Skip to main content

Synthesis, storage and degradation of myocardial triglycerides

  • Conference paper
Lipid metabolism in the normoxic and ischaemic heart

Summary

In the manunalian myocardium, an active triglyceride synthesis pathway is operating, (re)esterifying activated fatty acids from endogenous or exogenous sources, with the glycolytically derived three-carbon intermediates dihydroxyacetone-phosphate and glycerol-3 -phosphate by the so-called Kennedy pathway. The seven enzymes of triglyceride synthesis are membrane bound and located at the sarcoplasmic reticulum. The first enzyme in the glycerol-3-phosphate pathway, glycerol-3-phosphate acyltransferase, is proposed to be rate limiting for triglyceride formation. This microsomal enzyme is regulated by phosphorylation (inactiycation)-dephosphorylation (activation) coupled to the β-receptor — adenyl cyclase — protein kinase system. Additional regulatory steps in triglyceride formation are the reactions catalyzed by the microsomal phosphatidic acid phosphatase and diglyceride acyltransferase. Intracellular triglycerides occur as free floating cytosolic droplets, membrane-bound particles and lipid-filled lysosomes. No consensus exists about the metabolically active portion of myocardial triglycerides. Various lipases have been proposed to be involved in endogenous lipolysis: the lysosomal acid, microsomal and soluble neutral triglyceride, intracellular lipoprotein lipases and the microsomal di- and monoglyceridase. It has been acknowledged that the bulk of the intracellular neutral lipase represents the precursor of vascular lipoprotein lipase. The presence of a neutral lipase, as distinct from lipoprotein lipase, in the rat heart was recently advocated. Endogenous lipolysis is a hormone-sensitive process. Hormone-sensitivity may involve direct alteration of enzyme activity by protein phosphorylation-dephosphorylation but is also dependent on the removal rate of product fatty acids, since feedback inhibition is a common property of all lipases in the heart. The rate of endogenous glycogenolysis, determined by phosphorylation-dephosphorylation of glycogen phosphorylase, by inducing an increased supply of three-carbon intermediates may dictate the actual lipase activity. The close coupling between the rate of lipolysis, glycogenolysis and triglyceride synthesis prevents intracellular accumulation of potentially harmful fatty acids and their CoA and carnitine derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell RM, Coleman RA (1983) Enzymes of triacylglycerol formation in mammals. In: Boyer PD (ed) The enzymes. Acad Press Inc. Vol XVI, 87–111

    Google Scholar 

  2. Brindley DN. (1978) Some aspects of the physiological and pharmacological control of the synthesis of triacylglycerol and phospholipids. Int J Obesity 2: 7–16

    CAS  Google Scholar 

  3. Christiansen K (1975) Membrane-bounded lipid particles from beef heart acylglycerol synthesis. Biochim Biophys Acta 38: 390–402

    Google Scholar 

  4. Crass III MF (1977) Regulation of triglyceride metabolism in the isotopically prelabelled perfused heart. Fed Proc 36: 1995–1999

    PubMed  CAS  Google Scholar 

  5. Decker RS, Decker ML, Herring GH, Morton PC, Wildenthal K (1980) Lysosomal vacuolar apparatus of cardiac myocytes in heart of starved and refed rabbits. J Mol Cell Cardiol 12: 1175–1189

    Article  PubMed  CAS  Google Scholar 

  6. De Duve C (1969) The lysosome in retrospect. In: Dingle FT, Fell B (eds) Lysosomes in biology and pathology; John Wiley and Sons Inc, New York, vol 1: 1–42

    Google Scholar 

  7. Flamigni F, Rossini C, Stefanelli C, Caldarera CM (1986) Polyamine metabolism and function in the heart. J Mol Cell Cardiol 18: 3–11

    Article  PubMed  CAS  Google Scholar 

  8. Fournier NC (1987) Uptake and transport of lipid substrates in the heart. Basic Res Cardiol (this volume)

    Google Scholar 

  9. Garthwaite SM, Morgan RF, Meyer DK (1979) Circadian rhythms of glycogen, free fatty acid and triglycerides in rat heart and diaphragm. Proc Soc Exp Biol Med 160: 401–404

    PubMed  CAS  Google Scholar 

  10. Goldberg DI, Khoo JC (1985) Activation of myocardial neutral triglyceride lipase and neutral cholesteryl esterase by cAMP-dependent protein kinase. J Biol Chem 260: 5879–5882

    PubMed  CAS  Google Scholar 

  11. Haagsman HP, Van Golde LMG (1981) Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: Role of diacylglycerol acyltransferase. Arch Biophys Biochem 208: 395–402

    Google Scholar 

  12. Heathers GP, Al-Muthaseb N, Brunt RV (1985) The effect of adrenergic agents on the activities of glycerol-3-phosphate acyltransferase and triglyceride lipase in the isolated rat heart. J Mol Cell Cardiol 17: 785–796

    Article  PubMed  CAS  Google Scholar 

  13. Heathers GP, Brunt RV (1985) The effect of coronary artery occlusion and reperfusion on the activities of triglyceride lipase and glycerol-3-phosphate acyltransferase in the isolated perfused rat heart. J Moll Cell Cardiol 17: 907–916

    Article  CAS  Google Scholar 

  14. Holub BJ, Kuksis A (1978) Metabolism of molecular species of diacylglycerol phospholipids. Adv Lipid Res 16: 1–25

    PubMed  CAS  Google Scholar 

  15. Hülsmann WC, Breeman WAP, Stam H (1981) Acid and neutral lipases involved in endogenous lipolysis in small intestine and heart. Biochem Biophys Res Commun 102: 440–448

    Article  PubMed  Google Scholar 

  16. Hülsmann WC, Stam H, Maccari F (1982) The effect of excess (acyl)-carnitine on lipid metabolism in rat heart. Biochim Biophys Acta 713: 39–45

    Article  PubMed  Google Scholar 

  17. Hülsmann WC, Stam H, Jansen H (1984) Localization and function of myocardial lipolysis. Basic Res Cardiol 79: 269–273

    Google Scholar 

  18. Jesmok GJ, Warltier CD, Gross GJ, Harman HF (1978) Transmural triglycerides in acute myocardial ischemia. Cardiovasc Res 12: 659–665

    Article  PubMed  CAS  Google Scholar 

  19. Jodalen H, Stangeland L, Grong K, Vik-Mo H, Lekven J (1985) Lipid accumulation in the myocardium during acute regional ischemia in cats. J Moll Cell Cardiol 17: 973–980

    Article  CAS  Google Scholar 

  20. Kako JK, Kikuchi T (1972) Mechanism of ethanol-induced triglyceride accumulation in the rabbit heart. Rec Adv Stud Card Struct Metab 1: 596–604

    CAS  Google Scholar 

  21. Kako KJ, Liu MS (1974) Acylation of glycerol-3-phosphate by rabbit heart mitochondria and microsomes: Triiodothyronine increase in its activity. FEBS Lett 39: 243–346

    Google Scholar 

  22. Karwatowska-Krynska E, Beresczicz A (1983) Effect of locally released catecholamines on lipolysis and injury of the hypoxic isolated rabbit heart. J Moll Cell Cardiol 15: 523–536

    Article  CAS  Google Scholar 

  23. Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc 20: 934–940

    PubMed  CAS  Google Scholar 

  24. Knauer TE, Weglicki WB (1983) Characteriation of multiple forms of the acid triacylglycerol lipase(s) of canine cardiac myocytes. Biochim Biophys Acta 753: 173–185

    Article  PubMed  CAS  Google Scholar 

  25. Lech JJ, Jesmok GJ, Calvert DN (1977) Effect of drugs on lipolysis in heart. Fed Proc 36: 2000–2008

    PubMed  CAS  Google Scholar 

  26. Miki Y, Hosaka K, Yamashita S, Handa H, Numa S (1979) Acyl acceptor specificities of 1-acylglycerolphosphate acyltransferase and 1-acylglycerophosphorylcholine acyltransferase resolved from rat liver micrososmes. Eur J Biochem 81: 433–441

    Article  Google Scholar 

  27. Miller WC, Oscai LB (1984) Relationship between type L hormonesensitive lipase and endogenous triacylglycerol in rat heart. Am J Physiol 247: R621 — R625

    PubMed  CAS  Google Scholar 

  28. Murthy VK, Shipp JC (1977) Accumulation of myocardial triglycerides in ketotic diabetes. Diabetes 26: 222–229

    Article  PubMed  CAS  Google Scholar 

  29. Norseth J, Christiansen EN, Christophersen BO (1979) Increased chain shortening of erucic acid in per-fused heart from rats fed rapeseed oil. FEBS Lett 97: 163–165

    Article  PubMed  CAS  Google Scholar 

  30. Olson RE, Hoeschen RI (1967) Utilization of endogenous lipid by the isolated perfused rat heart. Biochem J 103: 796–801

    PubMed  CAS  Google Scholar 

  31. Pfeiffer U, Strauss P (1981) Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats. J Mol Cell Cardiol 13: 37–49

    Google Scholar 

  32. Ramirez I, Kryski AJ, Ben-Zeev O, Schotz MC, Severson DL (1985) Characterization of triacylglycerol hydrolase activities in isolated cells from the heart. Biochem J 232: 229–236

    PubMed  CAS  Google Scholar 

  33. Rösen P, Budde Th, Reinauer H (1981) Triglyceride lipase activity in the diabetic rat. J Mol Cell Cardiol 14: 539–550

    Article  Google Scholar 

  34. Scholte HR, Luyt-Houwen IEM (1987) The role of carnitine in myocardial fatty acid oxidation. Basic Res Cardiol (this volume)

    Google Scholar 

  35. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H, unpublished observations

    Google Scholar 

  36. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H (1987) Stimulation of neutral triglyceride lipase activity in isolated rat heart by adenosine-3’:5’-monophosphate: Involvement of glycogenolysis. Basic Res Cardiol (this volume)

    Google Scholar 

  37. Schousboe I, Bartels PD, Jensen PK (1973) Triglyceride lipase activity in subcellular fractions from beef heart. FEBS Lett 35: 279–283

    Article  PubMed  CAS  Google Scholar 

  38. Severson DL (1974) Characterization of triglyceride lipase activities in rat heart. J Mol Cell Cardiol 11: 569–583

    Article  Google Scholar 

  39. Severson DL, Hurley B (1982) Regulation of rat heart triacylglycerol ester hydrolases by free fatty acids, fatty acyl CoA and fatty acylcarnitine. J Mol Cell Cardiol 14: 467–474

    Article  PubMed  CAS  Google Scholar 

  40. Shipp JC, Thomas JM, Crevasse L (1964) Oxidation of carbon-N-labelled endogenous lipids by isolated perfused rat hearts. Science 143: 371–373

    Article  PubMed  CAS  Google Scholar 

  41. Siliprandi N, Limzu M, Sartorelli L (1987) Carnitine transport by myocardial sarcolemma. Basic Res Cardiol (this volume)

    Google Scholar 

  42. Smith AL, Bird JWC (1975) Distribution and particle properties of the vacuolar apparatus of cardiac muscle. I. Biochemical characterization of cardiac muscle lysosomes and the isolation and characterization of acid, neutral and alkaline proteases. J Moll Cell Cardiol 7: 39–61

    Google Scholar 

  43. Stam H, Geelhoed-Mieras T, Hülsmann WC (1980) Erucic acid-induced alteration of cardiac triglyceride hydrolysis. Lipids 15: 242–250

    Article  PubMed  CAS  Google Scholar 

  44. Stam H, Breeman WAP, Hülsmann WC (1982) Neutral lipase of rat heart: an inducible enzyme? Biochem Biophys Res Commun 104: 333–339

    Article  PubMed  CAS  Google Scholar 

  45. Stam H, Schoonderwoerd K, Breemann WAP, Hülsmann WC (1984) Effects of hormones, fasting and diabetes on triglyceride lipase activities in rat heart and liver. Horm Metab Res 16: 293–297

    Article  PubMed  CAS  Google Scholar 

  46. Stam H, Hülsmann WC (1985) Regulation of lipases involved in the supply of substrate fatty acids for the heart. Eur Heart J 6: 158–167

    PubMed  CAS  Google Scholar 

  47. Stam H, Broekhoven-Schokker S, Hülsmann WC (1986) Characterization of mono-, di-and triglyceride lipase activity in the isolated rat heart. Biochim Biophys Acta 875: 76–86

    Article  PubMed  CAS  Google Scholar 

  48. Stam H, Broekhoven-Schokker S, Hülsmann WC (1986) Studies on the involvement of Iipolytic enzymes in endogenous lipolysis of the isolated rat heart. Biochim Biophys Acta 875: 87–96

    Article  PubMed  CAS  Google Scholar 

  49. Stein O, Stein Y (1968) Lipid synthesis, intracellular transport and storage. J Cell Biol 36: 63–67

    Article  CAS  Google Scholar 

  50. Trach V (1984) Untersuchungen zum Zusammenhang von Lipolyse and Glycolyse bei Ischaemie and Isolierten Rattenherzen. Academic Thesis, Max-Planck Universität, Heidelberg

    Google Scholar 

  51. Vavrinkova H, Mosinger B (1971) Effect of glucagon, catecholamines and insulin on liver acid lipase and acid phosphatase. Biochim Biophys Acta 231: 320–326

    Article  PubMed  CAS  Google Scholar 

  52. Wang TW, Menahan LA, Lech JJ (1977) Subcellular localization of enzymes, lipase and triglycerides in rat heart. J Moll Cell Cardiol 9: 25–38

    Article  CAS  Google Scholar 

  53. Welman E, Bowes D, Peters DJ (1978) Electron microscopy of lysosomal fractions from guinea pig heart. J Moll Cell Cardiol 10: 527–533

    Article  CAS  Google Scholar 

  54. Wetterau JR, Zilversmit DB (1986) Localization of intracellular triacylglycerol and cholesterylester transfer activity in rat tissues. Biochim Biophys Acta 875: 610–617

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stam G. J. van der Vusse

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stam, H., Schoonderwoerd, K., Hülsmann, W.C. (1987). Synthesis, storage and degradation of myocardial triglycerides. In: Stam, H., van der Vusse, G.J. (eds) Lipid metabolism in the normoxic and ischaemic heart. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-08390-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08390-1_3

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-08392-5

  • Online ISBN: 978-3-662-08390-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics