Skip to main content

Optimal General Simplification of Scalar Fields on Surfaces

  • Conference paper
  • First Online:
Topological and Statistical Methods for Complex Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We present a new combinatorial algorithm for the optimal general topological simplification of scalar fields on surfaces. Given a piecewise linear (PL) scalar field f, our algorithm generates a simplified PL field g that provably admits critical points only from a constrained subset of the singularities of f while minimizing the distance | | fg | |  for data-fitting purpose. In contrast to previous algorithms, our approach is oblivious to the strategy used for selecting features of interest and allows critical points to be removed arbitrarily and additionally minimizes the distance | | fg | |  in the PL setting. Experiments show the generality and efficiency of the algorithm and demonstrate in practice the minimization of | | fg | |  .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the extremity s of the super-arc (m, s) admits a forward integral line ending in m.

  2. 2.

    Since f(s 0) < f(s 1) and t 0 > t 1, then \(\vert f(s_{0}) - g(s_{0})\vert = t_{0} - f(s_{0}) > t_{1} - f(s_{1}) = \vert f(s_{1}) - g(s_{1})\vert \). Thus, if T 0 and T 1 are the only sub-trees, \(\vert \vert f - g\vert \vert _{\infty } = t_{0} - f(s_{0})\).

References

  1. Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient batched union-find and its applications to terrain analysis. In: ACM Symposium on Computational Geometry, pp. 167–176 (2006)

    Google Scholar 

  2. Attali, D., Glisse, M., Hornus, S., Lazarus, F., Morozov, D.: Persistence-sensitive simplification of functions on surfaces in linear time. In: TopoInVis Workshop (2009)

    Google Scholar 

  3. Attali, D., Bauer, U., Devillers, O., Glisse, M., Lieutier, A.: Homological reconstruction and simplification in R3. In: ACM Symposium on Computational Geometry, pp. 117–126 (2013)

    Google Scholar 

  4. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discrete Comput. Geom. 47, 347–377 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: ACM Symposium on Computational Geometry (2014)

    Google Scholar 

  6. Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10, 385–396 (2004)

    Article  Google Scholar 

  7. Bremer, P.-T., Weber, G., Tierny, J., Pascucci, V., Day, M., Bell, J.: Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans. Vis. Comput. Graph. 17, 1307–1324 (2011)

    Article  Google Scholar 

  8. Carr, H.: Topological Manipulation of Isosurfaces. Ph.D. thesis, UBC (2004)

    Google Scholar 

  9. Carr, H., Snoeyink, J., Ulrike, A.: Computing contour trees in all dimensions. In: Proceedings of Symposium on Discrete Algorithms, pp. 918–926 (2000)

    Google Scholar 

  10. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: Proc. IEEE Vis, pp. 497–504 (2004)

    Google Scholar 

  11. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Edelsbrunner, H., Mucke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  13. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: ACM Symposium on Computational Geometry, pp. 70–79 (2001)

    Google Scholar 

  14. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification of functions on 2-manifolds. In: ACM Symposium on Computational Geometry, pp. 127–134 (2006)

    Google Scholar 

  16. Forman, R.: A user’s guide to discrete Morse theory. Adv. Math 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gingold, Y.I., Zorin, D.: Controlled-topology filtering. Comput. Aided Des. 39, 676–684 (2006)

    Article  Google Scholar 

  18. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28, 959–969 (2012)

    Article  Google Scholar 

  19. Gyulassy, A., Bremer, P.-T., Hamann, B., Pascucci, P.: A practical approach to Morse-Smale complex computation: scalabity and generality. IEEE Trans. Vis. Comput. Graph. 14, 1619–1626 (2008)

    Article  Google Scholar 

  20. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  21. Milnor, J.W.: Lectures on the H-Cobordism Theorem. Princeton University Press, Princeton (1965)

    MATH  Google Scholar 

  22. Ni, X., Garland, M., Hart, J.: Fair Morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. Proc. ACM SIGGRAPH 23, 613–622 (2004)

    Article  Google Scholar 

  23. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. Proc. ACM SIGGRAPH 26, 58 (2007)

    Article  Google Scholar 

  24. Patanè, G., Falcidieno, B.: Computing smooth approximations of scalar functions with constraints. Comput. Graph. 33, 399–413 (2009)

    Article  Google Scholar 

  25. Soille, P.: Optimal removal of spurious pits in digital elevation models. Water Res. Res. 40, W12509 (2004)

    Article  Google Scholar 

  26. Tierny, J., Pascucci, V.: Generalized topological simplification of scalar fields on surfaces. IEEE Trans. Vis. Comput. Graph. 18, 2005–2013 (2012)

    Article  Google Scholar 

  27. Tierny, J., Gyulassy, A., Simon, E., Pascucci, V.: Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. IEEE Trans. Vis. Comput. Graph. 15, 1177–1184 (2009)

    Article  Google Scholar 

  28. Weinkauf, T., Gingold, Y., Sorkine, O.: Topology-based smoothing of 2D scalar fields with C 1-continuity. Comput. Graph. Forum Proc. Euro.Vis. 29, 1221–1230 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Data-sets are courtesy of AIM@SHAPE. This research is partially funded by the RTRA Digiteo through the unTopoVis project (2012-063D). The authors thank Hamish Carr for insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Tierny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tierny, J., Günther, D., Pascucci, V. (2015). Optimal General Simplification of Scalar Fields on Surfaces. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds) Topological and Statistical Methods for Complex Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44900-4_4

Download citation

Publish with us

Policies and ethics