Skip to main content

Abstract

A recurring question in ecology and evolutionary biology is whether deterministic evolutionary convergence ever occurs among large sets of species, such as ecological communities or entire evolutionary radiations. Questions about large-scale convergence have featured prominently in discussions of the nature of community assembly and in debates about the relative roles of contingency versus determinism in macroevolution. Until recently, however, there have been relatively few attempts to use a phylogenetic comparative approach to answer questions about clade-level convergence. This is beginning to change with the development of new and more flexible comparative techniques for studying macroevolutionary convergence. In this chapter, we discuss ecological and evolutionary questions that have motivated interest in convergence at large spatial and phylogenetic scales. We review the statistical approaches that have been used to investigate clade-wide convergence, then describe SURFACE, a recently developed method for objectively studying convergence using macroevolutionary adaptive landscape models. We introduce new features within this framework for testing hypotheses about the biogeography of large-scale convergence and for visualizing the relative contributions of different traits to multidimensional convergence, and demonstrate these features using convergent Caribbean Anolis lizard faunas. We conclude by discussing the limitations of current approaches for studying clade-wide convergence and highlighting some directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61

    Article  CAS  PubMed  Google Scholar 

  • Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164. doi:10.1186/1471-2148-11-164

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfaro ME, Bolnick DI, Wainwright PC (2005) Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. Am Nat 165:140–154. doi:10.1086/429564

    Article  Google Scholar 

  • Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci 106:13410–13414. doi:10.1073/pnas.0811087106

    Article  PubMed  PubMed Central  Google Scholar 

  • Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32. doi:10.1016/j.tree.2007.09.011

    Article  PubMed  Google Scholar 

  • Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113:9–32

    Article  PubMed  Google Scholar 

  • Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF (2012) A phylogenetic comparative method for studying multivariate adaptation. J Theor Biol 314:204–215. doi:10.1016/j.jtbi.2012.08.005

    Article  PubMed  Google Scholar 

  • Beatty J (2006) Replaying life’s tape. J Philos 103:336–362

    Article  Google Scholar 

  • Beatty J (2008) Chance variation and evolutionary contingency: Darwin, Simpson (The Simpsons) and Gould. The Oxford Handbook of Philosophy of Biology. Oxford University Press, Oxford

    Google Scholar 

  • Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66:2369–2383. doi:10.1111/j.1558-5646.2012.01619.x

    Article  PubMed  Google Scholar 

  • Blackledge TA, Gillespie RG (2004) Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proc Natl Acad Sci 101:16228–16233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondel J (1991) Assessing convergence at the community-wide level. Trends Ecol Evol 6:271–272

    Article  CAS  PubMed  Google Scholar 

  • Bock WJ (1980) The definition and recognition of biological adaptation. Am Zool 20:217–227

    Article  Google Scholar 

  • Bock WJ, Miller WD (1959) The scansorial foot of the woodpeckers, with comments on the evolution of perching and climbing feet in birds. Am Mus Novit 1931:1–45

    Google Scholar 

  • Bossuyt F, Milinkovitch MC (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci 97:6585–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandley MC, Kuriyama T, Hasegawa M (2014) Snake and bird predation drive the repeated convergent evolution of correlated life history traits and phenotype in the Izu Island scincid lizard (Plestiodon latiscutatus). PLoS ONE 9:e92233. doi:10.1371/journal.pone.0092233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164:683–695

    Article  PubMed  Google Scholar 

  • Chiba S (2004) Ecological and morphological patterns in communities of land snails of the genus Mandarina from the Bonin Islands. J Evol Biol 17:131–143. doi:10.1046/j.1420-9101.2004.00639.x

    Article  PubMed  Google Scholar 

  • Clabaut C, Bunje PME, Salzburger W, Meyer A (2007) Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Evolution 61:560–578. doi:10.1111/j.1558-5646.2007.00045.x

    Article  PubMed  Google Scholar 

  • Cody ML (1974) Competition and the structure of bird communities, pp 1–318

    Google Scholar 

  • Cody ML, Diamond JM (1975) Ecology and evolution of communities, pp 1–545

    Google Scholar 

  • Cody ML, Mooney HA (1978) Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annu Rev Ecol Syst 9:265–321. doi:10.1146/annurev.es.09.110178.001405

    Article  Google Scholar 

  • Collar DC, Schulte JA II, Losos JB (2011) Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 65:2664–2680. doi:10.1111/j.1558-5646.2011.01335.x

    Article  PubMed  Google Scholar 

  • Conway Morris S (2003) Life’s solution: inevitable humans in a lonely universe. pp 1–464

    Google Scholar 

  • Cooper WJ, Westneat MW (2009) Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. BMC Evol Biol 9:24. doi:10.1186/1471-2148-9-24

    Article  PubMed  PubMed Central  Google Scholar 

  • De Busschere C, Baert L, Van Belleghem SM, Dekoninck W, Hendrickx F (2012) Parallel phenotypic evolution in a wolf spider radiation on Galápagos. Biol J Linn Soc 106:123–136. doi:10.1111/j.1095-8312.2011.01848.x

    Article  Google Scholar 

  • Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ (2011) A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65(12):3578–3589

    Article  PubMed  Google Scholar 

  • Ellingson RA (2013) Convergent evolution of ecomorphological adaptations in geographically isolated Bay gobies (Teleostei: Gobionellidae) of the temperate North Pacific. Mol Phylogenet Evol. doi:10.1016/j.ympev.2013.10.009

    Article  PubMed  Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630. doi:10.1016/j.tree.2008.07.005

    Article  PubMed  Google Scholar 

  • Erwin DH (2006) Evolutionary contingency. Curr Biol 16:825–826

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19:445–471. doi:10.1146/annurev.es.19.110188.002305

    Article  Google Scholar 

  • Fox BJ (1987) Species assembly and the evolution of community structure. Evol Ecol 1:201–213. doi:10.1007/BF02067551

    Article  Google Scholar 

  • Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181:94–113. doi:10.1086/668599

    Article  PubMed  Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292. doi:10.1093/sysbio/42.3.265

    Article  Google Scholar 

  • Gatz AJJ (1979) Community organization in fishes as indicated by morphological features. Ecology 60:711–718

    Article  Google Scholar 

  • Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Natl Acad Sci 102:18040–18045. doi:10.1073/pnas.0506330102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie R (2004) Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356–359. doi:10.1126/science.1091875

    Article  CAS  PubMed  Google Scholar 

  • Gillespie RG (2005) The ecology and evolution of Hawaiian spider communities. Am Sci 93:122–131

    Article  Google Scholar 

  • Givnish TJ (1997) Adaptive radiation and molecular systematics: aims and conceptual issues. In: Molecular evolution and adaptive radiation, Cambridge University Press, New York

    Google Scholar 

  • Givnish TJ (1999) Adaptive radiation, dispersal, and diversification of the Hawaiian lobeliads. The Biology of Biodiversity. Springer, Tokyo

    Google Scholar 

  • Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, Hipp AL, Henss JM, Smith JF, Wood KR, Sytsma KJ (2009) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc Roy Soc B 276:407–416. doi:10.1098/rspb.2008.1204

    Article  Google Scholar 

  • Glor RE (2010) Phylogenetic insights on adaptive radiation. Annu Rev Ecol Evol Syst 41:251–270. doi:10.1146/annurev.ecolsys.39.110707.173447

    Article  Google Scholar 

  • Glor RE, Kolbe JJ, Powell R, Larson A, Losos JB (2003) Phylogenetic analysis of ecological and morphological diversification in Hispaniolan trunk-ground anoles (Anolis cybotes group). Evolution 57:2383–2397

    Article  PubMed  Google Scholar 

  • Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history, pp 1–347

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory, pp 1–1464

    Google Scholar 

  • Gould SJ (2003) Contingency. In: Palaeobiology II. Blackwell Publishing Ltd, New Jersey

    Google Scholar 

  • Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–1351

    Article  PubMed  Google Scholar 

  • Hansen TF (2012) Adaptive landscapes and macroevolutionary dynamics. In: The adaptive landscape in evolutionary biology, Oxford University Press, Oxford

    Chapter  Google Scholar 

  • Hansen TF, Pienaar J, Orzack SH (2008) A comparative method for studying adaptation to a randomly evolving environment. Evolution 62:1965–1977. doi:10.1111/j.1558-5646.2008.00412.x

    Article  PubMed  Google Scholar 

  • Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB (2005) Convergence and the multidimensional niche. Evolution 59:409–421

    Article  PubMed  Google Scholar 

  • Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings WB, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte JA II, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ (2010) Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385–2396. doi:10.1111/j.1558-5646.2010.01025.x

    Article  PubMed  Google Scholar 

  • Heath TA, Holder MT, Huelsenbeck JP (2012) A Dirichlet process prior for estimating lineage-specific substitution rates. Mol Biol Evol 29(3):939–955

    Article  CAS  PubMed  Google Scholar 

  • Hekstra DR, Leibler S (2012) Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149:1164–1173. doi:10.1016/j.cell.2012.03.040

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52:131–158. doi:10.1080/10635150390192780

    Article  PubMed  Google Scholar 

  • Ingram T, Kai Y (2014) The geography of morphological convergence in the radiations of Pacific Sebastes rockfishes

    Google Scholar 

  • Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol Evol 4:416–425. doi:10.1111/2041-210X.12034

    Article  Google Scholar 

  • Inkpen R, Turner D (2012) The topography of historical contingency. J Philos Hist 6:1–19. doi:10.1163/187226312X625573

    Article  Google Scholar 

  • Johnson MA, Revell LJ, Losos JB (2009) Behavioral convergence and adaptive radiation: effects of habitat use on territorial behavior in Anolis lizards. Evolution 64:1151–1159. doi:10.1111/j.1558-5646.2009.00881.x

    Article  PubMed  Google Scholar 

  • Karr JR, James FC (1975) Eco-morphological configurations and convergent evolution in species and communities. In: Ecology and evolution of communities. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kassen R (2009) Toward a general theory of adaptive radiation: insights from microbial experimental evolution. Ann N Y Acad Sci 1168:3–22. doi:10.1111/j.1749-6632.2009.04574.x

    Article  PubMed  Google Scholar 

  • Keast A (1972) Ecological opportunities and dominant families, as illustrated by the Neotropical Tyrannidae (Aves). Evol Biol 5:229–277

    Google Scholar 

  • Kelt DA, Brown JH, Heske EJ, Marquet PA, Morton SR, Reid JRW, Rogovin KA, Shenbrot G (1996) Community structure of desert small mammals: comparisons across four continents. Ecology 77:746–761

    Article  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165

    Article  CAS  PubMed  Google Scholar 

  • Kozak KH, Mendyk RW, Wiens JJ (2009) Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63:1769–1784. doi:10.1111/j.1558-5646.2009.00680.x

    Article  PubMed  Google Scholar 

  • Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334

    Article  PubMed  Google Scholar 

  • Lapiedra O, Sol D, Carranza S, Beaulieu JM (2013) Behavioural changes and the adaptive diversification of pigeons and doves. Proc Roy Soc B 280:20122893

    Article  Google Scholar 

  • Lawton JH (1984) Non-competitive populations, non-convergent communities, and vacant niches: The herbivores of bracken. In: Strong DRJ, Simberloff D, Abele LG, Thistle AB (eds) Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, pp 67–100

    Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losos JB (1996) Ecological and evolutionary determinants of the species-area relation in Caribbean anoline lizards. Philos Trans Roy Soc Lond B 351:847–854

    Article  Google Scholar 

  • Losos JB (2011) Convergence, adaptation and constraint. Evolution 65:1827–1840. doi:10.1111/j.1558-5646.2011.01289.x

    Article  PubMed  Google Scholar 

  • Losos JB, Jackman TR, Larson A, de Queiroz K, Rodríguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118

    Article  CAS  PubMed  Google Scholar 

  • Losos JB, Mahler DL (2010) Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. In: Evolution since Darwin: The first 150 Years, vol 150. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • MacLean RC (2005) Adaptive radiation in microbial microcosms. J Evol Biol 18:1376–1386. doi:10.1111/j.1420-9101.2005.00931.x

    Article  PubMed  Google Scholar 

  • Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614. doi:10.1038/35054544

    Article  CAS  PubMed  Google Scholar 

  • Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295. doi:10.1126/science.1232392

    Article  CAS  PubMed  Google Scholar 

  • Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans Roy Soc B: Biol Sci 365:2439–2450. doi:10.1098/rstb.2010.0104

    Article  CAS  Google Scholar 

  • Martins EP (1994) Estimating the rate of phenotypic evolution from comparative data. Am Nat 144:193–209

    Article  Google Scholar 

  • Melville J, Harmon LJ, Losos JB (2006) Intercontinental community convergence of ecology and morphology in desert lizards. Proc Roy Soc B 273:557–563. doi:10.1098/rspb.2005.3328

    Article  Google Scholar 

  • Miles DB, Ricklefs RE, Travis J (1987) Concordance of ecomorphological relationships in three assemblages of passerine birds. Am Nat 129:347–364

    Article  Google Scholar 

  • Moen DS, Wiens JJ (2009) Phylogenetic evidence for competitively driven divergence: body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). Evolution 63:195–214. doi:10.1111/j.1558-5646.2008.00538.x

    Article  CAS  PubMed  Google Scholar 

  • Montaña CG, Winemiller KO (2013) Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biol J Linn Soc 109:146–164

    Article  Google Scholar 

  • Muschick M, Indermaur A, Salzburger W (2012) Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol 22:2362–2368. doi:10.1016/j.cub.2012.10.048

    Article  CAS  PubMed  Google Scholar 

  • Orians GH, Paine RT (1983) Convergent evolution at the community level. In: Coevolution, Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Orians GH, Solbrig OT (1977a) Convergent evolution in warm deserts. Dowden, Hutchinson & Ross, Inc., Stroudsburg, PA

    Google Scholar 

  • Orians GH, Solbrig OT (1977b) Degree of convergence of ecosystem characteristics. In: Convergent evolution in warm deserts. Dowden, Hutchinson & Ross, Inc., Stroudsburg, PA

    Google Scholar 

  • Patterson TB, Givnish TJ (2003) Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytol 161:253–264. doi:10.1046/j.1469-8137.2003.00951.x

    Article  CAS  Google Scholar 

  • Pearce T (2012) Convergence and parallelism in evolution: a neo-Gouldian account. Br J Philos Sci 63:429–448. doi:10.1093/bjps/axr046

    Article  Google Scholar 

  • Pianka ER (1974) Evolutionary ecology, pp 1–397

    Google Scholar 

  • Pie MR, Weitz JS (2005) A null model of morphospace occupation. Am Nat 166:E1–E13. doi:10.1086/430727

    Article  PubMed  Google Scholar 

  • Powell R (2009) Contingency and convergence in macroevolution: a reply to John Beatty. J Philos 106:390–403

    Article  Google Scholar 

  • Powell R (2012) Convergent evolution and the limits of natural selection. Eur J Philos Sci 2:355–373. doi:10.1007/s13194-012-0047-9

    Article  Google Scholar 

  • Price T (1997) Correlated evolution and independent contrasts. Philos Trans Roy Soc Lond B 352:519–529

    Article  CAS  Google Scholar 

  • Price T, Lovette IJ, Bermingham E, Gibbs HL, Richman AD (2000) The imprint of history on communities of North American and Asian warblers. Am Nat 156:354–367. doi:10.1086/303397

    Article  PubMed  Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    Article  CAS  PubMed  Google Scholar 

  • Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–3268. doi:10.1111/j.1558-5646.2009.00804.x

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223

    Article  Google Scholar 

  • Revell LJ, Mahler DL, Peres-Neto PR, Redelings BD (2012) A new phylogenetic method for identifying exceptional phenotypic diversification. Evolution 66:135–146. doi:10.5061/dryad.vj310

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. University of Chicago Press, Chicago

    Google Scholar 

  • Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: historical and geographical perspectives, pp 1–414

    Google Scholar 

  • Ricklefs RE, Travis J (1980) A morphological approach to the study of avian community organization. Auk 97:321–338

    Google Scholar 

  • Rüber L, Verheyen E, Meyer A (1999) Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc Natl Acad Sci 96:10230–10235

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruedi M, Mayer F (2001) Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol Phylogenet Evol 21:436–448. doi:10.1006/mpev.2001.1017

    Article  CAS  PubMed  Google Scholar 

  • Sallan LC, Friedman M (2012) Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc Roy Soc B: Biol Sci 279:2025–2032. doi:10.1098/rspb.2011.2454

    Article  Google Scholar 

  • Samuels CL, Drake JA (1997) Divergent perspectives on community convergence. Trends Ecol Evol 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Saxer G, Doebeli M, Travisano M (2010) The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment. PLoS ONE 5:e14184. doi:10.1371/journal.pone.0014184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer M, van Nes EH (2006) Self-organized similarity, the evolutionary emergence of groups of similar species. Proc Natl Acad Sci 103:6230–6235. doi:10.1073/pnas.0508024103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter D (1986) Tests for similarity and convergence of finch communities. Ecology 67:1073–1085

    Article  Google Scholar 

  • Schluter D (1990) Species-for-species matching. Am Nat 136:560–568. doi:10.1086/285135

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation, pp 1–288

    Google Scholar 

  • Schluter D, McPhail JD (1993) Character displacement and replicate adaptive radiation. Trends Ecol Evol 8:197–200

    Article  CAS  PubMed  Google Scholar 

  • Segar ST, Pereira RAS, Compton SG, Cook JM (2013) Convergent structure of multitrophic communities over three continents. Ecol Lett. doi:10.1111/ele.12183

    Article  PubMed  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution, pp 1–237

    Google Scholar 

  • Simpson GG (1950) Evolutionary determinism and the fossil record. Sci Mon 71:262–267

    Google Scholar 

  • Springer MS, Kirsch JAW, Chase JA (1997) The chronicle of marsupial evolution. In: Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Stayton CT (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J Theor Biol 252:1–14. doi:10.1016/j.jtbi.2008.01.008

    Article  PubMed  Google Scholar 

  • Stiassny MLJ, Meyer A (1999) Cichlids of the rift lakes. Sci Am 280:64–69. doi:10.1038/scientificamerican0299-64

    Article  Google Scholar 

  • Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131

    Article  Google Scholar 

  • Strong DRJ, Simberloff D, Abele LG, Thistle AB (1984) Ecological communities: conceptual issues and the evidence, pp 1–613

    Google Scholar 

  • Svensson EI, Calsbeek R (2012) The past, the present, and the future of the adaptive landscape. In: Svensson EI, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 299–308

    Google Scholar 

  • Thomas GH, Freckleton RP (2012) MOTMOT: models of trait macroevolution on trees. Methods Ecol Evol 3:145–151. doi:10.1111/j.2041-210X.2011.00132.x

    Article  CAS  Google Scholar 

  • Tyerman J, Havard N, Saxer G, Travisano M, Doebeli M (2005) Unparallel diversification in bacterial microcosms. Proc Roy Soc B 272:1393–1398. doi:10.1098/rspb.2005.3068

    Article  Google Scholar 

  • Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36:823–841

    Article  CAS  Google Scholar 

  • Venditti C, Meade A, Pagel M (2011) Multiple routes to mammalian diversity. Nature 479:393–396. doi:10.1038/nature10516

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar DA, Adami C (2004) Influence of chance, history, and adaptation on digital evolution. Artif Life 10:181–190. doi:10.1162/106454604773563603

    Article  PubMed  Google Scholar 

  • Wiens JA (1991) Ecomorphological comparisons of the shrub-desert avifaunas of Australia and North America. Oikos 60:55–63

    Article  Google Scholar 

  • Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60:123–141

    PubMed  Google Scholar 

  • Winchester JM, Boyer DM, St Clair EM, Gosselin-Ildari AD, Cooke SB, Ledogar JA (2014) Dental topography of platyrrhines and prosimians: convergence and contrasts. Am J Phys Anthropol 153:29–44. doi:10.1002/ajpa.22398

    Article  PubMed  Google Scholar 

  • Yedid G, Bell G (2002) Macroevolution simulated with autonomously replicating computer programs. Nature 420:810–812. doi:10.1038/nature01151

    Article  CAS  PubMed  Google Scholar 

  • Yedid G, Ofria CA, Lenski RE (2008) Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms. J Evol Biol 21:1335–1357. doi:10.1111/j.1420-9101.2008.01564.x

    Article  CAS  PubMed  Google Scholar 

  • Young KA, Snoeks J, Seehausen O (2009) Morphological diversity and the roles of contingency, chance and determinism in African cichlid radiations. PLoS ONE 4:e4740. doi:10.1371/journal.pone.0004740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Luke Mahler or Travis Ingram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahler, D.L., Ingram, T. (2014). Phylogenetic Comparative Methods for Studying Clade-Wide Convergence. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_18

Download citation

Publish with us

Policies and ethics