Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 253))

Abstract

The mature neuron is a highly specialised, irreplaceable, post-mitotic cell and neuronal death leaves a permanent deficit. Therefore, irrespective of the cause, any extensive neuronal loss will have profound, if not fatal, consequences for the organism as a whole. The central nervous system (CNS) in humans and all higher orders of the animal kingdom is normally protected by both anatomical barriers and systemic physiological barriers of innate and specific immunity. A limited number of viruses have evolved strategies to penetrate these defences and to gain access to neurons that may result in direct neuronal destruction. However, the outcome of any infection is determined by the interplay between the tactics of the invader and the host response and this balance is equally relevant to viral infection of the CNS. This chapter will concentrate upon herpes simplex virus (HSV) encephalitis, which is still the commonest cause of sporadic acute encephalitis in immunocompetent individuals living in temperate parts of the world. In naturally occurring disease it is rarely possible to dissociate completely the direct cytopathic effects of the virus from cellular injury inflicted by the host immune system, but animal experiments that allow manipulation of certain facets have helped to elucidate the complex interactions and the mechanisms of neuronal destruction. Other chapters will deal more extensively with neurotropism but it will also be considered here in as much as a portal of entry into the CNS, together with susceptibility of CNS cell populations to permissive infection, are the essential prerequisites of virally mediated neuronal destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike T, Weihe E, Schaefer M, Fu ZF, Zheng YM, Vogel W, Schmidt H, Koprowski H, Dietzschold B (1995) Effect of neurotropic virus infection on neuronal and inducible nitric oxide synthase activity in rat brain. J Neurovirol 1: 118–125

    Article  PubMed  CAS  Google Scholar 

  • An SF, Ciardi A, Giometto B, Scaravilli T, Gray F, Scaravilli F (1996) Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol 91: 494–503

    Article  PubMed  CAS  Google Scholar 

  • Anderson JR, Field HJ (1983) The distribution of herpes simplex type 1 antigen in mouse central nervous system after different routes of inoculation. J Neurol Sci 60: 181–195

    Article  PubMed  CAS  Google Scholar 

  • Asensio VC, Campbell IL (1997) Chemokine gene expression in the brains of mice with lymphocytic choriomeningitis. J Virol 71: 7832–7840

    PubMed  CAS  Google Scholar 

  • Aurelius E, Andersson B, Forsgren M, Skoldenberg B, Strannegard O (1994) Cytokines and other markers of intrathecal immune response in patients with herpes simplex encephalitis. J Infect Dis 170: 678–681

    Article  PubMed  CAS  Google Scholar 

  • Ayuso Blanco T, Gimenez Mas JA, Omenaca Teres M, Campello Morer I, Marta Moreno ME, Martinez Lanao D (1994) Brain stem encephalitis due to herpes simplex. Neurologia 9: 112–114

    PubMed  CAS  Google Scholar 

  • Barber PC, Lindsay RM (1982) Schwann cells of the olfactory nerves contain glial fibrillary acidic protein

    Google Scholar 

  • and resemble astrocytes. Neuroscience 7:3077–3090

    Google Scholar 

  • Baringer JR, Pisani P (1994) Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction [see comments]. Ann Neurol 36: 823–829

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Chen J, Crow JP, Ye YZ (1994) Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res 103: 371–380

    Article  PubMed  CAS  Google Scholar 

  • Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154: 816–829

    CAS  Google Scholar 

  • Benator RM, Magill HL, Gerald B, Igarashi M, Fitch SJ (1985) Herpes simplex encephalitis: CT findings in the neonate and young infant. Am J Neuroradiol 6: 539–543

    Google Scholar 

  • Bok RA, Jacob HS, Balla J, Juckett M, Stella T, Shatos MA, Vercellotti GM (1993) Herpes simplex virus decreases endothelial cell plasminogen activator inhibitor. Thromb Haemost 69: 253–258

    PubMed  CAS  Google Scholar 

  • Brankin B, Hart MN, Cosby SL, Fabry Z, Allen IV (1995) Adhesion molecule expression and lymphocyte adhesion to cerebral endothelium: effects of measles virus and herpes simplex 1 virus. J Neuroimmunol 56: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Chretien F, Belec L, Hilton DA, Flament-Saillour M, Guillon F, Wingertsmann L, Baudrimont M, de Truchis P, Keohane C, Vital C, Love S, Gray F (1996) Herpes simplex virus type 1 encephalitis in acquired immunodeficiency syndrome. Neuropathol Appl Neurobiol 22: 394–404

    Article  PubMed  CAS  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by El A, which is inhibited by EIB. Genes Dev 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  • Drescher KM, Murray PD, David CS, Pease LR, Rodriguez M (1999) CNS cell populations are protected

    Google Scholar 

  • from virus-induced pathology by distinct arms of the immune system. Brain Pathol 9:21–31

    Google Scholar 

  • Eder C (1998) Ion channels in microglia (brain macrophages). Am J Physiol 275: C327–342

    PubMed  CAS  Google Scholar 

  • Efstathiou S, Minson AC, Field HJ, Anderson JR, Wildy P (1986) Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J Virol 57: 446–455

    PubMed  CAS  Google Scholar 

  • Esiri MM (1982) Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain. J Neurol Sci 54: 209–226

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM (1997) Viruses and rickettsiae. Brain Pathol 7: 695–709

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Drummond CW, Morris CS (1995) Macrophages and microglia in HSV-1 infected mouse brain. J Neuroimmunol 62: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein [corrected and republished article originally printed in Embo J ( 1997 Feb 3; 16:56677)]. Embo J 16: 1519–1530

    Google Scholar 

  • Fujii S, Akaike T, Maeda H (1999) Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats, Virology 256: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Gaudin Y, Tuffereau C, Durrer P, Brunner J, Flamand A, Ruigrok R (1999) Rabies virus-induced membrane fusion. Mol Membr Biol 16: 21–31

    Article  PubMed  CAS  Google Scholar 

  • Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156: 4363–4368

    PubMed  CAS  Google Scholar 

  • Hanham CA, Zhao F, Tignor GH (1993) Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor. J Virol 67: 530–542

    PubMed  CAS  Google Scholar 

  • Hesselgesser J, Horuk R (1999) Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol 5: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Burd PR, Furuke K, Kutza J, Weih KA, Clouse KA (1999) Human immunodeficiency virus1-infected macrophages induce inducible nitric oxide synthase and nitric oxide (NO) production in astrocytes: astrocytic NO as a possible mediator of neural damage in acquired immunodeficiency syndrome. Blood 93: 1843–1850

    PubMed  CAS  Google Scholar 

  • Immergluck LC, Domowicz MS, Schwartz NB, Herold BC (1998) Viral and cellular requirements for entry of herpes simplex virus type 1 into primary neuronal cells. J Gen Virol 79: 549–559

    PubMed  CAS  Google Scholar 

  • Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease [see comments]. Lance 349: 241–244

    Article  CAS  Google Scholar 

  • Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF (1992) Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol 167: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Kastrukoff L, Long C, Doherty PC, Wroblewska Z, Koprowski H (1981) Isolation of virs from brain after immunosuppression of mice with latent herpes simplex. Nature 291: 432–433

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PG, Gairns J (1992) Major histocompatibility complex (MHC) antigen expression in HIV encephalitis [published erratum appears in Neuropathol Appl Neurobiol ( 1992 Dec; 18:627)]. Neuropathol Appl Neurobiol 18: 515–522

    Google Scholar 

  • Kettenmann H, Banati R, Walz W (1993) Electrophysiological behavior of microglia. Glia 7: 93–101

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Futamura M, Kito H, Ando T, Goto M, Kuzushima K, Shibata M, Morishima T (1991) Detection of viral DNA in neonatal herpes simplex virus infections: frequent and prolonged presence in serum and cerebrospinal fluid. J Infect Dis 164: 289–293

    Article  PubMed  CAS  Google Scholar 

  • Komatsu T, Ireland DD, Chen N, Reiss CS (1999) Neuronal expression of NOS-1 is required for host recovery from viral encephalitis. Virology 258: 389–395

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19: 312–318

    Article  PubMed  CAS  Google Scholar 

  • Kristensson K, Dastur DK, Manghani DK, Tsiang H, Bentivoglio M (1996) Rabies: interactions between neurons and viruses. A review of the history of Negri inclusion bodies. Neuropathol Appl Neurobiol 22: 179–187

    Google Scholar 

  • Lannuzel A, Barnier JV, Hery C, Huynh VT, Guibert B, Gray F, Vincent JD, Tardieu M (1997) Human immunodeficiency virus type 1 and its coat protein gp120 induce apoptosis and activate JNK and ERK mitogen-activated protein kinases in human neurons. Ann Neurol 42: 847–856

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, Wesselingh SL, Griffin DE, Hardwick JM (1996) Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol 70: 1828–1835

    PubMed  CAS  Google Scholar 

  • Lipton SA (1996) Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia: potential treatment with NMDA open-channel blockers and nitric oxide-related species. Brain Pathol 6: 507–517

    Article  PubMed  CAS  Google Scholar 

  • MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, Liew FY (1998) Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. J Gen Virol 79: 825–830

    PubMed  CAS  Google Scholar 

  • McQuaid S, McMahon J, Herron B, Cosby SL (1997) Apoptosis in measles virus-infected human central nervous system tissues. Neuropathol Appl Neurobiol 23: 218–224

    Article  PubMed  CAS  Google Scholar 

  • Meredith M, Orr A, Everett R (1994) Herpes simplex virus type 1 immediate-early protein Vmw110 binds strongly and specifically to a 135-kDa cellular protein. Virology 200: 457–469

    Article  PubMed  CAS  Google Scholar 

  • Meyding-Lamade U, Haas J, Lamade W, Stingele K, Kehm R, Fath A, Heinrich K, Storch Hagenlocher B, Wildemann B (1998) Herpes simplex virus encephalitis: long-term comparative study of viral load and the expression of immunologic nitric oxide synthase in mouse brain tissue. Neurosci Lett 244: 9–12

    Article  PubMed  CAS  Google Scholar 

  • Mitchell WJ (1995) Neurons differentially control expression of a herpes simplex virus type 1 immediate-early promoter in transgenic mice. J Virol 69: 7942–7950

    PubMed  CAS  Google Scholar 

  • Morris CS, Esiri MM (1998) The expression of cytokines and their receptors in normal and mildly reactive human brain. J Neuroimmunol 92: 85–97

    Article  PubMed  CAS  Google Scholar 

  • Ojeda VJ, Archer M, Robertson TA, Bucens MR (1983) Necropsy study of the olfactory portal of entry in herpes simplex encephalitis. Med J Aust 1: 79–81

    PubMed  CAS  Google Scholar 

  • Phinney PR, Fligiel S, Bryson YJ, Porter DD (1982) Necrotizing vasculitis in a case of disseminated neonatal herpes simplex infection. Arch Pathol Lab Med 106: 64–67

    PubMed  CAS  Google Scholar 

  • Rall GF, Mucke L, Oldstone MB (1995) Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo. J Exp Med 182: 1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Reiss CS, Plakhov IV, Komatsu T (1998) Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann NY Acad Sci 855: 751–761

    Article  PubMed  CAS  Google Scholar 

  • Rose JW, Stroop WG, Matsuo F, Henkel J (1992) A typical herpes simplex encephalitis: clinical, virologie, and neuropathologie evaluation. Neurology 42: 1809–1812

    Article  PubMed  CAS  Google Scholar 

  • Rummelt V, Rummelt C, Jahn G, Wenkel H, Sinzger C, Mayer UM, Naumann GO (1994) Triple retinal infection with human immunodeficiency virus type 1, cytomegalovirus, and herpes simplex virus type 1. Light and electron microscopy, immunohistochemistry, and in situ hybridization. Ophthalmology 101: 270–279

    Google Scholar 

  • Samaniego LA, Webb AL, DeLuca NA (1995) Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J Virol 69: 5705–5715

    PubMed  CAS  Google Scholar 

  • Sasaki A, Nakazato Y (1992) The identity of cells expressing MHC class II antigens in normal and pathological human brain. Neuropathol Appl Neurobiol 18: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Schiff D, Rosenblum MK (1998) Herpes simplex encephalitis (HSE) and the immunocompromised: a clinical and autopsy study of HSE in the settings of cancer and human immunodeficiency virus-type 1 infection [see comments]. Hum Pathol 29: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Sivadon V, Lebon P, Rozenberg F (1998) Variations of HSV-1 glycoprotein B in human herpes simplex encephalitis. J Neurovirol 4: 106–114

    Article  PubMed  CAS  Google Scholar 

  • Theerasurakarn S, Ubol S (1998) Apoptosis induction in brain during the fixed strain of rabies virus infection correlates with onset and severity of illness. J Neurovirol 4: 407–414

    Article  PubMed  CAS  Google Scholar 

  • Tuffereau C, Benejean J, Alfonso AM, Flamand A, Fishman MC (1998) Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells. J Virol 72: 1085–1091

    PubMed  CAS  Google Scholar 

  • Valyi-Nagy T, Fareed MU, O’Keefe JS, Gesser RM, MacLean AR, Brown SM, Spivack JG, Fraser NW (1994) The herpes simplex virus type 1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SLID mice. J Gen Virol 75: 2059–2063

    Article  PubMed  CAS  Google Scholar 

  • Verjans GM, Feron EJ, Dings ME, Cornelissen JG, Van der Lelij A, Baarsma GS, Osterhaus AD (1998) T cells specific for the triggering virus infiltrate the eye in patients with herpes simplex virus-mediated acute retinal necrosis. J Infect Dis 178: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DL, Walker DG, Akiyama H, McGeer PL (1990) Herpes simplex virus type I infection of the CNS induces major histocompatibility complex antigen expression on rat microglia. J Neurosci Res 26: 55–65

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland SV, Kolson D, Gonzalez-Scarano F (1996) Toxicity of TNF alpha and platelet activating factor for human NT2N neurons: a tissue culture model for human immunodeficiency virus dementia. J Neurovirol 2: 118–126

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1997) Apoptosis: an overview. Br Med Bull 53: 451–465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, J.R. (2001). The Mechanisms of Direct, Virus-Induced Destruction of Neurons. In: Gosztonyi, G. (eds) The Mechanisms of Neuronal Damage in Virus Infections of the Nervous System. Current Topics in Microbiology and Immunology, vol 253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10356-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10356-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08710-3

  • Online ISBN: 978-3-662-10356-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics