Skip to main content

Determining the Dislocation Contrast Factor for X-ray Line Profile Analysis

  • Chapter
Diffraction Analysis of the Microstructure of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 68))

Abstract

An important step in quantifying dislocation broadening of a line profile is the evaluation of the dislocation contrast factors. In this way the elastic properties of the material, displacement field of the dislocations and geometric orientation of the diffraction vector relative to the dislocation slip-system are incorporated into the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.E. Warren: X-ray Diffraction. (Addison-Wesley, Massachusetts 1969)

    Google Scholar 

  2. A.R. Stokes and A.J.C. Wilson: Proc. Camb. Phil. Soc. 38, 313 (1942)

    Article  ADS  Google Scholar 

  3. A.R. Stokes and A.J.C. Wilson: Proc. Phys. Soc. Lond. 56, 174 (1944)

    Article  ADS  Google Scholar 

  4. B.E. Warren and B.L. Averbach: J. Appl. Phys. 21, 595 (1950)

    Article  ADS  Google Scholar 

  5. B.E. Warren and B.L. Averbach: J. Appl. Phys. 23 (4), 497 (1952)

    Article  ADS  Google Scholar 

  6. G.K. Williamson and W.H. Hall: Acta Met. 1, 22 (1953)

    Article  Google Scholar 

  7. A. Krivoglaz and K.P. Ryaboshapka: Fiz. metal. metalloved. 15(1), 18 (1963)

    Google Scholar 

  8. M. Wilkens: NBS Spec. Publ. 317 2, 1195 (1970); Proceedings of Fundamental aspects of dislocation theory. J.A. Simmons and R. de Witt and R. Bullough (Eds.)

    Google Scholar 

  9. M. Wilkens: Phys. Stat. Sol. A 2, 359 (1970)

    Article  ADS  Google Scholar 

  10. M.A. Krivoglaz, O.V. Martynenko and K.P. Ryaboshapka: Phys. Met. Metall. 55(1), 1 (1983)

    Google Scholar 

  11. I. Groma, T. Ungár and M. Wilkens: J. Appl. Cryst. 21, 47 (1988)

    Article  Google Scholar 

  12. J.G. van Berkum, R. Delhez, T. de Keijser and E.J. Mittemeijer: Acta. Cryst. A52, 730 (1996)

    Google Scholar 

  13. I. Groma: Phys. Rev. B 57 (13), 7535 (1998)

    Article  ADS  Google Scholar 

  14. I. Groma and G. Monnet: J. Appl. Cryst. 35, 589 (2002)

    Article  Google Scholar 

  15. J.I. Langford and D. Louër: J. Appl. Cryst. 15, 20 (1982)

    Article  Google Scholar 

  16. D. Louër, J.P. Auffrédic and J.I. Langford: J. Appl. Cryst. 16, 183 (1983)

    Article  Google Scholar 

  17. J.I. Langford: NIST Spec. Pub. 846, 110 (1992)

    Google Scholar 

  18. C.E. Krill and R. Birringer: Phil. Mag. A77 (3), 621 (1998)

    Article  ADS  Google Scholar 

  19. J.I. Langford, D. Louër and P. Scardi: J. Appl. Cryst. 33, 964 (2000)

    Article  Google Scholar 

  20. P. Scardi, M. Leoni and Y.H. Dong: Eur. Phys. J. B 18, 23 (2000)

    Article  ADS  Google Scholar 

  21. G. Ribárik, T. Ungár and J. Gubicza: Appl. Cryst. 34, 669 (2001)

    Article  Google Scholar 

  22. N. Armstrong, W. Kalceff, J.P. Cline and J. Bonevich: J. Res. Nat. Inst. Stand. Techn. (2001) Submitted. Proceedings of Accuracy in Powder Diffraction III, 22–25 April 2001, NIST (Gaithersburg, USA 2001)

    Google Scholar 

  23. P. Scardi and M. Leoni: Acta Cryst. A57, 604 (2001)

    Google Scholar 

  24. T. Ungár and A. Borbély: J. Appl. Lett. 69(21), 3173 (1996)

    Article  Google Scholar 

  25. E. Wu, E.M.A. Gray and E.H. Kisi: J. Appl. Cryst. 31, 356 (1998)

    Article  Google Scholar 

  26. E. Wu, E.H. Kisi and E.M.A. Gray: J. Appl. Cryst. 31, 363 (1998)

    Article  Google Scholar 

  27. T. Ungár, M. Leoni and P. Scardi: J. Appl. Cryst. 32, 290 (1999)

    Article  Google Scholar 

  28. T. Ungár, I. Dragomir, A. Révész and A. Borbély: J. Appl. Cryst. 32, 992 (1999)

    Article  Google Scholar 

  29. R.W. Cheary, E. Dooryhee, P. Lynch, N. Armstrong and S. Dligatch: J. Appl. Cryst. 33, 1271 (2000)

    Article  Google Scholar 

  30. M. Wilkens: Phys. Stat. Sol. 104, K1 (1987)

    Article  ADS  Google Scholar 

  31. P. Klimanek and R. Kužel: J. Appl. Cryst. 21, 59 (1988)

    Article  Google Scholar 

  32. R. Kužel and P. Klimanek: J. Appl. Cryst. 21, 363 (1988)

    Article  Google Scholar 

  33. T. Ungár and G. Tichy: Phys. Stat. Sol. (a) 171, 425 (1999)

    Article  ADS  Google Scholar 

  34. I.C. Dragomir and T. Ungár: J. Appl. Cryst. 35, 556 (2002)

    Article  Google Scholar 

  35. I.C. Dragomir and T. Ungár: Powd. Diffract. 17(2), 104 (2002)

    Article  ADS  Google Scholar 

  36. P. Lynch: X-ray diffraction line broadening from gold thin film structures. PhD thesis, Department of Applied Physics, University of Technology, Sydney, Australia 2002

    Google Scholar 

  37. P. Scardi. Private communication (25 March — 03 April 2002)

    Google Scholar 

  38. M. Wilkens: X-ray line broadening of plastically deformed crystals. In: “Proc. 5th Riso Int. Symp. Mater. Sci. 1984”. N.H. Andersen (Ed.) pp. 153–168

    Google Scholar 

  39. A. Guinier: X-ray diffraction in crystals, imperfect crystals and amorphous bodies. (Freeman, San Francisco 1963). Reprinted by Dover (New York) 1994

    Google Scholar 

  40. T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst. 34, 298 (2001)

    Article  Google Scholar 

  41. D. Hull and D.J. Bacon: Introduction to dislocations. 4th edn. (Butterworthh-Heinemann, Oxford 2001)

    Google Scholar 

  42. J.P. Hirth and J. Lothe: Theory of dislocations. (Wiley, New York 1982)

    Google Scholar 

  43. J.W. Steeds: Introduction to anisotropic elasticity theory of dislocations. (Clarendon, Oxford 1973)

    MATH  Google Scholar 

  44. C. Teodosiu: Elastic models of crystal defects: (Springer, Berlin Heidelberg New York 1982)

    Book  Google Scholar 

  45. J.D. Eshelby, W.T. Read and W. Shockley: Acta Metall. 1, 251 (1953)

    Article  Google Scholar 

  46. L.J. Teotonico: Dislocations in anisotropic elastic media. In: “Mathematical theory of dislocations” . T. Mura (Ed.) Amer. Soc. Mech. Eng., New York 1969) pp. 49–69

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor R.W. Cheary for teaching and inspiring us to tackle this problem

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Armstrong, N., Lynch, P. (2004). Determining the Dislocation Contrast Factor for X-ray Line Profile Analysis. In: Mittemeijer, E.J., Scardi, P. (eds) Diffraction Analysis of the Microstructure of Materials. Springer Series in Materials Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06723-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06723-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07352-6

  • Online ISBN: 978-3-662-06723-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics