor. Radiology illustrated: uroradiology. Philadelphia: Saunders; 2003. p. 571–606.

    Google Scholar 

  306. Agrons GA, Wagner BJ, Lonergan GJ, et al. From the archives of the AFIP. Genitourinary rhabdomyosarcoma in children: radiologic-pathologic correlation. Radiographics Rev Publ Radiol Soc North Am. 1997;17(4):919–37.

    CAS  Google Scholar 

  307. Chin W, Fay R, Ortega P. Malignant fibrous histiocytoma of prostate. Urology. 1986;27(4):363–5.

    Article  CAS  PubMed  Google Scholar 

  308. Shirakawa T, Fujisawa M, Gotoh A, et al. Complete resection of synovial sarcoma of prostatic fascia. Urology. 2003;61(3):644.

    Article  PubMed  Google Scholar 

  309. Arger PH, Malkowicz SB, VanArsdalen KN, et al. Color and power Doppler sonography in the diagnosis of prostate cancer: comparison between vascular density and total vascularity. J Ultrasound Med Off J Am Inst Ultrasound Med. 2004;23(5):623–30.

    Google Scholar 

  310. Barozzi L, Pavlica P, Menchi I, et al. Prostatic abscess: diagnosis and treatment. AJR Am J Roentgenol. 1998;170(3):753–7.

    Article  CAS  PubMed  Google Scholar 

  311. LaFontaine PD, Middleman BR, Graham Jr SD, et al. Incidence of granulomatous prostatitis and acid-fast bacilli after intravesical BCG therapy. Urology. 1997;49(3):363–6.

    Article  CAS  PubMed  Google Scholar 

  312. Rusch D, Moinzadeh A, Hamawy K, et al. Giant multilocular cystadenoma of the prostate. AJR Am J Roentgenol. 2002;179(6):1477–9.

    Article  PubMed  Google Scholar 

  313. Kaufman JJ, Berneike RR. Leiomyoma of the prostate. J Urol. 1951;65(2):297–310.

    CAS  PubMed  Google Scholar 

  314. Imai S, Ayabe Y, Iiyama T, et al. Leiomyoma of the prostate: CT and MR findings. Abdom Imaging. 2002;27(6):674–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hak Jong Lee or Jeong Yeon Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, H.J., Cho, J.Y., Cheon, G.J., Kwak, C., Kim, H.S., Kim, J.H. (2017). Prostatic Tumors. In: Kim, S., Cho, J. (eds) Oncologic Imaging: Urology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45218-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45218-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45217-2

  • Online ISBN: 978-3-662-45218-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics