Skip to main content

Recognition by Immune Cells

  • Chapter
MHC Ligands and Peptide Motifs

Abstract

Natural killer cells have a different way of looking at MHC molecules as compared to T-cells. The relationship between NK cells and MHC molecules was originally proposed by Klaas Kärre’s ‘missing self’ hypothesis which assumed that NK cells screen other cells for the absence of MHC molecules.1–5 This hypothesis has been proven correct in essence.’ NK cells express group-specific receptors for MHC molecules.6 These receptors can be either inhibitory (killer inhibitory receptors, KIR), or activatory. In addition, NK cells express activatory receptors that recognize structures expressed on many cell types. If an NK cell binds to a normal MHC expressing cell, both inhibitory and activatory receptors are engaged. This leads to a dominant inhibitory effect so that no activation takes place. If a target cell has lost MHC expression, however, the inhibitory receptor does not find its ligand, and as a consequence, the target cell is killed. A number of KIRs both on human and mouse cells have been identified.7,8 Originally, receptors of different gene families were discovered in mice and humans and only recently evidence that the two families exist in both species has been provided.b6,8–11 Therefore, the best known mouse receptors are of the lectin receptor type, whereas the most intensively studied human ones belong to the immunoglobulin superfamily. Each of the mouse receptors, Ly49 A, B, C, D, E, F, G, and H, is specific for a different selection of H-2 molecules (see Table 5.1). Similarly, each of the human receptors, NKAT1 through NKAT4, recognizes a certain epitope on the HLA class I molecule that defines its recognition pattern (Table 5.1).8,12–14 Each NK cell expresses several KIRs; their combination, relative density, and functional significance is dependent on inheritance and selection processes during their ontogeny, details of which are not well known, however.15–19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forman, J. Ciavarra, R, and Vitetta, E.J. J. Exp. Med. 154: 1357 (1981).

    PubMed  CAS  Google Scholar 

  2. Steinmuller, D., Tyler, J.D., and David, C.S. J. Immunol. 126: 1747 (1981).

    PubMed  CAS  Google Scholar 

  3. Bevan, M.J. Nature 256: 419 (1975).

    PubMed  CAS  Google Scholar 

  4. Rammensee, H.-G. and Bevan, M.J. Nature 308: 741 (1984).

    PubMed  CAS  Google Scholar 

  5. Dos Reis, G.A. and Shevach, E.M, J. Exp. Med. 157: 1287 (1983).

    PubMed  Google Scholar 

  6. Groves, E.S. and Singer, A.J. Exp, Med, 158: 1483 (1983).

    CAS  Google Scholar 

  7. Matzinger, P., Zamoyska, R. and Waldmann, H. Nature 308: 738 (1984).

    PubMed  CAS  Google Scholar 

  8. Ishii, N., Nagy, Z.A, and Klein, J. Nature 295: 531 (1982).

    PubMed  CAS  Google Scholar 

  9. Bevan, M.J. Immunol. Today, in press (1984).

    Google Scholar 

  10. Oudshoorn-Snoek, M., Mellor, A.L., Flavell, R.A., and Demant, P. Immunogenetics 19: 461 (1984).

    PubMed  CAS  Google Scholar 

  11. Weiss, D.W. Transpl. Proceed. 16: 545 (1984).

    Google Scholar 

  12. Doolittle, R. et al. Science 221: 275 (1983).

    PubMed  CAS  Google Scholar 

  13. Vitetta, E.S., Krulick, K.A., MiyamaInaba, M., Cashley, W. and Uhr, J.W. Science 219: 644 (1983).

    PubMed  CAS  Google Scholar 

  14. Mills, C.D. and North, R.J. J. Exp. Med, 157: 1448 (1983).

    CAS  Google Scholar 

  15. Tyler, J.D., Gralli, S.J., Snider, M.E., Dvorak, A.M. and Steinmuller, D. J. Exp. Med. 159: 234 (1984).

    CAS  Google Scholar 

  16. Caroll, A.M., Palladino, M.A., Oettgen, H., and Defonsa, M. Cell. Immunol. 76: 69 (1983).

    Google Scholar 

  17. Gallatin, W.M., Weissman, I.L., and Butcher, E.C. Nature 304: 30 (1983).

    PubMed  CAS  Google Scholar 

  18. Hardt, C., Rollinghoff, M., Pfxzenmaier, K., Mosmann, H. and Wagner, H. J. Exp. Med. 154: 262 (1981).

    CAS  Google Scholar 

  19. Cheever, M.A., Greenberg, P.O., Fefer, A., and Gillis, S. J. Exp. Med. 155: 968 (1982).

    CAS  Google Scholar 

  20. Palladino, M.A., Welte, K., Caroll, A.M, and Oettgen, H.F. Cell. Immunol. 86: 299 (1984).

    PubMed  CAS  Google Scholar 

  21. Engers, H.D., Glasebrook, A.L. and Sorenson, G.D, J. Exp. Med. 156: 1280 (1982).

    PubMed  CAS  Google Scholar 

  22. Engers, H.D., Lahaye, T., Sorenson, G.D., Glasebrook, A.L. Horvath, C., and Brunner, K.T. J. Immunol. 133: 1664 (1984).

    Google Scholar 

  23. Rammensee, H.-G., Bevan, M.J. and Fink, P.J. Immunol. Today, in press (1984).

    Google Scholar 

  24. Kärre K. Natural killer cells and the MHC class I pathway of peptide presentation. Semin Immunol 1993; 5: 127–45.

    PubMed  Google Scholar 

  25. Ljunggren HG, Karre K. In search of the missing self: MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237–44.

    Google Scholar 

  26. Ohlen C, Bastin J, Ljunggren HG et al. Resistance to H-2-restricted but not to allo-H2-specific graft and cytotoxic T lymphocyte responses in lymphoma mutant. J Immunol 1990; 145: 52–8.

    PubMed  CAS  Google Scholar 

  27. Ljunggren HG, Karre K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 1985; 162: 174 5–59.

    Google Scholar 

  28. Kärre K. Express yourself or die: peptides, MHC molecules, and NK cells. Science 1995; 267: 978–9.

    PubMed  Google Scholar 

  29. Colonna M. Natural killer cell receptors specific for MHC class I molecules. Curr Opin Immunol 1996; 8: 101–7.

    PubMed  CAS  Google Scholar 

  30. Long EO, Colonna M, Lanier LL. Inhibitory MHC class I receptors on NK and T cells: a standard nomenclature. Immunol Today 1996; 17: 100.

    PubMed  CAS  Google Scholar 

  31. Lanier LL. Natural killer cell receptors and MHC class I interactions. Curr Opin Immunol 1997; 9: 126–31.

    PubMed  CAS  Google Scholar 

  32. Phillips JH, Chang C, Mattson J et al. CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and HLA-C allotypes. Immunity 1996; 5: 163–72.

    PubMed  CAS  Google Scholar 

  33. Carretero M, Cantoni C, Bellon T et al. The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur J Immunol 1997; 27: 563–7.

    PubMed  CAS  Google Scholar 

  34. Brooks AG, Posch PE, Scorzelli CJ et al. NKG2 complexed with CD94 defines a novel inhibitory natural killer cell receptor. J Exp Med 1997; 185: 795–800.

    PubMed  CAS  Google Scholar 

  35. Münz C, Holmes N, King A et al. HLAG molecules inhibit NKAT3 expressing natural killer cells. J Exp Med 1997; 185: 385–91.

    PubMed  Google Scholar 

  36. Cella M, Longo A, Ferrara GB et al. NK3-specific natural killer cells are se-lectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med 1994; 180: 1235–42.

    PubMed  CAS  Google Scholar 

  37. Colonna M, Borsellino G, Falco M et al. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci U S A 1993; 90: 12000–4.

    PubMed  CAS  Google Scholar 

  38. Raulet DH, Correa I, Corral L et al. Inhibitory effects of class I molecules on murine NK cells: speculations on function, specificity and self-tolerance. Semin Immunol 1995; 7: 103–7.

    PubMed  CAS  Google Scholar 

  39. Raulet DH, Held W. Natural killer cell receptors: the offs and ons of NK cell recognition. Cell 1995; 82: 697–700.

    PubMed  CAS  Google Scholar 

  40. Held W, Roland J, Raulet DH. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature 1995; 376: 355–8.

    PubMed  CAS  Google Scholar 

  41. Dorfman JR, Raulet DH. Major histocompatibility complex genes determine natural killer cell tolerance. Eur J Immunol 1996; 26: 151–5.

    PubMed  CAS  Google Scholar 

  42. Gumperz JE, Valiante NM, Parham P et al. Heterogenous phenotypes of expression of the NKB1 natural killer cell class I receptor among individuals of different human histocompatibility leukocyte antigen types appear genetically regulated, but not linked to major histocompatibility complex haplotype. J Exp Med 1996; 183: 1817–27.

    PubMed  CAS  Google Scholar 

  43. Correa I, Raulet DH. Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity 1995; 2: 61–71.

    PubMed  CAS  Google Scholar 

  44. Malnati MS, Peruzzi M, Parker KC et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 1995; 267: 1016–8.

    PubMed  CAS  Google Scholar 

  45. Orange JS, Wang B, Terhorst C et al. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 1995; 182: 1045–56.

    PubMed  CAS  Google Scholar 

  46. Germann T, Rude E. Interleukin-12. Int Arch Allergy Immunol 1995; 108: 103–12.

    CAS  Google Scholar 

  47. Chien YH, Davis MM. How alpha beta T-cell receptors `see’ peptide/MHC corn-plexes.Immunol Today 1993; 14: 597–602.

    CAS  Google Scholar 

  48. Schild H, Chien YH. The recognition of MHC molecules by gamma delta T cells. Behring Inst Mitt 1994; 113–23.

    Google Scholar 

  49. Schild H, Mavaddat N, Litzenberger C et al. The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 1994; 76: 29–37.

    PubMed  CAS  Google Scholar 

  50. Sprent J. Central tolerance of T cells. Int Rev Immunol 1995; 13: 95–105.

    PubMed  CAS  Google Scholar 

  51. Kisielow P, von Boehmer H. Development and selection of T cells: facts and puzzles. Adv Immunol 1995; 58: 87–209.

    PubMed  CAS  Google Scholar 

  52. DiBrino M, Parker KC, Shiloach J et al. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLAAI and HLA-B8. J Immunol 1994; 152: 620–31.

    PubMed  CAS  Google Scholar 

  53. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991–1045.

    PubMed  CAS  Google Scholar 

  54. Garboczi DN, Ghosh P, Utz U et al. Structure of the complex between human T cell receptor, viral peptide and HLA A2. Nature 1996; 384: 134–141.

    PubMed  CAS  Google Scholar 

  55. Garcia KC, Degano M, Stanfield RL et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCRMHC complex. Science 1996; 274: 209–19.

    PubMed  CAS  Google Scholar 

  56. Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71: 1065–8.

    PubMed  CAS  Google Scholar 

  57. Romagnani S. Thl and Th2 in human diseases. Clin Immunol Immunopathol 1996; 80: 225–35.

    PubMed  CAS  Google Scholar 

  58. Cantrell D. T cell antigen receptor signal transduction pathways. Annu Rev Immunol 1996; 14: 259–74.

    PubMed  CAS  Google Scholar 

  59. Mosmann TR, Sad S, Krishnan L et al. Differentiation of subsets of CD4’ and CD8’ T cells. Ciba Found Symp 1995; 195–1/97.

    Google Scholar 

  60. Erard F, Dunbar PR, Le Gros G. The IL4- induced switch of CD8’ T cells to a TH2 phenotype and its possible relationship to the onset of AIDS. Res Immunol 1994; 145: 643–5.

    PubMed  CAS  Google Scholar 

  61. Sun J, Leahy DJ, Kavathas PB. Interaction between CD8 and major histocompatibility complex (MHC) class I mediated by multiple contact surfaces that include the alpha 2 and alpha 3 domains of MHC class I. J Exp Med 1995; 182: 1275–80.

    PubMed  CAS  Google Scholar 

  62. von Boehmer H. Thymic selection: a matter of life and death. Immunol Today 1992; 13: 454–8.

    Google Scholar 

  63. Bluethmann H, Kisielow P, Uematsu Y et al. T-cell-specific deletion of T-cell receptor transgenes allows functional rearrangement of endogenous alpha-and beta-genes. Nature 1988; 334: 156–9.

    CAS  Google Scholar 

  64. Kisielow P, Bluethmann H, Staerz UD et al. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4’8+ thymocytes. Nature 1988; 333: 742–6.

    PubMed  CAS  Google Scholar 

  65. Kisielow P, Teh HS, Bluethmann H et al. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 1988; 335: 730–3.

    PubMed  CAS  Google Scholar 

  66. Kagi D, Ledermann B, Burki K et al. Lymphocyte-mediated cytotoxicity in vitro and in vivo: mechanisms and significance. Immunol Rev 1995; 146: 95–115.

    PubMed  CAS  Google Scholar 

  67. Kagi D, Vignaux F, Ledermann B et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–30.

    PubMed  CAS  Google Scholar 

  68. Mosmann TR. Cytokines, differentiation and functions of subsets of CD4 and CD8 T cells. Behring Inst Mitt 1995; 1–6.

    Google Scholar 

  69. Trinchieri G. The two faces of interleukin 12: a pro-inflammatory cytokine and a key immunoregulatory molecule produced by antigen-presenting cells. Ciba Found Symp 1995; 195: 203–20.

    PubMed  CAS  Google Scholar 

  70. Magram J, Connaughton SE, Warner RR et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 1996; 4: 471–81.

    PubMed  CAS  Google Scholar 

  71. Doherty TM. T-cell regulation of macrophage function. Curr Opin Immunol 1995; 7: 400–4.

    PubMed  CAS  Google Scholar 

  72. Foy TM, Aruffo A, Bajorath J et al. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14: 591–617.

    PubMed  CAS  Google Scholar 

  73. Banchereau J, Bazan F, Blanchard D et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881–922.

    PubMed  CAS  Google Scholar 

  74. Sherman LA, Chattopadhyay S. The mo-lecular basis of allorecognition. Annu Rev Immunol 1993; 11: 385–402.

    PubMed  CAS  Google Scholar 

  75. Rammensee HG, Falk K, Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 1993; 11: 213–44.

    PubMed  CAS  Google Scholar 

  76. Rötzschke O, Falk K, Faath S et al. On the nature of peptides involved in T cell alloreactivity. J Exp Med 1991; 174: 1059–71.

    PubMed  Google Scholar 

  77. Klein J. Natural History of the Major Histocompatibility Complex. New York: J. Wiley & Sons; 1986.

    Google Scholar 

  78. Gorer PA. The genetic and antigenic basis of tumor transplantation. J Pathol Bacteriol. 1937; 44: 691–7.

    Google Scholar 

  79. von Boehmer H, Teh HS, Kisielow P. The thymus selects the useful, neglects the useless and destroys the harmful. Immunol Today 1989; 10: 57–61.

    Google Scholar 

  80. Jameson SC, Hogquist KA, Bevan MJ. Positive selection of thymocytes. Annu Rev Immunol 1995; 13: 93–126.

    PubMed  CAS  Google Scholar 

  81. Hosken NA, Bevan MJ. An endogenous antigenic peptide bypasses the class I antigen presentation defect in RMA-S. J Exp Med 1992; 175: 719–29.

    PubMed  CAS  Google Scholar 

  82. Udaka K, Tsomides TJ, Walden P et al. A ubiquitous protein is the source of naturally occurring peptides that are recognized by a CD8’ T-cell clone. Proc Natl Acad Sci U S A 1993; 90: 11272–6.

    PubMed  CAS  Google Scholar 

  83. van Rood JJ. The impact of the HLA-systern in clinical medicine. Schweiz Med Wochenschr 1993; 123: 85–92.

    PubMed  Google Scholar 

  84. van Rood JJ, Claas FH, Doxiadis II et al. The role of HLA typing in clinical kidney transplants: 30 years later HLA matching is prime importance in bone marrow transplantation. Clin Transpl 1993; 434–5.

    Google Scholar 

  85. Opelz G, Wujciak T. Cadaveric kidneys should be allocated according to the HLA match. Transplant Proc 1995; 27: 93–9.

    PubMed  CAS  Google Scholar 

  86. Gale RP, Opelz G. Immunologic and clinical perspectives in human bone marrow transplantation. Transplant Proc 1978; 10: 265–8.

    PubMed  CAS  Google Scholar 

  87. Opelz G, Gale RP, Feig SA et al. Significance of HLA and non-HLA antigens in bone marrow transplantation. Transplant Proc 1978; 10: 43–6.

    PubMed  CAS  Google Scholar 

  88. Wong T, Donaldson P, Devlin J et al. Repeat HLA-B and -DR loci mismatching at second liver transplantation improves patient survival. Transplantation 1996; 61: 440–4.

    PubMed  CAS  Google Scholar 

  89. Kolb HJ, Schattenberg A, Goldman JM et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995; 86: 2041–50.

    PubMed  CAS  Google Scholar 

  90. Stachel D, Schmid I, Straka C et al. Allogenic peripheral blood stem cell (PBSC) transplantation in two patients with graft failure. Bone Marrow Transplant 1995; 16: 839–42.

    PubMed  CAS  Google Scholar 

  91. Rammensee HG, Bevan MJ. Evidence from in vitro studies that tolerance to self antigens is MHC-restricted. Nature 1984; 308: 741–4.

    PubMed  CAS  Google Scholar 

  92. Sadovnikova E, Stauss HJ. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: Reagents for tumor immunotherapy. Proc Natl Acad Sci U S A 1996; 93: 13114–8.

    Google Scholar 

  93. Roopenian DC, Christianson GJ, Davis AP et al. The genetic origin of minor histocompatibility antigens. Immunogenetics 1993; 38: 131–40.

    PubMed  CAS  Google Scholar 

  94. Counce S, Smith P, Barth R et al. Strong and weak histocompatibility gene differences in mice an their role in the rejection of homografts of tumors and skin. Ann Surg 1956; 144: 198–204.

    PubMed  Google Scholar 

  95. Goulmy E. Human minor histocompatibility antigens. Curr Opin Immunol 1996; 8: 75–81.

    PubMed  CAS  Google Scholar 

  96. Fischer-Lindahl K. Minor histocompatibility antigens. Trends Genet 1991; 7: 219–24.

    Google Scholar 

  97. Rötzschke O, Falk K, Wallny HJ et al. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y. Science 1990; 249: 283–7.

    PubMed  Google Scholar 

  98. Wallny HJ, Rammensee HG. Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature 1990; 343: 275–8.

    PubMed  CAS  Google Scholar 

  99. Simpson E. Mechanisms of transplantation immunity. Springer Semin Immunopathol 1992; 14: 17–32.

    PubMed  CAS  Google Scholar 

  100. Rodgers JR, Mehta V, Cook RG. Surface expression of beta 2-microglobulin-associated thymus-leukemia antigen is independent of TAP2. Eur J Immunol 1995; 25: 1001–7.

    PubMed  CAS  Google Scholar 

  101. Greenfield A, Scott D, Pennisi D et al. An H-YDL epitope is encoded by a novel mouse Y chromosome gene. Nature Genetics 1996; 14: 474–8.

    PubMed  CAS  Google Scholar 

  102. Scott DM, Ehrmann rE, Ellis PS et al. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 1995; 376: 695–8.

    PubMed  CAS  Google Scholar 

  103. Morse MC, Bleau G, Dabhi VM et al. The COI mitochondrial gene encodes a minor histocompatibility antigen presented by H2–M3. J Immunol 1996; 156: 3301–7.

    PubMed  CAS  Google Scholar 

  104. Barber LD, Percival L, Valiante NM et al. The inter-locus recombinant HLAB*4601 has high selectivity in peptide binding and functions characteristic of HLA-C. J Exp Med 1996; 184: 735–40.

    PubMed  Google Scholar 

  105. Wang CR, Loveland BE, Lindahl KF. H-2M3 encodes the MHC class I molecule presenting the maternally transmitted antigen of the mouse. Cell 1991; 66: 335–45.

    PubMed  CAS  Google Scholar 

  106. Eichwald EJ, Silmser CS. Communication. Transpl Bull 1955; 2: 148

    CAS  Google Scholar 

  107. Hurme M, Hetherington CM, Chandler PR et al. Cytotoxic T-cell responses to H-Y: mapping of the Ir genes. J Exp Med 1978; 147: 758–67.

    PubMed  CAS  Google Scholar 

  108. Gordon RD, Samelson LE, Simpson E. Selective response to H-Y antigen by F1 female mice sensitized to Fl male cells. J Exp Med 1977; 146: 606–10.

    PubMed  CAS  Google Scholar 

  109. Rammensee HG, Robinson PJ, Crisanti A et al. Restricted recognition of beta 2microglobulin by cytotoxic T lymphocytes. Nature 1986; 319: 502–4.

    PubMed  CAS  Google Scholar 

  110. Perreault C, Jutras J, Roy DC et al. Identification of an immunodominant mouse minor histocompatibility antigen (MiHA). T cell response to a single dominant MiHA causes graft-versus-host disease. J Clin Invest 1996; 98: 622–8.

    PubMed  CAS  Google Scholar 

  111. Wang W, Meadows LR, den Haan JM et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 1995; 269: 1588–90.

    PubMed  CAS  Google Scholar 

  112. Scott DM, Ehrmann IE, Ellis PS et al. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 1995; 376: 695–8.

    PubMed  CAS  Google Scholar 

  113. den Haan JM, Sherman NE, Blokland E et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995; 268: 1476–80.

    Google Scholar 

  114. Loveland B, Wang CR, Yonekawa H et al. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell 1990; 60: 971–80.

    PubMed  CAS  Google Scholar 

  115. Fischer-Lindahl K, Hermel E, Loveland BE et al. Maternally transmitted antigen of mice: a model transplantation antigen. Annu Rev Immunol 1991; 9: 351–72.

    PubMed  CAS  Google Scholar 

  116. Oldstone MB. The role of cytotoxic T lymphocytes in infectious disease: history, criteria, and state of the art. Curr Top Microbiol Immunol 1994; 189: 1–8.

    PubMed  CAS  Google Scholar 

  117. Paglia P, Girolomoni G, Robbiati F et al. Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J Exp Med 1993; 178: 1893–901.

    PubMed  CAS  Google Scholar 

  118. Bevan MJ. Immunology. Stimulating killer cells. Nature 1989; 342: 478–9.

    PubMed  CAS  Google Scholar 

  119. Srivastava PK, Udono H, Blachere NE et al. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994; 39: 93–8.

    PubMed  CAS  Google Scholar 

  120. Kotzin BL, Leung DY, Kappler J et al. Superantigens and their potential role in human disease. Adv Immunol 1993; 54: 99–166.

    PubMed  CAS  Google Scholar 

  121. Marrack P, Winslow GM, Choi Y et al. The bacterial and mouse mammary tumor virus superantigens; two different families of proteins with the same functions. Immunol Rev 1993; 131: 79–92.

    PubMed  CAS  Google Scholar 

  122. Jardetzky TS, Brown JH, Gorga JC et al. Three-dimensional structure of a human class II histocompatibility molecule cornplexed with superantigen. Nature 1994; 368: 711–8.

    PubMed  CAS  Google Scholar 

  123. Renno T, Hahne M, Tschopp J et al. Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B220 and upregulate Fas and Fas ligand. J Exp Med 1996; 183: 431–7.

    PubMed  CAS  Google Scholar 

  124. Rammensee HG, Kroschewski R, Fran-goulis B. Clonal anergy induced in mature V beta 6+ T lymphocytes on immunizing Mls-lb mice with Mls-la expressing cells. Nature 1989; 339: 541–4.

    PubMed  CAS  Google Scholar 

  125. Rötzschke O, Falk K, Deres K et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348: 252–4.

    Google Scholar 

  126. van Bleek GM, Nathenson SG. Isolation of an immunodominant viral peptide from the class I H-2Kb molecule. Nature 1990; 348: 213–6.

    PubMed  Google Scholar 

  127. Loftus DJ, Castelli C, Clay TM et al. Identification of epitope mimics recognized by CTL reactive to the melanoma/ melanocyte-derived peptide MART-1. J Exp Med 1996; 184: 647–57.

    PubMed  CAS  Google Scholar 

  128. Kast WM, Offringa R, Peters PJ et al. Eradication of adenovirus El-induced tumors by EIA-specific cytotoxic T lymphocytes. Cell 1989; 59: 603–14.

    PubMed  CAS  Google Scholar 

  129. Toes RE, Offringa R, Blom RJ et al. An adenovirus type 5 early region 1B-encoded CTL epitope-mediating tumor eradication by CTL clones is down-modulated by an activated ras oncogene. J Immunol 1995; 154: 3396–405.

    PubMed  CAS  Google Scholar 

  130. Pauly T, Elbers K, König M et al. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J Gen Virol 1995; 76: 3039–49.

    PubMed  CAS  Google Scholar 

  131. Livingston PG, Kurane I, Dai LC et al. Dengue virus-specific, HLA-B35-restricted, human CD8’ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities. J Immunol 1995; 154: 1287–95.

    PubMed  CAS  Google Scholar 

  132. Zivny J, Kurane I, Leporati AM et al. A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities. J Exp Med 1995; 182: 853–63.

    PubMed  CAS  Google Scholar 

  133. Lee SP, Thomas WA, Murray RJ et al. HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 1993; 67: 7428–35.

    PubMed  CAS  Google Scholar 

  134. Stuber G, Dillner J, Modrow S et al. HLA-A0201 and HLA-B7 binding peptides in the EBV-encoded EBNA-1, EBNA-2 and BZLF-1 proteins detected in the MHC class I stabilization assay. Low proportion of binding motifs for several HLA class I alleles in EBNA-1. Int Immunol 1995; 7: 653–63.

    PubMed  CAS  Google Scholar 

  135. Kerr BM, Kienzle N, Burrows JM et al. Identification of type B-specific and cross-reactive cytotoxic T-lymphocyte responses to Epstein-Barr virus. J Virol 1996; 70: 8858–64.

    PubMed  CAS  Google Scholar 

  136. Burrows SR, Gardner J, Khanna R et al. Five new cytotoxic T cell epitopes identified within Epstein-Barr virus nuclear antigen 3. J Gen Virol 1994; 75: 2489–93.

    PubMed  CAS  Google Scholar 

  137. Zhang QJ, Gavioli R, Klein G et al. An HLA-All-specific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci U S A 1993; 90: 2217–21.

    PubMed  CAS  Google Scholar 

  138. Gavioli R, Kurilla MG, de Campos Lima PO et al. Multiple HLA All-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol 1993; 67: 1572–8.

    PubMed  CAS  Google Scholar 

  139. Steven NM, Leese AM, Annels NE et al. Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med 1996; 184: 1801–13.

    PubMed  CAS  Google Scholar 

  140. Hill A, Worth A, Elliott T et al. Characterization of two Epstein-Barr virus epitopes restricted by HLA-B7. Eur J Immunol 1995; 25: 18–24.

    PubMed  CAS  Google Scholar 

  141. Burrows SR, Sculley TB, Misko IS et al. An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3). J Exp Med 1990; 171: 345–9.

    PubMed  CAS  Google Scholar 

  142. Brooks JM, Murray RJ, Thomas WA et al. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J Exp Med 1993; 178: 879–87.

    PubMed  CAS  Google Scholar 

  143. Lee SP, Morgan S, Skinner J et al. Epstein-Barr virus isolates with the major HLA B35.01-restricted cytotoxic T lymphocyte epitope are prevalent in a highly B35.01-positive African population. Eur J Immunol 1995; 25: 102–10.

    PubMed  CAS  Google Scholar 

  144. Moss DJ, Burrows SR, Khanna R et al. Immune surveillance against Epstein-Barr virus. Semin Immunol 1992; 4: 97–104.

    PubMed  CAS  Google Scholar 

  145. Khanna R, Burrows SR, Kurilla MG et al. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 1992; 176: 169–76.

    PubMed  CAS  Google Scholar 

  146. Hill AB, Lee SP, Haurum JS et al. Class I major histocompatibility complex-restricted cytotoxic T lymphocytes specific for Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines against which they were raised. J Exp Med 1995; 181: 2221–8.

    PubMed  CAS  Google Scholar 

  147. Nayersina R, Fowler P, Guilhot S et al. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 1993; 150: 4659–71.

    PubMed  CAS  Google Scholar 

  148. Bertoletti A, Costanzo A, Chisari FV et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 1994; 180: 933–43.

    PubMed  CAS  Google Scholar 

  149. Bertoletti A, Chisari FV, Penna A et al. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J Virol 1993; 67: 2376–80.

    PubMed  CAS  Google Scholar 

  150. del Guercio MF, Sidney J, Hermanson G et al. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 1995; 154: 685–93.

    PubMed  CAS  Google Scholar 

  151. Rehermann B, Fowler P, Sidney J et al. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 1995; 181: 1047–58.

    PubMed  CAS  Google Scholar 

  152. Wentworth PA, Vitiello A, Sidney J et al. Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigentransgenic mice. Eur J Immunol 1996; 26: 97–101.

    PubMed  CAS  Google Scholar 

  153. Rehermann B, Pasquinelli C, Mosier SM et al. Hepatitis B virus (HBV) sequence variation of cytotoxic T lymphocyte epitopes is not common in patients with chronic HBV infection. J Clin Invest 1995; 96: 1527–34.

    PubMed  CAS  Google Scholar 

  154. Tsai SL, Chen MH, Yeh CT et al. Purification and characterization of a naturally processed hepatitis B virus peptide recognized by CD8* cytotoxic T lymphocytes. J Clin Invest 1996; 97: 577–84.

    PubMed  CAS  Google Scholar 

  155. Missale G, Redeker A, Person J et al. HLA-A31- and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med 1993; 177: 751–62.

    PubMed  CAS  Google Scholar 

  156. Schirmbeck R, Melber K, Kuhrober A et al. Immunization with soluble hepatitis B virus surface protein elicits murine H2 class I-restricted CD8* cytotoxic T lymphocyte responses in vivo. J Immunol 1994; 152: 1110–9.

    PubMed  CAS  Google Scholar 

  157. Kuhöber A, Pudollek HP, Reifenberg K et al. DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol 1996; 156: 3687–95.

    PubMed  Google Scholar 

  158. Kobayashi H, Sato K, Miyokawa N et al. Analysis of naturally processed human histocompatibility leukocyte antigen class I-bound peptides from hepatocellular carcinoma tissues in vivo. Jpn J Cancer Res 1995; 86: 962–8.

    PubMed  CAS  Google Scholar 

  159. Gavin MA, Gilbert MJ, Riddell SR et al. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol 1993; 151: 3971–80.

    PubMed  CAS  Google Scholar 

  160. Wills MR, Carmichael AJ, Mynard K et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specifity, and T-cell receptor usage of pp65-specific CTL. J Virol 1996; 70: 7569–79.

    PubMed  CAS  Google Scholar 

  161. Shirai M, Okada H, Nishioka M et al. An epitope in hepatitis C virus core region recognized by cytotoxic T cells in mice and humans. J Virol 1994; 68: 3334–42.

    PubMed  CAS  Google Scholar 

  162. Shirai M, Arichi T, Nishioka M et al. CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-A2.1. J Immunol 1995; 154: 2733–42.

    PubMed  CAS  Google Scholar 

  163. Cerny A, Fowler P, Brothers MA et al. Induction in vitro of a primary human antiviral cytotoxic T cell response. Eur J Immunol 1995; 25: 627–30.

    PubMed  CAS  Google Scholar 

  164. Cerny A, McHutchison JG, Pasquinelli C et al. Cytotoxic T lymphocyte response to hepatitis C virus-derived peptides containing the HLA A2.1 binding motif. J Clin Invest 1995; 95: 521–30.

    PubMed  CAS  Google Scholar 

  165. Battegay M, Fikes J, Di Bisceglie AM et al. Patients with chronic hepatitis C have circulating cytotoxic T cells which recognize hepatitis C virus-encoded peptides binding to HLA-A2.1 molecules. J Virol 1995; 69: 2462–70.

    PubMed  CAS  Google Scholar 

  166. Kurokohchi K, Akatsuka T, Pendleton CD et al. Use of recombinant protein to identify a motif-negative human cytotoxic T-cell epitope presented by HLAA2 in the hepatitis C virus NS3 region. J Virol 1996; 70: 232–40.

    PubMed  CAS  Google Scholar 

  167. Wentworth PA, Sette A, Celis E et al. Identification of A2-restricted hepatitis C virus-specific cytotoxic T lymphocyte epitopes from conserved regions of the viral genome. Int Immunol 1996; 8: 651–9.

    PubMed  CAS  Google Scholar 

  168. Koziel MJ, Dudley D, Afdhal N et al. HLA class I-restricted cytotoxic T lymphocytes specific for hepatitis C virus. Identification of multiple epitopes and characterization of patterns of cytokine release. J Clin Invest 1995; 96: 2311–21.

    PubMed  CAS  Google Scholar 

  169. Koziel MJ, Dudley D, Wong JT et al. Intrahepatic cytotoxic T lymphocytes specific for hepatitis C virus in persons with chronic hepatitis [published erratum appears in J Immunol 1993; 150:2563]. J Immunol 1992; 149: 3339–44.

    CAS  Google Scholar 

  170. Kaneko T, Nakamura I, Kita H et al. Three new cytotoxic T cell epitopes identified within the hepatitis C virus nucleoprotein. J Gen Virol 1996; 77: 1305–9.

    PubMed  CAS  Google Scholar 

  171. Rehermann B, Chang K, McHutchison JG et al. Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection. J Clin Invest 1996; 98: 1432–40.

    PubMed  CAS  Google Scholar 

  172. Shirai M, Chen M, Arichi T et al. Use of intrinsic and extrinsic helper epitopes for in vivo induction of anti-hepatitis C virus cytotoxic T lymphocytes (CTL) with CTL epitope peptide vaccines. J Infect Dis 1996; 173: 24–31.

    PubMed  CAS  Google Scholar 

  173. Cooper S, Kowalski H, Erickson AL et al. The presentation of a hepatitis C viral peptide by distinct major histocompatibility complex class I allotypes from two chimpanzee species. J Exp Med 1996; 183: 663–8.

    PubMed  CAS  Google Scholar 

  174. Kowalski H, Erickson AL, Cooper S et al. Patr-A and B, the orthologues of HLA-A and B, present hepatitis C virus epitopes to CD8+ cytotoxic T cells from two chronically infected chimpanzees. J Exp Med 1996; 183: 1761–75.

    PubMed  CAS  Google Scholar 

  175. Dai LC, West K, Littaua R et al. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8’ A24-restricted cytotoxic T lymphocytes. J Virol 1992; 66: 3151–4.

    PubMed  CAS  Google Scholar 

  176. Buseyne F, McChesney M, Porrot F et al. Gag-specific cytotoxic T lymphocytes from human immunodeficiency virus type 1-infected individuals: Gag epitopes are clustered in three regions of the p24gag protein. J Virol 1993; 67: 694–702.

    PubMed  CAS  Google Scholar 

  177. Buseyne F, Riviere Y. HIV-specific CD8+ T-cell immune responses and viral replication. AIDS 1993; 7 Suppl 2: s81–5.

    Google Scholar 

  178. DiBrino M, Parker KC, Margulies DH et al. The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. J Biol Chem 1994; 269: 32426–34.

    PubMed  CAS  Google Scholar 

  179. Phillips RE, Rowland Jones S, Nixon DF et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354: 453–9.

    PubMed  CAS  Google Scholar 

  180. Achour A, Picard O, Zagury D et al. HGP-30, a synthetic analogue of human immunodeficiency virus (HIV) p17, is a target for cytotoxic lymphocytes in HIV-infected individuals. Proc Natl Acad Sci U S A 1990; 87: 7045–9.

    PubMed  CAS  Google Scholar 

  181. Johnson RP, Trocha A, Buchanan TM et al. Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J Exp Med 1992; 175: 961–71.

    PubMed  CAS  Google Scholar 

  182. Culmann B, Gomard E, Kieny MP et al. Six epitopes reacting with human cytotoxic CD8’ T cells in the central region of the HIV-1 NEF protein. J Immunol 1991; 146: 1560–5.

    PubMed  CAS  Google Scholar 

  183. Jardetzky TS, Lane WS, Robinson RA et al. Identification of self peptides bound to purified HLA-B27. Nature 1991; 353: 326–9.

    PubMed  CAS  Google Scholar 

  184. Nietfield W, Bauer M, Fevrier M et al. Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J Immunol 1995; 154: 2189–97.

    PubMed  CAS  Google Scholar 

  185. Littaua RA, Oldstone MB, Takeda A et al. An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. J Virol 1991; 65: 4051–6.

    PubMed  CAS  Google Scholar 

  186. Renggli J, Valmori D, Romero JF et al. CD8+ T-cell protective immunity induced by immunization with Plasmodium berghei CS protein-derived synthetic peptides: evidence that localization of peptide-specific CTLs is crucial for protection against malaria. Immunol Lett 1995; 46: 199–205.

    PubMed  CAS  Google Scholar 

  187. Takahashi H, Cohen J, Hosmalin A et al. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 1988; 85: 3105–9.

    PubMed  CAS  Google Scholar 

  188. Bergmann C, Stohlmann SA, McMillan M. An endogenously synthesized decamer peptide efficiently primes cytotoxic T cells specific for the HIV-1 envelope glycoprotein. Eur J Immunol 1993; 23: 2777–81.

    PubMed  CAS  Google Scholar 

  189. Bergmann CC, Stohlman SA. Specificity of the H-2 L(d)-restricted cytotoxic T-lymphocyte response to the mouse hepatitis virus nucleocapsid protein. J Virol 1996; 70: 3252–7.

    PubMed  CAS  Google Scholar 

  190. Bergmann CC, Tong L, Cua RV et al. Cytotoxic T cell repertoire selection–A single amino acid determines alternative class I restriction. J Immunol 1994; 152: 5603–12.

    PubMed  CAS  Google Scholar 

  191. Falk K, Rötzschke O, Stevanovic S et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–6.

    PubMed  CAS  Google Scholar 

  192. Gotch F, McMichael A, Rothbard J. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med 1988; 168: 2045–57.

    PubMed  CAS  Google Scholar 

  193. Hadida F, Haas G, Zimmermann N et al. CTLs from lymphoid organs recognize an optimal HLA-A2-restricted and HLAB52-restricted nonapeptide and several epitopes in the C-terminal region of HIV-1 Nef. J Immunol 1995; 154: 4174–86.

    PubMed  CAS  Google Scholar 

  194. Dupuis M, Kundu SK, Merigan TC. Characterization of HLA-A*0201-restricted cytotoxic T cell epitopes in conserved regions of the HIV type 1 gp160 protein. J Immunol 1995; 155: 2232–9.

    PubMed  CAS  Google Scholar 

  195. Harrer E, Harrer T, Barbosa P et al. Recognition of the highly conserved YMDD region in the human immunodeficiency virus type 1 reverse transcriptase by HLA-A2-restricted cytotoxic T lymphocytes from an asymptomatic long-term nonprogressor. J Infect Dis 1996; 173: 476–9.

    PubMed  CAS  Google Scholar 

  196. Yang O, Kalams SA, Rosenzweig M et al. Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 1996; 70: 5799–806.

    PubMed  CAS  Google Scholar 

  197. Alexander-Miller MA, Parker KC, Tsukui T et al. Molecular analysis of presentation by HLA-A2.1 of a promiscuously binding V3 loop peptide from the HIV-1 envelope protein to human cytotoxic T lymphocytes. Int Immunol 1996; 8: 641–9.

    PubMed  CAS  Google Scholar 

  198. Takahashi K, Dai LC, Fuerst TR et al. Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8+ cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc Natl Acad Sci U S A 1991; 88: 10277–81.

    PubMed  CAS  Google Scholar 

  199. Koenig S, Fuerst TR, Wood LV et al. Mapping the fine specificity of a cytolytic T cell response to HIV-1 nef protein. J Immunol 1990; 145: 127–35.

    PubMed  CAS  Google Scholar 

  200. Venet A, Walker BD. Cytotoxic T-cell epitopes in HIV/SIV infection. AIDS 1993; 7 Suppl 1: S117–26.

    Google Scholar 

  201. Safrit JT, Andrews CA, Zhu T et al. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J Exp Med 1994; 179: 463–72.

    PubMed  CAS  Google Scholar 

  202. Johnson RP, Hammond SA, Trocha A et al. Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine. J Virol 1994; 68: 3145–53.

    PubMed  CAS  Google Scholar 

  203. Couillin I, Connan F, Culmann Penciolelli B et al. HLA-dependent variations in human immunodeficiency virus Nef protein alter peptide/HLA binding. Eur J Immunol 1995; 25: 728–32.

    PubMed  CAS  Google Scholar 

  204. Sipsas NV, Kalams SA, Trocha A et al. Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1. J Clin Invest 1997; 99: 752–62.

    PubMed  CAS  Google Scholar 

  205. van Baalen CA, Klein MR, Huisman RC et al. Fine-specificity of cytotoxic T lymphocytes which recognized conserved epitopes of the GAG protein of human immunodeficiency virus type 1. J Gen Virol 1996; 77: 1659–65.

    PubMed  Google Scholar 

  206. Phillips RE, Rowland-Jones S, Nixon DF et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354: 453–559.

    PubMed  CAS  Google Scholar 

  207. Huet S, Nixon DF, Rothbard JB et al. Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27. Int Immunol 1990; 2: 311–6.

    PubMed  CAS  Google Scholar 

  208. Johnson RP, Trocha A, Buchanan TM et al. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993; 67: 438–45.

    PubMed  CAS  Google Scholar 

  209. Hosmalin A, Clerici M, Houghten R et al. An epitope in human immunodeficiency virus 1 reverse transcriptase rec-ognized by both mouse and human cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 1990; 87: 2344–8.

    PubMed  CAS  Google Scholar 

  210. Harrer T, Harrer E, Kalams SA et al. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 1996; 156: 2616–23.

    PubMed  CAS  Google Scholar 

  211. Brander C, Walker B. The HLA-class I restricted CTL response in HIV-1 infection: Identification of optimal epitopes. In: Korber B, Brander C, Walker B et al, eds. HIV Molecular Immunology Database 1996. Los Alamos: Los Alamos National Laboratory, Theoretical Biology and Biophysics, 1996.

    Google Scholar 

  212. Lieberman J, Fabry JA, Kuo MC et al. Cytotoxic T lymphocytes from HIV-1 seropositive individuals recognize immunodominant epitopes in gp160 and reverse transcriptase. J Immunol 1992; 148: 2738–47.

    PubMed  CAS  Google Scholar 

  213. Safrit JT, Andrews CA, Zhu T et al. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J Exp Med 1994; 179: 463–72.

    PubMed  CAS  Google Scholar 

  214. Johnson RP, Trocha A, Buchanan TM et al. Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immundeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J Exp Med 1992; 175: 961–71.

    PubMed  CAS  Google Scholar 

  215. Shankar P, Fabry JA, Fong D et al. Three regions of gp160 contain overlapping CTL epitopes restricted by multiple HLA class I alleles. J Cellular Biochem 1995; S21B:D4–345.

    Google Scholar 

  216. Rowland-Jones S, Sutton J, Ariyoshi K et al. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Med 1995; 1: 59–64.

    PubMed  Google Scholar 

  217. Johnson RP, Hammond SA, Trocha A et al. Induction of a major histocompatibil-ity complex class I-restricted cytotoxic T lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIC-1 vaccine. J Virol 1994; 68: 3145–53.

    PubMed  CAS  Google Scholar 

  218. Culmann-Penciolelli B, LamhamediCherradi S, Couillin I et al. Identification of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodeficiency virus type 1 nef protein. J Virol 1994; 68: 7336–43.

    PubMed  CAS  Google Scholar 

  219. Wilson CC, Kalams SA, Wilkes BM et al. Overlapping epitopes in human immunodeficiency virus type 1 gp120 presented by HLA A, B, and C molecules: effects of viral variation on cytotoxic T lymphocyte recognition. J Virol 1997; 71: 1256–64.

    PubMed  CAS  Google Scholar 

  220. Haas G, Plikat U, Debre P et al. Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo. J Immunol 1996; 157: 4212–21.

    PubMed  CAS  Google Scholar 

  221. Doe B, Selby M, Barnett S et al. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci U S A 1996; 93: 8578–83.

    PubMed  CAS  Google Scholar 

  222. Shiga H, Shioda T, Tomiyama H et al. Identification of multiple HIV-1 cytotoxic T-cell epitopes presented by human leukocyte antigen B35 molecules. AIDS 1996; 10: 1075–83.

    PubMed  CAS  Google Scholar 

  223. Gotch F, McAdam SN, Allsopp CE et al. Cytotoxic T cells in HIV2 seropositive Gambians. Identification of a virus-specific MHC-restricted peptide epitope. J Immunol 1993; 151: 3361–9.

    PubMed  CAS  Google Scholar 

  224. Carmichael A, Jin Y, Sissons P. Analysis of the human env-specific cytotoxic T-lymphocyte (CTL) response in natural human immunodeficiency virus Type 1 infection: Low prevalence of broadly cross-reactive env-specific CTL. J Viro! 1996; 70: 8468–76.

    CAS  Google Scholar 

  225. Tarpey I, Stacey S, Hickling J et al. Human cytotoxic T lymphocytes stimulated by endogenously processed human papillomavirus type 11 E7 recognize a peptide containing a HLA-A2 (A*0201) motif. Immunology 1994; 81: 222–7.

    PubMed  CAS  Google Scholar 

  226. Ressing ME, Sette A, Brandt RM et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201binding peptides. J Immunol 1995; 154: 5934–43.

    PubMed  CAS  Google Scholar 

  227. Ellis JR, Keating PJ, Baird J et al. The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Med 1995; 1: 464–70.

    PubMed  CAS  Google Scholar 

  228. Feltkamp MC, Smits HL, Vierboom MP et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–9.

    PubMed  CAS  Google Scholar 

  229. Bonneau RH, Salvucci LA, Johnson DC et al. Epitope specificity of H-2Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 1993; 195: 62–70.

    PubMed  CAS  Google Scholar 

  230. Banks TA, Nair S, Rouse BT. Recognition by and in vitro induction of cytotoxic T lymphocytes against predicted epitopes of the immediate-early protein ICP27 of herpes simplex virus. J Virol 1993; 67: 613–6.

    PubMed  CAS  Google Scholar 

  231. Salvucci LA, Bonneau RH, Tevethia SS. Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes. J Virol 1995; 69: 1122–31.

    PubMed  CAS  Google Scholar 

  232. Utz U, Koenig S, Coligan JE et al. Presentation of three different viral peptides, HTLV-1 Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J Immunol 1992; 149: 214–21.

    PubMed  CAS  Google Scholar 

  233. Falk K, Rötzschke O, Stevanovié S et al. Analysis of a naturally occurring HLA class I-restricted viral epitope. Immunology 1994; 82: 337–42.

    PubMed  CAS  Google Scholar 

  234. Bednarek MA, Sauma SY, Gammon MC et al. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLAA2. J Immunol 1991; 147: 4047–53.

    PubMed  CAS  Google Scholar 

  235. Henderson RA, Cox AL, Sakaguchi K et al. Direct identification of an endogenous peptide recognized by multiple HLAA2.1-specific cytotoxic T cells. Proc Natl Acad Sci U S A 1993; 90: 10275–9.

    PubMed  CAS  Google Scholar 

  236. Walker BD, Flexner C, Birch Limberger K et al. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type. Proc Natl Acad Sci U S A 1989; 86: 9514–8.

    PubMed  CAS  Google Scholar 

  237. DiBrino M, Tsuchida T, Turner RV et al. HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 1993; 151: 5930–5.

    PubMed  CAS  Google Scholar 

  238. Guo HC, Jardetzky TS, Garrett TP et al. Different length peptides bind to HLAAw68 similarly at their ends but bulge out in the middle. Nature 1992; 360: 364–6.

    PubMed  CAS  Google Scholar 

  239. Silver ML, Guo HC, Strominger JL et al. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 1992; 360: 367–9.

    PubMed  CAS  Google Scholar 

  240. Sutton J, Rowland Jones S, Rosenberg W et al. A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA B8 revealed by analysis of epitopes and eluted peptides. Eur J Immunol 1993; 23: 447–53.

    PubMed  CAS  Google Scholar 

  241. Tussey LG, Rowland Jones S, Zheng TS et al. Different MHC class I alleles compete for presentation of overlapping viral epitopes. Immunity 1995; 3: 65–77.

    PubMed  CAS  Google Scholar 

  242. Townsend AR, Rothbard J, Gotch FM et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986; 44: 959–68.

    PubMed  CAS  Google Scholar 

  243. DiBrino M, Parker KC, Margulies DH et al. Identification of the peptide binding motif for HLA-B44, one of the most common HLA-B alleles in the Caucasian population. Biochemistry 1995; 34: 10130–8.

    PubMed  CAS  Google Scholar 

  244. Man S, Newberg MH, Crotzer VL et al. Definition of a human T cell epitope from influenza A non-structural protein 1 using HLA-A2.1 transgenic mice. Int Immunol 1995; 7: 597–605.

    PubMed  CAS  Google Scholar 

  245. Rötzschke O, Falk K, Deres K et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348: 252–4.

    Google Scholar 

  246. Falk K, Rötzschke O, Deres K et al. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 1991; 174: 425–34.

    Google Scholar 

  247. Kuwano K, Braciale TJ, Ennis FA. Localization of a cross-reactive CTL epitope to the transmembrane region on the hemaglutinin of influenza H1 and H2 viruses. FASEB J 1988; 2: 2221.

    Google Scholar 

  248. Cao W, Myers Powell BA, Braciale TJ. Recognition of an immunoglobulin VH epitope by influenza virus-specific class I major histocompatibility complex-restricted cytolytic T lymphocytes. J Exp Med 1994; 179: 195–202.

    PubMed  CAS  Google Scholar 

  249. Gould KG, Scotney H, Brownlee GG. Characterization of two distinct major histocompatibility complex class I Kkrestricted T-cell epitopes within the influenza A/PR/8/34 virus hemagglutinin. J Virol 1991; 65: 5401–9.

    PubMed  CAS  Google Scholar 

  250. Larson JK, Wunner WH, Otvos L, Jr. et al. Identification of an immunodominant epitope within the phosphoprotein of rabies virus that is recognized by both class I-and class II-restricted T cells. J Virol 1991; 65: 5673–9.

    PubMed  CAS  Google Scholar 

  251. Gould KG, Scotney H, Townsend AR et al. Mouse H-2k-restricted cytotoxic T cells recognize antigenic determinants in both the HAI and HA2 subunits of the influenza A/PR/8/34 hemagglutinin. J Exp Med 1987; 166: 693–701.

    PubMed  CAS  Google Scholar 

  252. Bastin J, Rothbard J, Davey J et al. Use of synthetic peptides of influenza nucleoprotein to define epitopes recognized by class I-restricted cytotoxic T lymphocytes. J Exp Med 1987; 165: 1508–23.

    PubMed  CAS  Google Scholar 

  253. Gould K, Cossins J, Bastin J et al. A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cytotoxic T lymphocytes. J Exp Med 1989; 170: 1051–6.

    PubMed  CAS  Google Scholar 

  254. Cossins J, Gould KG, Smith M et al. Precise prediction of a Kk-restricted cytotoxic T cell epitope in the NS1 protein of influenza virus using an MHC allele-specific motif. Virology 1993; 193: 289–95.

    PubMed  CAS  Google Scholar 

  255. Cerundolo V, Elliott T, Elvin J et al. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur J Immunol 1991; 21: 2069–75.

    PubMed  CAS  Google Scholar 

  256. Robbins PA, Lettice LA, Rota P et al. Comparison between two peptide epitopes presented to cytotoxic T lymphocytes by HLA-A2. Evidence for discrete locations within HLA-A2. J Immunol 1989; 143: 4098–103.

    PubMed  CAS  Google Scholar 

  257. Robbins PA, Garboczi DN, Strominger JL. HLA-A*0201 complexes with two 10-mer peptides differing at the P2 anchor residue have distinct refolding kinetics. J Immunol 1995; 154: 703–9.

    PubMed  CAS  Google Scholar 

  258. Braciale TJ, Braciale VL, Winkler M et al. On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolytic T lymphocytes. J Exp Med 1987; 166: 678–92.

    PubMed  CAS  Google Scholar 

  259. Cao W, Tykodi SS, Esser MT et al. Partial activation of CD8* T cells by a self-derived peptide. Nature 1995; 378: 295–8.

    PubMed  CAS  Google Scholar 

  260. Sweetser MT, Morrison LA, Braciale VL et al. Recognition of pre-processed endogenous antigen by class I but not class II MHC-restricted T cells. Nature 1989; 342: 180–2.

    PubMed  CAS  Google Scholar 

  261. Bergmann C, McMillan M, Stohlman S. Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis virus nucleocapsid protein. J Virol 1993; 67: 7041–9.

    PubMed  CAS  Google Scholar 

  262. Whitton JL, Tishon A, Lewicki H et al. Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol 1989; 63: 4303–10.

    PubMed  CAS  Google Scholar 

  263. Schulz M, Aichele P, Schneider R et al. Major histocompatibility complex binding and T cell recognition of a viral nonapeptide containing a minimal tetra-peptide. Eur J Immunol 1991; 21: 1181–5.

    PubMed  CAS  Google Scholar 

  264. Yanagi Y, Tishon A, Lewicki H et al. Diversity of T-cell receptors in virus-specific cytotoxic T lymphocytes recognizing three distinct viral epitopes restricted by a single major histocompatibility complex molecule. J Virol 1992; 66: 2527–31.

    PubMed  CAS  Google Scholar 

  265. Oldstone MB, Whitton JL, Lewicki H et al. Fine dissection of a nine amino acid glycoprotein epitope, a major determinant recognized by lymphocytic choriomeningitis virus-specific class I-restricted H-2D5 cytotoxic T lymphocytes. J Exp Med 1988; 168: 559–70.

    PubMed  CAS  Google Scholar 

  266. Oldstone MB, Tishon A, Eddleston M et al. Vaccination to prevent persistent viral infection. J Virol 1993; 67: 4372–8.

    PubMed  CAS  Google Scholar 

  267. Klavinskis LS, Whitton JL, Joly E et al. Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology 1990; 178: 393–400.

    PubMed  CAS  Google Scholar 

  268. Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989; 337: 651–3.

    PubMed  CAS  Google Scholar 

  269. Wei WZ, Gill RF, Jones RF et al. Induction of cytotoxic T lymphocytes to murine mammary tumor cells with a Kd-restricted immunogenic peptide. Int J Cancer 1996; 66: 659–63.

    PubMed  CAS  Google Scholar 

  270. Malarkannan S, Serwold T, Nguyen V et al. The mouse mammary tumor virus env gene is the source of a CD8* T-cellstimulating peptide presented by a major histocompatibility complex class I molecule in a murine thymoma. Proc Natl Acad Sci USA 1996; 93: 13991–6.

    PubMed  CAS  Google Scholar 

  271. Bergmann CC, Yao Q, Lin M et al. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J Gen Virol 1996; 77: 315–25.

    PubMed  CAS  Google Scholar 

  272. Sijts AJ, Ossendorp F, Mengede EA et al. Immunodominant mink cell focus-inducing murine leukemia virus (MuLV)encoded CTL epitope, identified by its MHC class I-binding motif, explains MuLV-type specificity of MCF-directed cytotoxic T lymphocytes. J Immunol 1994; 152: 106–16.

    PubMed  CAS  Google Scholar 

  273. White HD, Roeder DA, Green WR. An immunodominant Kb-restricted peptide from the pl5E transmembrane protein of endogenous ecotropic murine leukemia virus (MuLV) AKR623 that restores susceptibility of a tumor line to anti-AKR/ gross MuLV cytotoxic T lymphocytes [published erratum appears in J Virol 1994; 68:3452]. J Virol 1994; 68: 897–904.

    CAS  Google Scholar 

  274. Neisig A, Roelse J, Sijts AJ et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 1995; 154: 1273–9.

    PubMed  CAS  Google Scholar 

  275. Chen W, Qin H, Chesebro B et al. Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors. J Virol 1996; 70: 7773–82.

    PubMed  CAS  Google Scholar 

  276. Huang AYC, Gulden PH, Woods AS et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A 1996; 93: 9730–5.

    PubMed  CAS  Google Scholar 

  277. Verjans GM, Janssen R, UytdeHaag FG et al. Intracellular processing and presentation of T cell epitopes, expressed by recombinant Escherichia coli and Salmonella typhimurium, to human T cells. Eur J Immunol 1995; 25: 405–10.

    PubMed  CAS  Google Scholar 

  278. van Binnendijk RS, Versteeg van Oosten JP, Poelen MC et al. Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J Virol 1993; 67: 2276–84.

    Google Scholar 

  279. Beauverger P, Buckland R, Wild TF. Measles virus antigens induce both type-specific and canine distemper virus cross-reactive cytotoxic T lymphocytes in mice: localization of a common Ld-restricted nucleoprotein epitope. J Gen Virol 1993; 74: 2357–63.

    PubMed  CAS  Google Scholar 

  280. Beauverger P, Buckland R, Wild F. Measles virus hemagglutinin induces an Ld-restricted CD8’ cytotoxic T lymphocyte response to two specific epitopes. Virology 1994; 200: 281–3.

    PubMed  CAS  Google Scholar 

  281. Kutubuddin M, Simons J, Chow M. Poliovirus-specific major histocompatibility complex class I-restricted cytolytic T-cell epitopes in mice localize to neutralizing antigenic regions. J Virol 1992; 66: 5967–74.

    PubMed  CAS  Google Scholar 

  282. Franco MA, Prieto I, Labbe M et al. An immunodominant cytotoxic T cell epitope on the VP7 rotavirus protein overlaps the H2 signal peptide. J Gen Virol 1993; 74: 2579–86.

    PubMed  CAS  Google Scholar 

  283. Franco MA, Lefevre P, Willems P et al. Identification of cytotoxic T cell epitopes on the VP3 and VP6 rotavirus proteins. J Gen Virol 1994; 75: 589–96.

    PubMed  CAS  Google Scholar 

  284. Kulkarni AB, Morse HC, Bennink JR et al. Immunization of mice with vaccinia virus-M2 recombinant induces epitopespecific and cross-reactive Kd-restricted CD8’ cytotoxic T cells. J Virol 1993; 67: 4086–92.

    PubMed  CAS  Google Scholar 

  285. Haurum JS, Tan L, Arsequell G et al. Peptide anchor residue glycosylation: effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur J Immunol 1995; 25: 3270–6.

    PubMed  CAS  Google Scholar 

  286. Kast WM, Roux L, Curren J et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A 1991; 88: 2283–7.

    PubMed  CAS  Google Scholar 

  287. Schumacher TN, De Bruijn ML, Vernie LN et al. Peptide selection by MHC class I molecules. Nature 1991; 350: 703–6.

    PubMed  CAS  Google Scholar 

  288. Liu T, Zhou X, Orvell C et al. Heat-inactivated Sendai virus can enter multiple MHC class I processing pathways and generate cytotoxic T lymphocyte responses in vivo. J Immunol 1995; 154: 3147–55.

    PubMed  CAS  Google Scholar 

  289. Yasutomi Y, Koenig S, Woods RM et al. A vaccine-elicited, single viral epitopespecific cytotoxic T lymphocyte response does not protect against intravenous, cell-free simian immunodeficiency virus challenge. J Virol 1995; 69: 2279–84.

    PubMed  CAS  Google Scholar 

  290. Mylin LM, Deckhut AM, Bonneau RH et al. Cytotoxic T lymphocyte escape variants, induced mutations, and synthetic peptides define a dominant H-2Kb-restricted deteriminant in simian virus 40 tumor antigen. Virology 1995; 159–72.

    Google Scholar 

  291. Deckhut AM, Lippolis JD, Tevethia SS. Comparative analysis of core amino acid residues of H-2D(b)-restricted cytotoxic T-lymphocyte recognition epitopes in simian virus 40 T antigen. J Virol 1992; 66: 440–7.

    PubMed  CAS  Google Scholar 

  292. Tevethia SS, Lewis M, Tanaka Y et al. Dissection of H-2Db-restricted cytotoxic T-lymphocyte epitopes on simian virus 40 T antigen by the use of synthetic pep-tides and H-2Dbm mutants. J Virol 1990; 64: 1192–200.

    PubMed  CAS  Google Scholar 

  293. Alsheikhly AR. Interaction of in vitro-and in vivo-generated cytotoxic T cells with SV40 T antigen: analysis with synthetic peptides. Scand J Immunol 1994; 39: 467–79.

    PubMed  CAS  Google Scholar 

  294. Rawle FC, O’Connell KA, Geib RW et al. Fine mapping of an H-2Kk restricted cytotoxic T lymphocyte epitope in SV40 T antigen by using in-frame deletion mutants and a synthetic peptide. J Immunol 1988; 141: 2734–9.

    PubMed  CAS  Google Scholar 

  295. van Bleek GM, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2K5 molecule. Nature 1990; 348: 213–6.

    PubMed  Google Scholar 

  296. Rötzschke O, Falk K, Stevanovie S et al. Exact prediction of a natural T cell epitope. Eur J Immunol 1991; 21: 2891–4.

    PubMed  Google Scholar 

  297. Carbone FR, Moore MW, Sheil JM et al. Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 1988; 167: 1767–79.

    PubMed  CAS  Google Scholar 

  298. Wölfel T, Hauer M, Schneider J et al. A pl6INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269: 1281–4.

    PubMed  Google Scholar 

  299. Maryanski JL, Pala P, Corradin G et al. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature 1986; 324: 578–9.

    PubMed  CAS  Google Scholar 

  300. Pamer EG. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 1994; 152: 686–94.

    PubMed  CAS  Google Scholar 

  301. Sijts AJ, Neisig A, Neefjes J et al. Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J Immunol 1996; 156: 683–92.

    PubMed  CAS  Google Scholar 

  302. Gulden PH, Fischer P III, Sherman NE et al. A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2–M3 MHC class Ib molecule. Immunity 1996; 5: 73–9.

    Google Scholar 

  303. Lenz LL, Dere B, Bevan MJ. Identification of an H2–M3-restricted Listeria epitope: Implications for antigen presentation by M3. Immunity 1996; 5: 63–72.

    Google Scholar 

  304. Pamer EG, Harty JT, Bevan MJ. Precise prediction of a dominant class I MHCrestricted epitope of Listeria monocytogenes. Nature 1991; 353: 852–5.

    PubMed  CAS  Google Scholar 

  305. Yamazaki H, Tanaka M, Nagoya M et al. Epitope selection in major histocompatibility complex class I-mediated pathway is affected by the intracellular localization of an antigen. Eur J Immunol 1997; 27: 347–53.

    PubMed  CAS  Google Scholar 

  306. Romero P, Maryanski JL, Corradin G et al. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 1989; 341: 323–6.

    PubMed  CAS  Google Scholar 

  307. Weiss WR, Mellouk S, Houghten RA et al. Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 1990; 171: 763–73.

    PubMed  CAS  Google Scholar 

  308. Blum-Tirouvanziam U, Servis C, Habluetzel A et al. Localization of HLA-A2.1restricted T cell epitopes in the circumsporozoite protein of Plasmodium falciparum. J Immunol 1995; 154: 3922–31.

    PubMed  CAS  Google Scholar 

  309. Aidoo M, Lalvani A, Allsopp CE et al. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 1995; 345: 1003–7.

    PubMed  CAS  Google Scholar 

  310. Wizel B, Houghten RA, Parker KC et al. Irradiated sporozoite vaccine induces HLA-B8-restricted cytotoxic T lymphocyte responses against two overlapping epitopes of the Plasmodium falciparum sporozoite surface protein 2. J Exp Med 1995; 182: 1435–45.

    PubMed  CAS  Google Scholar 

  311. Hill AV, Elvin J, Willis AC et al. Molecular analysis of the association of HLAB53 and resistance to severe malaria. Nature 1992; 360: 434–9.

    PubMed  CAS  Google Scholar 

  312. Blum-Tirouvanziam U, Beghdadi-Rais C, Roggero MA et al. Elicitation of specific cytotoxic T cells by immunization with malaria soluble synthetic polypeptides. J Immunol 1994; 153: 4134–41.

    PubMed  CAS  Google Scholar 

  313. Kumar S, Miller LH, Quakyi IA et al. Cytotoxic T cells specific for the circumsporozoite protein of Plasmodium falciparum. Nature 1988; 334: 258–60.

    PubMed  CAS  Google Scholar 

  314. Huang F, Hermann E, Wang J et al. A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent mono-clonal antibodies recognize HLA-B27peptide complexes with low stringency for peptide sequences. Infect Immun 1996; 64: 120–7.

    PubMed  CAS  Google Scholar 

  315. Starnbach MN, Bevan MJ. Cells infected with Yersinia present an epitope to class I MHC-restricted CTL. J Immunol 1994; 153: 1603–12.

    Google Scholar 

  316. Wauben MHM, van der Kraan M, Grosfeld-Stulemeyer MC et al. Definition of an extended MHC class II-peptide binding motif for the autoimmune disease-associated Lewis rat RTI.BL molecule. Int Immunol 1997; 9: 281–90.

    PubMed  CAS  Google Scholar 

  317. Matsushita S, Yokomizo H, Kohsaka H et al. Diversity of a human CD4+ T cell repertoire recognizing one TCR ligand. Immunol Letters 1996; 51: 191–4.

    CAS  Google Scholar 

  318. Bosch GJA, Joosten AM, Kessler JH et al. Recognition of BCR-ABL Positive leukemic blasts by human CDC’ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 1996; 88: 3522–7.

    PubMed  CAS  Google Scholar 

  319. Fugger L, Rothbard JB, Sonderstrup McDevitt G. Specificity of an HLADRB1*0401-restricted T cell response to type II collagen. Eur J Immunol 1996; 26: 928–33.

    PubMed  CAS  Google Scholar 

  320. Carrasco-Marin E, Shimizu J, Kanagawa O et al. The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol 1996; 156: 450–8.

    PubMed  CAS  Google Scholar 

  321. Wegmann KW, Zhao W, Griffin AC et al. Identification of myocarditogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. The utility of a class II binding motif in selecting self-reactive peptides. J Immunol 1994; 153: 892–900.

    PubMed  CAS  Google Scholar 

  322. Gaston JSH, Deane KHO, Jecock RM et al. Identification of 2 Chlamydia trachomatis antigens recognized by synovial fluid T cells from patients with Chlamydia induced reactive arthritis. J Rheumatol 1996; 23: 130–6.

    PubMed  CAS  Google Scholar 

  323. Cong Y, Bowdon HR, Elson CO. Identification of an immunodominant T cell epitope on cholera toxin. Eur J Immunol 1996; 26: 2587–95.

    PubMed  CAS  Google Scholar 

  324. Kristensen NM, Hoyne GF, Hayball JD et al. Induction of T cell responses to the invariant chain derived peptide CLIP in mice immunized with the group 1 allergen of house dust mite. Int Immunol 1996; 8: 1091–8.

    PubMed  CAS  Google Scholar 

  325. Tsitoura DC, Holter W, Cerwenka A et al. Induction of anergy in human T helper 0 cells by stimulation with altered T cell antigen receptor ligands. J Immunol 1996; 156: 2801–8.

    PubMed  CAS  Google Scholar 

  326. Okano M, Nagano T, Nakada M et al. Epitope analysis of HLA-DR-restricted helper T-cell responses to DER P II, a major allergen molecule of dermatophagoides pteronyssinus. Allergy 1996; 51: 29–35.

    PubMed  CAS  Google Scholar 

  327. Wucherpfennig KW, Yu B, Bhol K et al. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci USA 1995; 92: 11935–9.

    PubMed  CAS  Google Scholar 

  328. Colovai AI, Liu Z, Harris PE et al. Allopeptide-specific T cell reactivity altered by peptide analogs. J Immunol 1997; 158: 48–54.

    PubMed  CAS  Google Scholar 

  329. White CA, Cross SM, Kurilla MG et al. Recruitment during infectious mononucleosis of CD3’CD4’CD8’ virus-specific cytotoxic T cells which recognise Epstein-Barr virus lytic antigen BHRF1. Virology 1996; 219: 489–92.

    PubMed  CAS  Google Scholar 

  330. Reay PA, Kantor RM, Davis MM. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103). J Immunol 1994; 152: 3946–57.

    PubMed  CAS  Google Scholar 

  331. Kurane I, Okamoto Y, Dai LC et al. Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by human CD4’ CD8 cytotoxic T lymphocyte clones. J Gen Virol 1995; 76: 2243–9.

    PubMed  CAS  Google Scholar 

  332. Spouge JL, Guy HR, Cornette JL et al. Strong conformational propensities enhance T cell antigenicity. J Immunol 1987; 138: 204–12.

    PubMed  CAS  Google Scholar 

  333. Chen S, Whiteley PJ, Freed DC et al. Responses of NOD congenic mice to a glutamic acid decarboxylase-derived peptide. J Autoimmunity 1994; 7: 635–41.

    CAS  Google Scholar 

  334. Kaufman DL, Clare Salzler M, Tian J et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366: 69–72. 322.

    Google Scholar 

  335. Mannie MD, Paterson PY, U’Prichard DC et al. The N- and C-terminal boundaries of myelin basic protein determinants required for encephalitogenic and proliferative responses of Lewis rat T. cells. J Neuroimmunol 1990; 26: 201–11.

    PubMed  CAS  Google Scholar 

  336. Diepolder HM, Jung M, Wierenga E et al. Anergic TH 1 clones specific for hepatitis B virus (HBV) core peptides are inhibitory to other HBV core-specific CD4* T cells in vitro. J Virol 1996; 70: 7540–8.

    PubMed  CAS  Google Scholar 

  337. Gautier N, Chavant E, Prieur E et al. 324. Characterization of an epitope of the human cytomegalovirus protein IE1 recognized by a CD4* T cell clone. Eur J Immunol 1996; 26: 1110–7.

    PubMed  CAS  Google Scholar 

  338. Altuvia Y, Berzofsky JA, Rosenfeld R et al. Sequence features that correlate with MHC restriction [published erratum appears in Mol Immunol 1994; 31: 703]. Mol Immunol 1994; 31: 1–19.

    CAS  Google Scholar 

  339. Adorini L, Appella E, Doria G et al. Mechanisms influencing the immuno-dominance of T cell determinants. J Exp Med 1988; 168: 2091–104.

    PubMed  CAS  Google Scholar 

  340. Adorini L, Sette A, Buus S et al. Interaction of an immunodominant epitope with la molecules in T-cell activation. Proc Natl Acad Sci U S A 1988; 85: 5181–5.

    PubMed  CAS  Google Scholar 

  341. Hurtenbach U, Lier E, Adorini L et al. Prevention of autoimmune diabetes in non-obese diabetic mice by treatment with a class II major histocompatibility 328. complex-blocking peptide. J Exp Med 1993; 177: 1499–594.

    PubMed  CAS  Google Scholar 

  342. Deng H, Apple M, Clare-Salzler M et al. Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease. J Exp Med 1993; 178: 1675–80.

    PubMed  CAS  Google Scholar 

  343. Sette A, Buus S, Appella E et al. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad 330. Sci USA 1989; 86: 3296–300.

    CAS  Google Scholar 

  344. Vogt AB, Kropshofer H, Kalbacher H et al. Ligand motifs of HLA-DRB5*0101 and DRB 1 * 1501 molecules delineated. from self-peptides. J Immunol 1994; 153: 1665–73.

    PubMed  CAS  Google Scholar 

  345. Anderson DC, van Schonten WC, Barry ME et al. A Mycobacterium leprae-specific human T cell epitope cross-reactive with an HLA-DR2 peptide. Science 1988; 242: 259–61.

    PubMed  CAS  Google Scholar 

  346. Wicker LS, Chen S, Nepom GT et al. Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the Type 1 diabetes-associated human MHC Class II allele, DRB1*0401. J Clin Invest 1996; 98: 2597–603.

    PubMed  CAS  Google Scholar 

  347. Bogen B, Snodgrass R, Briand JP et al. Synthetic peptides and beta-chain gene rearrangements reveal a diversified T cell repertoire for a lambda light chain third hypervariable region. Eur J Immunol 1986; 16: 1379–84.

    PubMed  CAS  Google Scholar 

  348. O’Sullivan D, Arrhenius T, Sidney J et al. On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 1991; 147: 2663–9.

    PubMed  Google Scholar 

  349. Fahrer AM, Geysen HM, White DO et al. Analysis of the requirements for class II-restricted T cell recognition of a single determinant reveals considerable diversity in the T cell response and degeneracy of peptide binding to I-Ed. J Immunol 1995; 155: 2849–57.

    Google Scholar 

  350. Brett SJ, Tite JP. Both H-2- and non-H2-linked genes influence influenza nucleoprotein epitope recognition by CD4* T cells. Immunology 1996; 87: 42–8.

    PubMed  CAS  Google Scholar 

  351. Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc Natl Acad Sci U S A 1996; 93: 956–60.

    PubMed  CAS  Google Scholar 

  352. Ikagawa S, Matsushita S, Chen YZ et al. Single amino acid substitutions on a Japanese cedar pollen allergen (Cry j 1)-derived peptide induced alterations in human T cell responses and T cell receptor antagonism. J Allergy Clin Immunol 1996; 97: 53–64.

    PubMed  CAS  Google Scholar 

  353. Smilek DE, Lock CB, McDevitt HO. Antigen recognition and peptide-mediated immunotherapy in autoimmune disease. Immunol Rev 1990; 118: 37–71.

    PubMed  CAS  Google Scholar 

  354. Hammer J, Gallazzi F, Bono E et al. Pep- tide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med 1995; 181: 1847–55.

    PubMed  CAS  Google Scholar 

  355. Geluk A, van Meijgaarden KE, Southwood S et al. HLA-DR3 molecules can bind peptides carrying two alternative specific submotifs. J Immunol 1994; 152: 5742–8.

    PubMed  CAS  Google Scholar 

  356. Blaher B, Suphioglu C, Knox RB et al. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen. J Allergy Clin Immunol 1996; 98: 124–32.

    PubMed  CAS  Google Scholar 

  357. Kobayashi H, Kokubo T, Abe Y et al. Analysis of anchor residues in a naturally processed HLA-DR53 ligand. Immunogenetics 1996; 44: 366–71.

    PubMed  CAS  Google Scholar 

  358. Adams E, Basten A, Rodda S et al. Human T-cell clones to the 70-kilodalton heat shock protein of Mycobacterium leprae define mycobacterium-specific epitopes rather than shared epitopes. Infection and Immunity 1997; 65: 1061–70.

    PubMed  CAS  Google Scholar 

  359. Harris DP, Vordermeier HM, Singh M et al. Cross-recognition by T cells of an epitope shared by two unrelated mycobacterial antigens. Eur J Immunol 1995; 25: 3173–9.

    PubMed  CAS  Google Scholar 

  360. Yanagisawa S, Koike M, Kariyone A et al. Mapping of Mß11+ helper T cell epitopes on mycobacterial antigen in mouse primed with Mycobacterium tuberculosis. Int Immunol 1997; 9: 227–37.

    PubMed  CAS  Google Scholar 

  361. Wucherpfennig KW, Sette A, Southwood S et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 1994; 179: 279–90.

    PubMed  CAS  Google Scholar 

  362. Martin R, Howell MD, Jaraquemada D et al. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 1991; 173: 19–24.

    PubMed  CAS  Google Scholar 

  363. Amor S, O’Neill JK, Morris MM et al. Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2A57) mice share an amino acid motif. J Immunol 1996; 156: 3000–8.

    PubMed  CAS  Google Scholar 

  364. Muller CP, Ammerlaan W, Fleckenstein B et al. Activation of T cells by the ragged tail of MHC class II-presented peptides of the measles virus fusion protein. Int Immunol 1996; 8: 445–56.

    PubMed  CAS  Google Scholar 

  365. Bernard CCA, Johns TG, Slavin A et al. Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 1997; 75: 77–88.

    PubMed  CAS  Google Scholar 

  366. Hawes GE, Struyk L, Godthelp BC et al. Limited restriction in the TCR-alpha beta V region usage of antigen-specific clones. Recognition of myelin basic protein (amino acids 84–102) and Mycobacterium bovis 65-kDa heat shock protein (amino acids 3–13) by T cell clones established from peripheral blood mononuclear cells of monozygotic twins and HLA-identical individuals. J Immunol 1995; 154: 555–66.

    PubMed  CAS  Google Scholar 

  367. McNicholl JM, Whitworth WC, Oftung F et al. Structural requirements of peptide and MHC for DR(alpha, beta 1 *0401)-restricted T cell antigen recognition. J Immunol 1995; 155: 1951–63.

    PubMed  CAS  Google Scholar 

  368. Anderton SM, van der Zee R, Noordzij A et al. Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after adjuvant arthritis-inducing or protective immunization protocols. J Immunol 1994; 152: 3656–64.

    PubMed  CAS  Google Scholar 

  369. Samson MF, Smilek DE. Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J Immun 1995; 155: 2737–46.

    PubMed  CAS  Google Scholar 

  370. Mendel I, Kerlero de Rosbo N, Ben-Nun A. Delineation of the minimal encephalitogenic epitope within the immunodominant region of myelin oligodendrocyte glycoprotein: diverse V(3 gene usage by T cells recognizing the core epitope encephalitogenic for T cell receptor V(36 and T cell receptor V13’ H-2“ mice. Eur J Immunol 1996; 26: 2470–9.

    CAS  Google Scholar 

  371. Ridgway WM, Fasso M, Lanctot A et al. Breaking self-tolerance in nonobese diabetic mice. J Exp Med 1996; 183: 1657–62.

    PubMed  CAS  Google Scholar 

  372. Markovic Plese S, Fukaura H, Zhang J et al. T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 1995; 155: 982–92.

    PubMed  CAS  Google Scholar 

  373. Banos DM, Lopez S, Arias CF et al. Identification of a T-helper cell epitope on the rotavirus VP6 protein. J Virol 1996; 71: 419–26.

    Google Scholar 

  374. Ou D, Mitchell LA, Domeier ME et al. Characterization of the HLA-restrictive elements of a rubella virus-specific cytotoxic T cell clone: influence of HLADR4(3 chain residue 74 polymorphism on antigenic peptide-T cell interaction. Int Immunol 1996; 8: 1577–86.

    PubMed  CAS  Google Scholar 

  375. Kojima K, Berger T, Lassmann H et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med 1994; 180: 817–29.

    PubMed  CAS  Google Scholar 

  376. Cole GA, Tao T, Hogg TL et al. Binding motifs predict major histocompatibility class II-restricted epitopes in the Sendai virus M protein. J Virol 1995; 69: 805760.

    Google Scholar 

  377. Chicz RM, Urban RG, Lane WS et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992; 358: 764–8.

    PubMed  CAS  Google Scholar 

  378. Guery JC, Sette A, Appella E et al. Constitutive presentation of dominant epitopes from endogenous naturally processed self-beta 2-microglobulin to class II-restricted T cells leads to self-tolerance. J Immunol 1995; 154: 545–54.

    PubMed  CAS  Google Scholar 

  379. Wen R, Broussard DR, Surman S et al. Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. Eur J Immunol 1997; 27: 772–81.

    PubMed  CAS  Google Scholar 

  380. Broeren CP, Lucassen MA, van Stipdonk MJ et al. CDR1 T-cell receptor beta-chain peptide induces major histocompatibility complex class II-restricted T-T cell interactions. Proc Natl Acad Sci U S A 1994; 91: 5997–6001.

    PubMed  CAS  Google Scholar 

  381. Boitel B, Blank U, Mege D et al. Strong similarities in antigen fine specificity among DRB1* 1302-restricted tetanus toxin tt830–843-specific TCRs in spite of highly heterogeneous CDR3. J Immunol 1995; 154: 3245–55.

    PubMed  CAS  Google Scholar 

  382. Topalian SL, Gonzales MI, Parkhurst M et al. Melanoma-specific CD4* T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med 1996; 183: 1965–71.

    PubMed  CAS  Google Scholar 

  383. Noll A, Autenrieth IB. Yersinia-hsp60reactive T cells are efficiently stimulated by peptides of 12 and 13 amino acid residues in a MHC class II (I-Ab)-restricted manner. Clin Exp Immunol 1996; 105: 231–7.

    PubMed  CAS  Google Scholar 

  384. Schild H, Deres K, Wiesmüller KH et al. Efficiency of peptides and lipopeptides for in vivo priming of virus-specific cytotoxic T cells. Eur J Immunol 1991; 21: 2649–54.

    Google Scholar 

  385. Schild H, Rötzschke O, Kalbacher H et al. Limit of T cell tolerance to self proteins by peptide presentation. Science 1990; 247: 1587–9.

    PubMed  CAS  Google Scholar 

  386. Miller JF. Autoantigen-induced deletion of peripheral self-reactive T cells. Int Rev Immunol 1995; 13: 107–14.

    PubMed  CAS  Google Scholar 

  387. Miller JF, Morahan G. Peripheral T cell tolerance. Annu Rev Immunol 1992; 10: 197.

    Google Scholar 

  388. von Herrath MG, Oldstone MB. Role of viruses in the loss of tolerance to self-antigens and in autoimmune diseases. Trends Microbiol 1995; 3: 424–30.

    Google Scholar 

  389. von Herrath MG, Dockter J, Oldstone MB. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1994; 1: 231–42.

    Google Scholar 

  390. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-Al, -All, -A31, and -A33 molecules. Immunogenetics 1994; 40: 238–41.

    PubMed  CAS  Google Scholar 

  391. Fahnestock ML, Johnson JL, Feldman RM et al. The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity 1995; 3: 583–90.

    PubMed  CAS  Google Scholar 

  392. Brossart P, Bevan MJ. Selective activation of Fas/Fas ligand-mediated cytotoxicity by a self peptide. J Exp Med 1996; 183: 2449–58.

    PubMed  CAS  Google Scholar 

  393. Fiorillo MT, Meadows L, D’Amato M et al. Susceptibility to ankylosing spondylitis correlates with the C-terminal residue of peptides presented by various HLA-B27 subtypes. Eur J Immunol 1997; 27: 368–73

    PubMed  CAS  Google Scholar 

  394. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics 1995; 41: 165–8.

    PubMed  CAS  Google Scholar 

  395. Lee N, Malacko AR, Ishitani A et al. The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 1995; 3: 591–600.

    PubMed  CAS  Google Scholar 

  396. Corr M, Boyd LF, Padlan EA et al. H2Dd exploits a four residue peptide binding motif. J Exp Med 1993; 178: 1877–92.

    PubMed  CAS  Google Scholar 

  397. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-B51, -B52 and -B78 molecules, and implications for Behcet’s disease. Int Immunol 1995; 7: 223–8.

    PubMed  CAS  Google Scholar 

  398. Brown EL, Wooters JL, Ferenz CR et al. Characterization of peptide binding to the murine MHC class I H-2Kk molecule. Sequencing of the bound peptides and direct binding of synthetic peptides to isolated class I molecules.J Immunol 1994; 153: 3079–92.

    CAS  Google Scholar 

  399. Engelhard VH. Structure of peptides as-sociated with MHC class I molecules. Curr Opin Immunol 1994; 6: 13–23.

    PubMed  CAS  Google Scholar 

  400. Kubo RT, Sette A, Grey HM et al. Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 1994; 152: 3913–24.

    PubMed  CAS  Google Scholar 

  401. Barber LD, Percival L, Parham P. Characterization of the peptide-binding specificity of HLA-B*7301. Tissue Antigens 1996; 47: 472–7.

    PubMed  CAS  Google Scholar 

  402. Diehl, M. Untersuchungen zur Peptidp räsentation geweb ssp ezifischer HLA-Moleküle 1995; Phillips-Universität Marburg.

    Google Scholar 

  403. Barouch D, Friede T, Stevanovié S et al. HLA-A2 subtypes are functionally distinct in peptide binding and presentation. J Exp Med 1995; 182: 1847–56.

    PubMed  CAS  Google Scholar 

  404. Joyce S, Tabaczewski P, Angeletti RH et al. A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-pep-tides. J Exp Med 1994; 179: 579–88

    PubMed  CAS  Google Scholar 

  405. Rotzschke O, Falk K, Stevanovic S et al. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics 1994; 39: 74–7.

    PubMed  CAS  Google Scholar 

  406. Stevanovié S, Pomer S, Rammensee HG. Oberflächenantigene im Nierenzellkarzinom - Präsentation von MHC I-gebundenen Selbstpeptiden. Akt Urol 1995; Sonderheft:45–6.

    Google Scholar 

  407. Malarkannan S, Gonzalez F, Nguyen V et al. Alloreactive CD8+ T cell can recognize unusual, rare, and unique processed peptide/MHC complexes. J Immunol 1996; 157: 4464–73.

    PubMed  CAS  Google Scholar 

  408. Townsend A, Ohlen C, Rogers M et al. Source of unique tumour antigens. Nature 1994; 371: 662

    PubMed  CAS  Google Scholar 

  409. Burrows GG, Ariail K, Celnik B et al. Variation in H-2Kk peptide motif revealed by sequencing naturally processed peptides from T-cell hybridoma class I molecules. J Neurosci Res 1996; 45: 803–11.

    PubMed  CAS  Google Scholar 

  410. Henderson RA, Michel H, Sakaguchi K et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 1992; 255: 1264–6.

    PubMed  CAS  Google Scholar 

  411. Hunt DF, Henderson RA, Shabanowitz J et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992; 255: 1261–3.

    PubMed  CAS  Google Scholar 

  412. Harris PE, Colovai A, Liu Z et al. Naturally processed HLA class I bound peptides from c-myc-transfected cells reveal allele-specific motifs. J Immunol 1993; 151: 5966–74.

    PubMed  CAS  Google Scholar 

  413. Huczko EL, Bodnar WM, Benjamin D et al. Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 1993; 151: 2572–87.

    PubMed  CAS  Google Scholar 

  414. Barber LD, Gillece Castro B, Percival L et al. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol 1995; 5: 179–90.

    PubMed  CAS  Google Scholar 

  415. Falk K, Rötzschke O, Grahovaé B et al. Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci USA 1993; 90; 12005–9

    PubMed  CAS  Google Scholar 

  416. Davenport MP, Smith KJ, Barouch D et al. HLA class I binding motifs derived from random peptide libraries differ at the COOH terminus from those of eluted peptides. J Exp Med 1997; 185: 367–71.

    PubMed  CAS  Google Scholar 

  417. Reich EP, von Grafenstein H, Barlow A et al. Self peptides isolated from MHC glycoproteins of non-obese diabetic mice. J Immunol 1994; 152: 2279–88.

    PubMed  CAS  Google Scholar 

  418. Merkel F, Kalluri R, Marx M et al. Autoreactive T-cells in Goodpasture’s syndrome recognize the N-terminal NCI domain on alpha 3 type IV collagen. Kidney Int 1996; 49: 1127–33.

    PubMed  CAS  Google Scholar 

  419. Falk K, Rötzschke O, Takiguchi M et al. Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics 1995; 41: 162–4.

    PubMed  CAS  Google Scholar 

  420. Dahl AM, Beverley PC, Stauss HJ. A synthetic peptide derived from the tumor-associated protein mdm2 can stimulate autoreactive, high avidity cytotoxic T lymphocytes that recognize naturally processed protein. J Immunol 1996; 157: 239–46.

    PubMed  CAS  Google Scholar 

  421. Dubey P, Hendrickson RC, Meredith SC et al. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp Med 1997; 185: 695–706.

    PubMed  CAS  Google Scholar 

  422. Fleischhauer K, Avila D, Vilbois F et al. Characterization of natural peptide ligands for HLA-B*4402 and -B*4403: implications for peptide involvement in allorecognition of a single amino acid change in the HLA-B44 heavy chain. Tissue Antigens 1994; 44: 311–7.

    PubMed  CAS  Google Scholar 

  423. Doménech N, Henderson RA, Finn OJ. Identification of an HLA-All-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J Immunol 1995; 155: 4766–74.

    PubMed  Google Scholar 

  424. Panina-Bordignon P, Lang R, van Endert PM et al. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 1995; 181: 1923–7.

    PubMed  CAS  Google Scholar 

  425. Diehl M, Münz C, Keilholz W et al. Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol 1996; 6: 305–14.

    PubMed  CAS  Google Scholar 

  426. Tzeng C, Adams EJ, Gumperz JE et al. Peptides bound endogenously by HLA-Cw*0304 expressed in LCL 721.221 cells include a peptide derived from HLA-E. Tissue Antigens 1996; 48: 325–8.

    PubMed  CAS  Google Scholar 

  427. Reizis B, Schild H, Stevanovie S et al. Peptide binding motifs of the MHC class I molecules (RTI.A’) of the Lewis rat. Immunogenetics 1997; 45: 278–9.

    PubMed  CAS  Google Scholar 

  428. Cerrone MC, Ma JJ, Stephens RS. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun 1991; 59: 79–90.

    PubMed  CAS  Google Scholar 

  429. Zügel U, Schoel B, Yamamoto S et al. Crossrecognition by CD8 T cell receptor alpha beta cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Eur J Immunol 1995; 25: 451–8.

    PubMed  Google Scholar 

  430. Chen W, Ede JN, Jackson DC et al. CTL recognition of an altered peptide associated with asparagine bond rearrangement-implications for immunity and vaccine design. J Immunol 1996; 157: 1000–5.

    PubMed  CAS  Google Scholar 

  431. di Marzo Veronese F, Arnott D, Barnaba V et al. Autoreactive cytotoxic T lymphocytes in human immunodeficiency virus type 1-infected subjects. J Exp Med 1996; 183: 2509–16.

    Google Scholar 

  432. Sheil JM, Shepherd SE, Klimo GF et al. Identification of an autologous insulin B chain peptide as a target antigen for H2Kb-restricted cytotoxic T lymphocytes. J Exp Med 1992; 175: 545–52.

    PubMed  CAS  Google Scholar 

  433. Harpur AG, Zimiecki A, Wilks AF et al. A prominent natural H-2 Kd ligand is derived from protein tyrosine kinase JAK1. Immunol Lett 1993; 35: 235–7.

    PubMed  CAS  Google Scholar 

  434. Tallquist MD, Yun TJ, Pease LR. A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J Exp Med 1996; 184: 1017–26.

    PubMed  CAS  Google Scholar 

  435. Guilloux Y, Lucas S, Brichard VG et al. A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 1996; 183: 1173–83.

    PubMed  CAS  Google Scholar 

  436. Wang C, Castano AR, Peterson PA et al. Nonclassical binding of formylated pep-tide in crystal structure of the MHC class Ib molecule H2–M3. Cell 1995; 82: 655–64.

    PubMed  CAS  Google Scholar 

  437. Sykulev Y, Joo M, Vturina I et al. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 1996; 4: 565–71.

    PubMed  CAS  Google Scholar 

  438. Udaka K, Tsomides TJ, Eisen HN. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 1992; 69: 989–98.

    PubMed  CAS  Google Scholar 

  439. Wu MX, Tsomides TJ, Eisen HN. Tissue distribution of natural peptides derived from a ubiquitous dehydrogenase, including a novel liver-specific peptide that demonstrates the pronounced specificity of low affinity T cell reactions. J Immunol 1995; 154: 4495–502.

    PubMed  CAS  Google Scholar 

  440. Corr M, Boyd LF, Frankel SR et al. Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 1992; 176: 1681–92.

    PubMed  CAS  Google Scholar 

  441. Robbins PF, el Gamil M, Li YF et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996; 183: 1185–92.

    Google Scholar 

  442. Wei ML, Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 1992; 356: 443–6.

    PubMed  CAS  Google Scholar 

  443. Walden P, Wiesmüller KH, Jung G. Elucidation of T-cell epitopes: a synthetic approach with random peptide libraries. Biochem Soc Trans 1995; 23: 678–81.

    PubMed  CAS  Google Scholar 

  444. Udaka K, Wiesmüller K, Kienle S et al. Self-MHC restricted peptides recognized by an alloreactive T lymphocyte clone. Journal of Immunology 1996; 157: 670–8.

    CAS  Google Scholar 

  445. Bloom M., Perry-Lalley D, Robbins PF et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997; 185: 453–9.

    PubMed  CAS  Google Scholar 

  446. Wölfel T, Van Pel A, Brichard V et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994; 24: 759–64.

    PubMed  Google Scholar 

  447. Robbins PF, el Gamil M, Kawakami Y et al. Recognition of tyrosinase by tumor-infiltrating lymphocytes from a patient responding to immunotherapy [published erratum appears in Cancer Res 1994; 54:3952]. Cancer Res 1994; 54: 3124–6.

    Google Scholar 

  448. Brichard V, Van Pel A, Wölfel T et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993; 178: 489–95.

    PubMed  CAS  Google Scholar 

  449. Engelhard VH, Appella E, Benjamin DC et al. Mass spectrometric analysis of peptides associated with the human class I MHC molecules HLA-A2.1 and HLA-B7 and identification of structural features that determine binding. Chem Immunol 1993; 57: 39–62.

    PubMed  CAS  Google Scholar 

  450. Skipper JC, Hendrickson RC, Gulden PH et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 1996; 183: 527–34.

    PubMed  CAS  Google Scholar 

  451. Kang X, Kawakami Y, el Gamil M et al. Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol 1995; 155: 1343–8.

    PubMed  CAS  Google Scholar 

  452. Brichard VG, Herman J, Van Pel A et al. A tyrosinase nonapeptide presented by HLA-B44 is recognized on a human melanoma by autologous cytolytic T lymphocytes. Eur J Immunol 1996; 26: 224–30.

    PubMed  CAS  Google Scholar 

  453. Schild H, Grüneberg U, Pougialis G et al. Natural ligand motifs of H-2E molecules are allele specific and illustrate homology to HLA-DR molecules. Int Immunol 1996; 7: 1957–65.

    Google Scholar 

  454. Malcherek G, Falk K, Rötzschke O et al. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int Immunol 1993; 5: 1229–37.

    PubMed  CAS  Google Scholar 

  455. Friede T, Gnau V, Jung G et al. Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochim Biophys Acta 1996; 1316: 85–101.

    PubMed  Google Scholar 

  456. Marrack P, Ignatowicz L, Kappler JW et al. Comparison of peptides bound to spleen and thymus class II. J Exp Med 1993; 178: 2173–83.

    PubMed  CAS  Google Scholar 

  457. Nelson CA, Roof RW, McCourt DW et al. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc Natl Acad Sci U S A 1992; 89: 7380–3.

    PubMed  CAS  Google Scholar 

  458. Chicz RM, Urban RG, Gorga JC et al. Specificity and promiscuity among naturally processed peptides bound to HLADR alleles. J Exp Med 1993; 178: 27–47.

    PubMed  CAS  Google Scholar 

  459. Reizis B, Mor F, Eisenstein M et al. The peptide binding specificity of the MHC class II I-A molecule of the Lewis rat, RT1B’. Int Immunol 1996; 8: 1825–32.

    PubMed  CAS  Google Scholar 

  460. Verreck FA, van de Poel A, Drijfhout JW et al. Natural peptides isolated from G1y86/Va186-containing variants of HLADR1, -DR11, -DR13, and -DR52. Immunogenetics 1996; 43: 392–7.

    PubMed  CAS  Google Scholar 

  461. Kirschmann DA, Duffin KL, Smith CE et al. Naturally processed peptides from rheumatoid arthritis associated and non-associated HLA-DR alleles. J Immunol 1995; 155: 5655–62.

    PubMed  CAS  Google Scholar 

  462. Kinouchi R, Kobayasi H, Sato K et al. Peptide motifs of HLA-DR4/DR53 (DRB1*0405/DRB4*0101) molecules. Immunogenetics 1994; 40: 376–8.

    PubMed  CAS  Google Scholar 

  463. Futaki G, Kobayashi H, Sato K et al. Naturally processed HLA-DR9/DR53 (DRB1*0901/DRB4*0101)-bound peptides. Immunogenetics 1995; 42: 299–301.

    PubMed  CAS  Google Scholar 

  464. Davenport MP, Quinn CL, Chicz RM et al. Naturally processed peptides from two disease-resistance-associated HLA-DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DR beta chain. Proc Natl Acad Sci U S A 1995; 92: 6567–71.

    PubMed  CAS  Google Scholar 

  465. Hunt DF, Michel H, Dickinson TA et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-M. Science 1992; 256: 1817–20.

    PubMed  CAS  Google Scholar 

  466. Nelson CA, Viner NJ, Young SP et al. A negatively charged anchor residue promotes high affinity binding to the MHC class II molecule I-Ak. J Immunol 1996; 157: 755–62.

    PubMed  CAS  Google Scholar 

  467. Hayden JB, McCormack AL, Yates III JR et al. Analysis of naturally processed pep-tides eluted from HLA DRB1*0402 and *0404. J Neurosci Res 1996; 45: 795–802.

    Google Scholar 

  468. Rötzschke O, Falk K. Origin, structure and motifs of naturally processed MHC class II ligands. Curr Opin Immunol 1994; 6: 45–51.

    PubMed  Google Scholar 

  469. Rudensky AY, Preston Hurlburt P, Hong SC et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991; 353: 622–7.

    PubMed  CAS  Google Scholar 

  470. Davenport MP, Godkin A, Friede T et al. A distinctive peptide binding motif for HLA-DRB1*0407, an HLA-DR4 subtype not associated with rheumatoid arthritis Immunogenetics 1997; 45: 229–32.

    PubMed  CAS  Google Scholar 

  471. Vartdal F, Johannsen BH, Friede T et al. The peptide binding motif for the disease associated HLA-DQ (al*0501, 131*0201) molecule. Eur J Immunol 1996; 26: 2764–72.

    PubMed  CAS  Google Scholar 

  472. Verreck FAW, Vermeulen C, v.d.Poel A et al. The generation of SDS-stable HLA DR dimers is independent of efficient peptide binding. Int Immunol 1996; 8: 397–404.

    PubMed  CAS  Google Scholar 

  473. Falk K, Rötzschke O, Stevanovie S et al. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 1994; 39: 230–42.

    PubMed  CAS  Google Scholar 

  474. Newcomb JR, Cresswell P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha beta dimers. J Immunol 1993; 150: 499–507.

    PubMed  CAS  Google Scholar 

  475. Adibzadeh M, Friccius H, Bornhak S et al. Role of three quantitatively dominant endogenous peptides from HLADRB1*0401 molecules in class II specific allreactivity. Transplant Immunol 1994; 2: 293–9.

    CAS  Google Scholar 

  476. Matsushita S, Takahashi K, Motoki M et al. Allele specificity of structural requirement for peptides bound to HLADRB1*0405 and -DRBI*0406 complexes: implication for the HLA-associated susceptibility to methimazole-induced insulin autoimmune syndrome. J Exp Med 1994; 180: 873–83.

    PubMed  CAS  Google Scholar 

  477. Rudensky AY, Preston Hurlburt P, al Ramadi BK et al. Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. Nature 1992; 359: 429–31.

    PubMed  CAS  Google Scholar 

  478. Stern LJ, Brown JH, Jardetzky TS et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994; 368: 215–21.

    PubMed  CAS  Google Scholar 

  479. Riberdy JM, Newcomb JR, Surman MJ et al. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 1992; 360: 474–7.

    PubMed  CAS  Google Scholar 

  480. Sette A, Ceman S, Kubo RT et al. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 1992; 258: 1801–4.

    PubMed  CAS  Google Scholar 

  481. Schmidt CM, Orr HT. Maternal/fetal interactions: the role of the MHC class I molecule HLA-G. Crit Rev Immunol 1993; 13: 207–24.

    PubMed  CAS  Google Scholar 

  482. Feder JN, Gnirke A, Thomas W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13: 399–408.

    PubMed  CAS  Google Scholar 

  483. Roitt IM. Essential Immunology. 8th ed. Oxford: Blackwell Scientific Publications; 1994.

    Google Scholar 

  484. Wegener S. HLA and Krankheitsassoziationen. Infusionsther Transfusionsmed 1994; 21: 213–9.

    PubMed  CAS  Google Scholar 

  485. Hammer J, Gallazzi F, Bono E et al. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med 1995; 181: 1847–55.

    PubMed  CAS  Google Scholar 

  486. Friede T, Gnau V, Jung G et al. Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochim Biophys Acta 1996; 1316: 85–101.

    PubMed  Google Scholar 

  487. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604.

    PubMed  CAS  Google Scholar 

  488. Morel PA, Dorman JS, Todd JA et al. Aspartic acid at position 57 of the HLADQ beta chain protects against type I diabetes: a family study [published erratum appears in Proc Natl Acad Sci U S A 1989; 86:1317]. Proc Natl Acad Sci U S A 1988; 85: 8111–5.

    PubMed  CAS  Google Scholar 

  489. Boon T, Cerottini JC, van den Eynde B et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994; 12: 337–65.

    PubMed  CAS  Google Scholar 

  490. Reisfeld RA, Gillies SD. Recombinant antibody fusion proteins for cancer immunotherapy. Curr Top Microbiol Immunol 1996; 213: 27–53.

    PubMed  CAS  Google Scholar 

  491. Handgretinger R, Anderson K, Lang P et al. A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur J Cancer 1995; 31A: 261–7.

    Google Scholar 

  492. Reisfeld RA, Greene ML, Yachi A. Fifth Annual Sapporo Cancer Seminar. Monoclonal antibodies-progress in cancer immunobiology and clinical application. Cancer Res 1986; 46: 2193–6.

    PubMed  CAS  Google Scholar 

  493. Pantel K, Riethmuller G. Micrometastasis detection and treatment with monoclonal antibodies. Curr Top Microbiol Immunol 1996; 213: 1–18.

    PubMed  CAS  Google Scholar 

  494. De Plaen E, Lurquin C, Van Pel A et al. Immunogenic (turn-) variants of mouse tumor P815: cloning of the gene of turn-antigen P91A and identification of the tum-mutation. Proc Natl Acad Sci U S A 1988; 85: 2274–8.

    PubMed  Google Scholar 

  495. van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–7.

    PubMed  Google Scholar 

  496. Rosenberg SA. The immunotherapy of solid cancers based on cloning the genes encoding tumor-rejection antigens. Annu Rev Med 1996; 47: 481–91.

    PubMed  CAS  Google Scholar 

  497. Pardoll DM. Tumour antigens. A new look for the 1990s. Nature 1994; 369: 357.

    PubMed  CAS  Google Scholar 

  498. Riddell SR, Greenberg PD. Principles for adoptive T cell therapy of human viral diseases. Annu Rev Immunol 1995; 13: 545–86.

    PubMed  CAS  Google Scholar 

  499. Toes RE, Offringa R, Feltkamp MC et al. Tumor rejection antigens and tumor specific cytotoxic T lymphocytes. Behring Inst Mitt 1994; 94: 72–86.

    PubMed  CAS  Google Scholar 

  500. Marchand M, Weynants P, Rankin E et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 1995; 63: 883–5.

    PubMed  CAS  Google Scholar 

  501. Young JW, Inaba K. Dendritic cells as adjuvants for class I major histocompat-ibility complex-restricted antitumor im-munity. J Exp Med 1996; 183: 7–11.

    PubMed  CAS  Google Scholar 

  502. Topalian SL, Gonzales MI, Parkhurst M et al. Melanoma-specific CD4+T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med 1996; 183: 1965–71.

    PubMed  CAS  Google Scholar 

  503. Topalian SL. MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol 1994; 6: 741–5.

    PubMed  CAS  Google Scholar 

  504. Boel P, Wildmann C, Sensi ML et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995; 2: 167–75.

    PubMed  CAS  Google Scholar 

  505. Frumento G, Harris PE, Gawinowicz MA et al. Sequence of a prominent 16-residue self-peptide bound to HLA-B27 in a lymphoblastoid cell line. Cell Immunol 1993; 152: 623–6.

    PubMed  CAS  Google Scholar 

  506. van den Eynde B, Peeters O, De Backer O et al. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 1995; 182: 689–98.

    PubMed  Google Scholar 

  507. Kawakami Y, Eliyahu S, Jennings C et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 1995; 154: 3961–8.

    PubMed  CAS  Google Scholar 

  508. Wang RF, Parkhurst MR, Kawakami Y et al. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 1996; 183: 1131–40.

    PubMed  CAS  Google Scholar 

  509. Fisk B, Blevins TL, Wharton JT et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995; 181: 2109–17.

    PubMed  CAS  Google Scholar 

  510. Fisk B, Savary C, Hudson JM et al. Changes in an HER-2 peptide upregulating HLA-A2 expression affect both conformational epitopes and CTL recognition: implications for optimization of antigen presentation and tumor-specific CTL induction. J Immunother Emphasis Tumor Immunol 1995; 18: 197–209.

    PubMed  CAS  Google Scholar 

  511. Traversari C, van der Bruggen P, Luescher IF et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176: 1453–7.

    PubMed  CAS  Google Scholar 

  512. van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–7.

    PubMed  Google Scholar 

  513. Gaugler B, van den Eynde B, van der Bruggen P et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 1994; 179: 921–30.

    PubMed  CAS  Google Scholar 

  514. Celis E, Tsai V, Crimi C et al. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci U S A 1994; 91: 2105–9.

    PubMed  CAS  Google Scholar 

  515. van der Bruggen P, Bastin J, Gajewski T et al. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 1994; 24: 3038–43.

    PubMed  Google Scholar 

  516. Herman J, van der Bruggen P, Luescher IF et al. A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 1996; 43: 377–83.

    PubMed  CAS  Google Scholar 

  517. Coulie PG, Brichard V, Van Pel A et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994; 180: 35–42.

    PubMed  CAS  Google Scholar 

  518. Kawakami Y, Eliyahu S, Delgado CH et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A 1994; 91: 3515–9.

    PubMed  CAS  Google Scholar 

  519. Kawakami Y, Eliyahu S, Sakaguchi K et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180: 347–52.

    PubMed  CAS  Google Scholar 

  520. Rivoltini L, Kawakami Y, Sakaguchi K et al. Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995; 154: 2257–65.

    PubMed  CAS  Google Scholar 

  521. Castelli C, Storkus WJ, Maeurer MJ et al. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J Exp Med 1995; 181: 363–8.

    PubMed  CAS  Google Scholar 

  522. Fleischhauer K, Tanzarella S, Wallny H et al. Multiple HLA-A alleles can present an immunodominant peptide of the human melanoma antigen Melan-A/MART1 to a peptide-specific HLA-A*0201’ cytotoxic T cell line. J Immunol 1996; 157: 787–97.

    PubMed  CAS  Google Scholar 

  523. Blake J, Johnston JV, Hellstrom KE et al. Use of combinatorial peptide libraries to construct functional mimics of tumor epitopes recognized by MHC class I-restricted cytolytic T lymphocytes. J Exp Med 1996; 184: 121–30.

    PubMed  CAS  Google Scholar 

  524. Coulie PG, Lehmann F, Lethe B et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A 1995; 92: 7976–80.

    PubMed  CAS  Google Scholar 

  525. Mandelboim O, Berke G, Fridkin M et al. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature 1994; 369: 67–71.

    PubMed  CAS  Google Scholar 

  526. Robbins PF, el Gamil M, Li YF et al. Cloning of a new gene encoding an antigen recognized by melanoma-specific HLA-A24-restricted tumor-infiltrating lymphocytes. J Immunol 1995; 154: 5944–50.

    Google Scholar 

  527. Gnjatie S, Bressac de Paillerets B, Guillet JG et al. Mapping and ranking of potential cytotoxic T epitopes in the p53 protein: effect of mutations and polymorphism on peptide binding to purified and refolded HLA molecules. Eur J Immunol 1995; 25: 1638–42.

    Google Scholar 

  528. Ciernik F, Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 1996; 156: 2369–75.

    PubMed  CAS  Google Scholar 

  529. Bertholet S, Iggo R, Corradin G. Cytotoxic T lymphocyte responses to wild-type and mutant mouse p53 peptides. Eur J Immunol 1997; 27: 798–801.

    PubMed  CAS  Google Scholar 

  530. Lacabanne V, Viguier M, Guillet J et al. A wild-type p53 cytotoxic T cell epitope is presented by mouse hepatocarcinoma cells. Eur J Immunol 1996; 26: 2635–9.

    PubMed  CAS  Google Scholar 

  531. Sibille C, Chomez P, Wildmann C et al. Structure of the gene of turn-transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 1990; 172: 35–45.

    PubMed  CAS  Google Scholar 

  532. Wallny HJ, Deres K, Faath S et al. Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int Immunol 1992; 4: 1085–90

    Google Scholar 

  533. McCormick D, Stauss HJ, Thorpe C et al. Major histocompatibility complex and T cell receptor interaction of the P91 tum-peptide. Eur J Immunol 1996; 26: 2895–902.

    PubMed  CAS  Google Scholar 

  534. Cox AL, Skipper J, Chen Y et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994; 264: 716–9.

    PubMed  CAS  Google Scholar 

  535. Kawakami Y, Eliyahu S, Delgado CH et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994; 91: 6458–62.

    PubMed  CAS  Google Scholar 

  536. Skipper JCA, Kittlesen DJ, Hendrickson RC et al. Shared epitopes for HLA-A3restricted melanoma-reactive human CTL include a naturally processed epitope from Pmel-17/gp100. J Immunol 1996; 157: 5027–33.

    PubMed  CAS  Google Scholar 

  537. Gaugler B, Brouwenstijn N, Vantomme V et al. A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics 1996; 44: 323–30.

    PubMed  CAS  Google Scholar 

  538. Abrams SI, Stanziale SF, Lunin SD et al. Identification of overlapping epitopes in mutant ras oncogene peptides that activate CD4+ and CD8+ T cell responses. Eur J Immunol 1996; 26: 435–43.

    PubMed  CAS  Google Scholar 

  539. Wang R, Appella E, Kawakami Y et al. Identification of TRP-2 as a human tu-mor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207–16.

    PubMed  CAS  Google Scholar 

  540. Lurquin C, Van Pel A, Mariame B et al. Structure of the gene of tum-transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 1989; 58: 293–303.

    PubMed  CAS  Google Scholar 

  541. van den Eynde B, Mazarguil H, Lethe B et al. Localization of two cytotoxic T lymphocyte epitopes and three anchoring residues on a single nonameric peptide that binds to H-2Ld and is recognized by cytotoxic T lymphocytes against mouse tumor P815. Eur J Immunol 1994; 24: 2740–5.

    PubMed  Google Scholar 

  542. Lethé B, van den Eynde B, Van Pel A et al. Mouse tumor rejection antigens P815A and P815B: two epitopes carried by a single peptide. Eur J Immunol 1992; 22: 2283–8.

    PubMed  Google Scholar 

  543. Szikora JP, Van Pel A, Boon T. Tummutation P35B generates the MHC-binding site of a new antigenic peptide. Immunogenetics 1993; 37: 135–8.

    PubMed  CAS  Google Scholar 

  544. Buseyne F, Stevanovie, Rammensee HG et al. Characterizaton of an HIV-1 p24ga9 epitope recognized by a CD8’ cytotoxic T cell clone. Immunol Letters 1997; 55: 145–149.

    CAS  Google Scholar 

  545. von Boehmer H. Thymic selection: a matter of life and death. Immunol Today 1992; 13: 454–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rammensee, HG., Bachmann, J., Stevanović, S. (1997). Recognition by Immune Cells. In: MHC Ligands and Peptide Motifs. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22162-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22162-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22164-8

  • Online ISBN: 978-3-662-22162-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics