Skip to main content

Accessory Genes of the Paramyxoviridae, a Large Family of Nonsegmented Negative-Strand RNA Viruses, as a Focus of Active Investigation by Reverse Genetics

  • Chapter
Book cover Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 283))

Abstract

The Paramyxoviridae, a large family of nonsegmented negative-strand RNA viruses, comprises several genera each containing important human and animal pathogens. They possess in common six basal genes essential for viral replication and, in addition, a subset of accessory genes that are largely unique to each genus. These accessory genes are either encoded in one or more alternative overlapping frames of a basal gene, which are accessed transcriptionally or translationally, or inserted before or between the basal genes as one or more extra genes. However, the question of how the individual accessory genes contribute to actual viral replication and pathogenesis remained unanswered. It was not even established whether they are dispensable or indispensable for the viral life cycle. The plasmid-based reverse genetics of the full-length viral genome has now come into wide use to demonstrate that most, if not all, of these putative accessory genes can be disrupted without destroying viral infectivity, conclusively defining them as indeed dispensable accessory genes. Studies on the phenotypes of the resulting gene knockout viruses have revealed that the individual accessory genes greatly contribute specifically and additively to the overall viral fitness both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

aMPV:

Avian metapneumovirus

bPIV3:

Bovine parainfluenza virus 3

bRSV:

Bovine respiratory syncytial virus

CDV:

Canine distemper virus

CPE:

Cytopathic effect

DDB1:

The 127-kDa subunit of the damage-specific DNA binding protein

GAF:

Gamma activated factor

GAS:

Gamma activated sequence

HeV:

Hendra virus

HIV-1:

Human immunodeficiency virus 1

hMPV:

Human metapneumovirus

hPIV1:

Human parainfluenza virus 1

hPIV2:

Human parainfluenza virus 2

hPIV3:

Human parainfluenza virus 3

hRSV:

Human respiratory syncytial virus

IFN:

Interferon

IRF:

Interferon regulatory factor

ISG:

Interferon-stimulated gene

ISGF:

Interferon-stimulated gene factor

ISRE:

Interferon stimulated response element

JAK:

Janus kinase

LD50 :

50% Lethal dose

MeV:

Measles virus

MuV :

Mumps virus

NDV:

Newcastle disease virus

NiV:

Nipah virus

ORF:

Open reading frame

PDV:

Phocine distemper virus

RACK:

Receptor for activated C kinase

PKR:

RNA-dependent protein kinase

RNP:

Ribonucleoprotein

RPV:

Rinderpest virus

RV:

Rabies virus

SeV:

Sendai virus

STAT:

Signal transducer and activator of transcription

SV5:

Simian virus 5

SV41:

Simian virus 41

TNF:

Tumor necrosis factor

TPMV:

Tupaia paramyxovirus

VSV:

Vesicular stomatitis virus

VV:

Vaccinia virus

References

  • Aaronson DS, and Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296, 1653–1655

    Article  PubMed  CAS  Google Scholar 

  • Andrejeva J, Poole E, Young DF, Goodbourn S, and Randall RE (2002a) The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J. Virol. 76, 11379–11386

    Article  PubMed  CAS  Google Scholar 

  • Andrejeva J, Young DF, Goobourn S, and Randall RE (2002b) Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: consequences for virus replication in the presence of alpha/ beta and gamma interferons. J. Virol. 76, 2159–2167

    Article  PubMed  CAS  Google Scholar 

  • Baron MD, and Barrett T (2000) Rindsepest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J. Virol. 74, 2603–2611

    Article  PubMed  CAS  Google Scholar 

  • Basler CF, Wang X, Mühlberger E, Vulchkov V, Paragas J, Klenk HD, Garcia-Sastre A, and Palese P (2000) The Ebola virus VP35 protein functions as a type 1 IFN antagonist. Proc. Natl. Acad. Sci. USA 97, 12289–12294

    Google Scholar 

  • Bermingham A, and Collins PL (1999) The M2–2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc. Natl. Acad. Sci. USA 96, 11259–11264

    Article  PubMed  CAS  Google Scholar 

  • Biron CA, and Sen GC (2001) Interferons and other cytokines. In Fields Virology 4th ed. pp. 321–351. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Bitzer M, Prinz F, Bauer M, Spiegel M, Neubert WJ, Gregor M, Schulze-Osthoff K, and Lauer U (1999) Sendai virus infection induces apoptosis through activation of caspase-8 (FLICE) and caspase-3 (CPP32). J. Virol. 73, 702–708

    PubMed  CAS  Google Scholar 

  • Bossert B, and Conzelmann KK (2002) Respiratory syncytial virus (RSV) nonstructural (NS) proteins as host range determinants: a chimeric bovine RSV with NS genes from human RSV is attenuated in interferon-competent bovine cells. J. Virol. 76, 4287–4293

    Article  PubMed  CAS  Google Scholar 

  • Buchholz UJ, Finke S, and Conzelmann, KL (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in acts as a functional BRSV genome promoter. J. Virol. 73, 251–259

    PubMed  CAS  Google Scholar 

  • Burkreyev A, Whitehead SS, Murphy BR, and Collins PL (1997) Recombinant respiratory syncytial virus from which the SH gene has been deleted grows efficiently in cell culture and exhibits site specific attenuation in the respiratory tract of the mouse. J. Vitrol. 71, 8973–8982

    Google Scholar 

  • Cadd T, Garcin D, Tapparel C, Itoh M, Homma M, Roux L, Curren J, and Kolakofsky D (1996) The Sendai paramyxovirus accessory C proteins inhibit viral genome amplification in a promoter-specific fashion. J. Virol. 70, 5067–5074

    PubMed  CAS  Google Scholar 

  • Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, and Cattaneo R (1998) A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J. 17, 3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Kaelin K, Baczko K, and Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56, 759–764

    Article  PubMed  CAS  Google Scholar 

  • Chanock RM, Miuphy BR, and Collins PL (2001) Parainfluenza viruses. In Fields Virology 4th ed. pp. 1341–1379. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Chatziandreu N, Young D, Andrejeva J, Goodbourn S, and Randall RE (2002) Differences in interferon sensitivity and biological properties of two related isolates of simian virus 5: a model for viral persistence. Virology 293, 234–242

    Article  CAS  Google Scholar 

  • Chazal N, and Gerlier D. (2003). Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev. 67, 226–237

    Article  PubMed  CAS  Google Scholar 

  • Choppin PW (1964) Multiplication of a myxovirus (SV5) with minimal cytopathic effects and without interference. Virology 23, 224–233

    Article  PubMed  CAS  Google Scholar 

  • Choppin PW, and Compans RW (1975) Reproduction of paramyxoviruses. In: H Fraenkel-Conrat, and RR Wagner, eds. Comprehensive Virology vol. 4, pp. 95–179 Plenum Press, New York

    Chapter  Google Scholar 

  • Collins PL, Hill MG., Camargo E, Grosfeld H, Chanock RM, and Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5’ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc. Natl. Acad. Sci. USA 92, 11563–11567

    Google Scholar 

  • Collins PL, Chanock RM, and Murphy, BR (2001) Respiratory syncytial virus. In Fields Virology 4th ed. pp. 1443–1485. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Crooze E, Usacheva A, Asarnow D, Minshall RD, Perez HD, and Colamonici O (2000) Receptor for activated C-kinase (RACK-1), a WD motif containing protein, specifically associates with the human type I IFN receptor. J. Immunol. 165, 5127–5132

    Google Scholar 

  • Curran J, and Kolakofsky D (1987) Identification of an additional Sendai virus nonstructural protein encoded by the P/C mRNA. J. Gen. Virol. 68, 2515–2519

    Article  PubMed  CAS  Google Scholar 

  • Curran J, and Kolakofsky D (1988) Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. EMBO J. 7, 245–251

    PubMed  CAS  Google Scholar 

  • Curran J, and Kolakofsky D (1989) Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. EMBO J. 8, 521–526

    PubMed  CAS  Google Scholar 

  • Curran J, Boeck R, and Kolakofsky D (1991) The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing. EMBO J. 10, 3079–3085

    PubMed  CAS  Google Scholar 

  • Curran J, Marq JB, and Kolakofsky D (1992) The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189, 647–656

    Article  PubMed  CAS  Google Scholar 

  • Delenda C, Hausmann S, Garcin D, and Kolakofsky D (1997) Normal cellular replication of Sendai virus without the trans-frame, nonstructural V protein. Virology 228, 55–62

    Article  PubMed  CAS  Google Scholar 

  • Delenda C, Taylor G, Hausmann S, Garcin D, and Kolakofsky D (1998) Sendai viruses with altered P, V, and W protein expression. Virology 242, 327–337

    Google Scholar 

  • Didcock L, Young DF, Goodbourn S, and Randall RE (1999a) Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for viral pathogenesis. J. Virol. 73, 3125–3133

    PubMed  CAS  Google Scholar 

  • Didcock L, Young DF, Goodbourn S, and Randall RE (1999b) The V protein of simian virus 5 inhibits interferon signaling by targeting STAT1 for proteasome-mediated degradation. J. Virol. 73, 9928–9933

    PubMed  CAS  Google Scholar 

  • Durbin AP, McAuliffe JM, Collins PL, and Murphy BR (1999) Mutations in the C, D, and V open reading frames of human parainfluenza virus type 3 attenuate replication in rodents and primates. Virology 261, 319–330

    Article  PubMed  CAS  Google Scholar 

  • Escoffier C, Manié S, Vincent S, Muller CP, Billeter M, and Gerlier D (1999) Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. J. Virol. 73, 1695–1698

    PubMed  CAS  Google Scholar 

  • Fearns R, Collins PL (1999) Role of the M2–1 transcription anti-termination protein of respiratory syncytial virus in sequential transcription. J. Virol. 73, 5852–5864

    PubMed  CAS  Google Scholar 

  • Fujii Y, Sakaguchi T, Kiyotani K, Huang C, Fukuhara N, Egi Y. and Yoshida T (2002) Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of pathogenic field isolate from cDNA. J. Virol. 76, 8540–8547

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara N, Huang C, Kiyotani K, Yoshida T, and Sakaguchi T (2002) Mutational analysis of the Sendai virus V protein: importance of the conserved residues for Zn binding, virus pathogenesis and efficient RNA editing. Virology 299, 172–178

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barreno B, Delgado T, and Melero JA (1996) Identification of protein regions involved in the interaction of human respiratory syncytial virus phosphoprotein and nucleoprotein: Significance for nucleocapsid assembly and formation of cytoplasmic inclusions. J. Virol. 70, 801–808

    Google Scholar 

  • Garcin D, Pelet T, Calain P, Roux L, Curran J, and Kolakofsky D (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J. 14, 6087–6094

    PubMed  CAS  Google Scholar 

  • Garcin D, Latore P, and Kolakofsky D (1999) Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J. Virol. 73, 6559–6565

    PubMed  CAS  Google Scholar 

  • Garcin D, Curran J, and Korakofsky D (2000) Sendai virus C proteins must interact directly with cellular components to interfere with interferon action. J. Virol. 74, 8823–8830

    Article  PubMed  CAS  Google Scholar 

  • Garcin D, Curran JM, Itoh D, and Kolakofsky (2001) Longer and shorter forms of Sendai virus C proteins play different roles in modulating the cellular antiviral response. J. Virol. 75, 6800–6807

    Article  PubMed  CAS  Google Scholar 

  • Garcin D, Marq JB, Stable L, Le Mercier P. and Kolakofsky D (2002) All four Sendai Virus C proteins bind STAT1, but only the larger forms also induce its monoubiquitination and degradation. Virology 295, 256–265

    Article  PubMed  CAS  Google Scholar 

  • Garcin D, Marq JB, Goodbourn S, and Kolakofsky D (2003) The amino-terminal extensions of the longer Sendai virus C proteins modulate pY701-Statl and bulk Statl levels independently of interferon signaling. J.Virol. 77, 2321–2329

    Article  PubMed  CAS  Google Scholar 

  • Goodbourn S, Didcock L, and Randall RE (2000) Interferons: Cell signaling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 81, 2341–2364

    Google Scholar 

  • Gotoh B, Takeuchi K, Komatsu T, Yokoo, J, Kimura Y, Kato A, Kurotani, and Nagai Y (1999) Knockout of the Sendai virus C genes eliminates the viral ability to prevent the interferon mediated responses. FEBS Lett. 459, 205–210

    CAS  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, and Yokoo J (2001) Paramyxovirus accessory proteins as interferon antagonists. Microbiol Immunol 45, 787–800

    PubMed  CAS  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, and Yokoo J (2002) Paramyxovirus strategies for evading the interferon response. Rev. Med. Virol. 12, 337–357

    Google Scholar 

  • Gotoh B, Takeuchi K, Komatsu T, and Yokoo J (2003) The STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of alpha interferon signaling. J. Virol. 77, 3360–3370

    Article  PubMed  CAS  Google Scholar 

  • Grogan CC. and Moyer SA (2001) Sendai virus wild-type and mutant C protein show a direct correlation between L polymerase binding and inhibition of viral RNA synthesis. Virology 288, 96–108

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, and Nagai Y (1983) Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex. Virology 128, 105–117

    Google Scholar 

  • Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, and Rota PA (2000) Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271, 334–349

    Article  PubMed  CAS  Google Scholar 

  • Hardy RW, and Wertz GW (1998) The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J. Virol. 72, 520–526

    PubMed  CAS  Google Scholar 

  • Hardy RW, Harman SB, and Wertz GW (1999) Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2-mediated antitermination. J. Virol. 73, 170–176

    PubMed  CAS  Google Scholar 

  • Hasan Mk, Kato A, Muranaka, M, Yamaguchi R, Sakai Y, Hatano I, Tashiro M. and Nagai Y (2000) Versatility of the accessory C proteins of Sendai virus. Contribution to virus assembly as an additional role. J. Virol. 74, 5619–5628

    Google Scholar 

  • He B Leser, GP Paterson RG, and Lamb RA (1998) The paramyxovirus SV5 small hydrophobic ( SH) protein is not essential for virus growth in tissue culture cells. Virology 250, 30–40

    Google Scholar 

  • He B, Lin GY, Durbin JE, Durbin RK, and Lamb RA (2001) The SH integral membrane protein of the paramyxovirus simian virus 5 is required to block apoptosis in MDBK cells. J. Virol. 75, 4068–4079

    Article  PubMed  CAS  Google Scholar 

  • He B, Paterson RG, Stock N, Durbin JE, Durbin RK, Goodbourn S, Randall RE, and Lamb RA (2002) Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blacks both interferon-ß induction and interferon signaling. Virology. 303, 15–32

    Article  PubMed  CAS  Google Scholar 

  • Hermodsson S (1963) Inhibition of interferon by an infection with parainfluenza virus type 3 (PIV-3) Virology 20, 333–343

    PubMed  CAS  Google Scholar 

  • Heylbroeck C, Balachandran S, Servant MJ, Deluca G, Barber GN, Lin R, and Hiscott J (2000) IRF-3 transcription factor mediates Sendai virus induced apoptosis. J. Virol. 74, 3781–3792

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Paterson RG, and Lamb RA (1985) Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the para-myxovirus simian 5. J. Virol. 55, 744–751

    PubMed  CAS  Google Scholar 

  • Hoffman MA, Banerjee AK (1997) An infectious clone of human parainfluenza virus type 3. J. Virol. 71, 4272–4277

    PubMed  CAS  Google Scholar 

  • Horikami SM, Smallwood S, and Moyer SA (1996) The Sendai virus V protein interacts with the NP protein to regulate viral genome RNA replication. Virology 222, 383–390

    Article  PubMed  CAS  Google Scholar 

  • Horikami SM, Hector RE, Smellwood S, and Moyer SA (1997) The Sendai virus C protein binds the L polymerase protein to inhibit vital RNA synthesis. Virology 235, 261–270

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Kiyotani K, Fujii Y, Fukuhara N, Kato A, Nagai Y, Yoshida T, and Sakaguchi T (2000) Involvement of the zinc-binding capacity of Sendai virus V protein in viral pathogenesis. J. Virol. 74, 7834–7841

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T, Hirata T, Nagai Y, Iida A, and Hasegawa M (2003) A new type of Sendai virus vector deficient in the matrix gene has lost virus particle formation and gained extensive cell-to-cell spreading. J. Viral. 77, 6419–6429

    Article  CAS  Google Scholar 

  • Itoh M, Isegawa Y, Hotta H, and Homma M (1997) Isolation of an avirulent mutant of Sendai virus with two amino acid mutations from a highly virulent field strain through adaptation to LLC-MK2 cells. J. Gen. Virol. 78, 3207–3215

    Google Scholar 

  • Itoh M, Hotta H, and Homma M (1998) Increased induction of apoptosis by a Sendai virus mutant is associated with attenuation of mouse pathogenicity. J. Virol. 72, 2977–2934

    Google Scholar 

  • Jin H, Clarke D, Zhou HZ, Cheng X, Coelingh K, Bryant M, Li S (1998) Recombinant human respiratory syncytial virus ( RSV) from cDNA and construction of subgroup A and B chimeric RSV. Virology 251, 206–214

    Google Scholar 

  • Jin H, Cheng X, Zhou HZ, Li S, and Seddiqui A (2000a) Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2–2) has altered growth characteristics, and is attenuated in rodents. J. Virol. 74, 74–82

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Zhou H, Cheng X, Tang R, Munoz M, and Nguyen N (2000b) Recombinant respiratory syncytial virus with deletions in the NS1, NS2, SH, and M2–2 genes are attenuated in vitro and in vivo. Virology 273, 210–218

    Article  PubMed  CAS  Google Scholar 

  • Kai C, Ochikubo F, Okita M, Linuma T, Mikami T, Kobune F, and Yamanouchi K (1993) Use of B95a cells for isolation of canine distemper virus form clinical cases. J. Vet. Med. Sci. 55, 1067–1070

    Google Scholar 

  • Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, and Nagai Y (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1, 569–579

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Kiyotani K, Sakai Y, Yoshida T, and Nagai Y (1997a) The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO J. 16, 578–587

    Google Scholar 

  • Kato A, Kiyotani K, Sakai Y, Yoshida T, Shioda T, and Nagai Y (1997b) Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis. J. Virol. 71, 7266–7272

    PubMed  CAS  Google Scholar 

  • Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, and Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: Moderation at the F gene. J. Virol. 73, 9237–9246

    Google Scholar 

  • Kato A, Ohnishi Y, Kohase M, Saito S, Tasgiro M, and Nagai Y (2001) Y2, the smallest of Sendai virus C proteins is fully capable of counteracting the anti-viral action of interferons and inhibiting viral RNA synthesis. J. Virol. 75, 3802–3810

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Ohnishi Y, Hishiyama M, Saito S, Tashiro M. and Nagai Y (2002) The amino-terminal half of Sendai virus C protein is not responsible for either counteracting the antiviral action of interferons or down-regulating viral RNA synthesis. J. Virol. 76, 7114–7124

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, and Ito Y (2001) Recovery of infectious human parainfluenza type 2 virus from cDNA clones and properties of the defective virus without V-specific cysteine-rich domain. Virology 284, 99–112

    Article  PubMed  CAS  Google Scholar 

  • Kiyotani K, Sakaguchi T, Fujii Y, and Yoshida T (2001) Attenuation of a field Sendai virus isolate through egg-passages is associated with an impediment of viral genome replication in mouse respiratory cells. Arch. Virol 146, 893–908

    Google Scholar 

  • Kobune F, Sakata H, and Sugiura A (1990) Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J. Virol. 64, 700–705

    PubMed  CAS  Google Scholar 

  • Kobune F, Sakata H, Sugiyama M, and Sugiura A (1991) B95a, a marmoset lymphoblastoid cell line, as a sensitive host for rinderpest virus. J. Gen. Virol. 72, 687–692

    Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, and Gotoh B (2002) Sendai virus C protein impairs both phosphorylation and dephosphorylation processes of Stall. FEBS Lett. 511, 139–144

    Article  PubMed  CAS  Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, Tanaka Y, and Gotoh B (2000) Sendai virus blocks alpha interferon signaling to signal transducers and activators of transcription. J. Virol. 74, 2477–2480

    Article  PubMed  CAS  Google Scholar 

  • Koyama AH, Ogawa M, Kato A, Nagai Y. and Adachi A (2001) Lack of apoptosis in Sendai virus-infected Hep-2 cells without participation of viral antiapoptosis gene. Microbes Infect. 3, 1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Koyama AH, Irie H, Kato A, Nagai Y, and Adachi A (2003) Virus multiplication and induction of apoptosis by Sendai virus: role of the C proteins. Microbes Infect. 5, 373–378

    Article  PubMed  CAS  Google Scholar 

  • Kubota T, Yokosawa N, Yokota S. and Fujii N (2001) C terminal Cys-rich region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction through decrease of STAT1-alpha. Biochem Biophys Res Commun 283, 255–259

    Article  PubMed  CAS  Google Scholar 

  • Kubota T, Yokosawa N, Yokota S. and Fujii N (2002) Association of mumps virus V protein with RACK1 results in dissociation of STAT1 from the alpha interferon receptor complex. J. Virol. 16, 12676–12682

    Article  CAS  Google Scholar 

  • Kurotani A, Kiyotani K, Kato A, Shioda T, Sakai Y, Mizumoto K, Yoshida T, and Nagai Y (1998) Sendai virus C proteins are categorically nonessential gene products but silencing their expression severely impairs viral replication and pathogenesis. Genes Cells 3, 111–124

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, and Choppin PW (1977) The synthesis of Sendai virus polypeptides in infected cells. III. Phosphorylation of polypeptides. Virology 81, 382–397

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, and Kolakofsky D (2001) Paramyxoviridae: The viruses and their replication, pp. 1305–1340. In Fields Virology 4th ed. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Latorre P, Cadd T, Itoh M, Curran J, and Kolakofsky D (1998) The various Sendai virus C proteins are not functionally equivalent, and exert both positive and negative effects on viral RNA accumulation during the course of infection. J. Virol. 72, 5984–5993

    PubMed  CAS  Google Scholar 

  • Li H-O, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee YS, Fukumura M, rida A, Kato A, Nagai Y, and Hasegawa M (2000) A cytoplasmic RNA vector from non-transmissible Sendai virus with efficient gene transfer and expression. J. Virol 74, 6564–6569

    Article  PubMed  CAS  Google Scholar 

  • Lin GY, Paterson RG, Richardson CD, and Lamb RA (1998a) The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249, 189–200

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Heylbroeck C, Pitha PM, and Hiscott J (1998b) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear transport, transcription potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18, 2986–2996

    Google Scholar 

  • Lin GY, and Lamb RA (2000) The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. J. Virol. 74, 9155–9166

    Google Scholar 

  • Lin Y, Bright AC, Rothermel TA, and He B (2003) Induction of apoptosis by para-myxovirus simian virus 5 lacking a small hydrophobic gene. J. Virol. 77, 3371–3383

    Article  PubMed  CAS  Google Scholar 

  • Liston P, and Briedis DJ (1994) Measles virus V protein binds zinc. Virology 198, 399–404

    Article  PubMed  CAS  Google Scholar 

  • Liston P, and Briedis DJ (1995) Ribosomal frameshifting during translation of mea- sles virus P protein mRNA is capable of directing synthesis of a unique protein. J. Virol. 69, 6742–6750

    PubMed  CAS  Google Scholar 

  • Maeno K, Yoshii S, Nagata I, and Mastumoto T (1966) Growth of Newcastle disease virus in a HVJ carrier culture of HeLa cells. Virology 29, 255–263

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T (1982) Assembly of paramyxoviruses. Microbiol. Immunol. 26, 285–320

    PubMed  CAS  Google Scholar 

  • Mebatsion T, Verstegen S, De Vaan LT, Romer-Oberdorfer A, and Schrier CC (2001) A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J. Virol. 75, 420–428

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Khaner H, and Lopez J (1991) Identification of intracellular receptor proteins for activated protein kinase C. Proc. Natl. Acad. Sci. USA 88, 3997–4000

    Google Scholar 

  • Nagai Y (1993) Protease-dependent virus tropism and pathogenicity. Trends Microbiol 1, 81–87

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y (1999) Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding. Rev. Med. Virol. 9, 83–99

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Yoshida T, Yoshii S, Maeno K, and Matsumoto T (1975) Modification of normal cell surface by smooth membrane preparations from BHK-21 cells infected with Newcastle disease virus. Med. Microbiol. Immunol. 161, 175–188

    Google Scholar 

  • Nagai Y, Klenk HD, and Rott R (1976a) Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72, 494–508

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Ogura H, and Klenk HD (1976b) Studies on the assembly of the envelope of Newcastle disease virus. Virology 69, 523–538

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, and Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbial Immunol 43, 613–624

    CAS  Google Scholar 

  • Nishikawa F (1997) On HIJ. Virus 47, 261–265.

    CAS  Google Scholar 

  • Nishio M, Tsurudome M, Ito M, Kawano M, Komada H, and Ito Y (2001) High resistance of human parainfluenza type2 virus protein-expressing cells to the antiviral and anti-cell proliferative activities of a/ß interferons: cysteine-rich v-specific domain is required for high resistance to the interferons. J. Virol. 75, 9165–9176

    Article  PubMed  CAS  Google Scholar 

  • Parisien JP, Lau JF, Rodriguez JJ, Sullivan BM, Moscona A, Parks G.D, Lamb RA, and Horvath CM (2001) The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283, 230–239

    Article  PubMed  CAS  Google Scholar 

  • Parisien JP, Lau JF, Horvath CM (2002a) STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication. J. Virol. 76, 6435–6441

    Article  PubMed  CAS  Google Scholar 

  • Parisien JP, Lau JF, Rodriguez JJ, Ulane CM, and Horvath CM (2002b) Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of a/fl interferon signal transduction. J. Virol. 76, 4190–4198

    Article  PubMed  CAS  Google Scholar 

  • Park MS, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, Bouvier N, Palese P, GarciaSastre A, and Basler CF (2003) Newcastle disease virus ( NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77, 1501–1511

    Google Scholar 

  • Paterson R, Leser G, Shaughnessy M, and Lamb R (1995) The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology 208, 121–131

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Thomas D, Lewicki H, Billeter MA, and Oldstone MB (2000) V and C proteins of measles virus function as virulence factors in vivo. Virology 267, 80–89

    Article  PubMed  CAS  Google Scholar 

  • Peeters BPH, DE Leeuw OS, Koch G, and Gielkens ALJ (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 73, 5001–5009

    PubMed  CAS  Google Scholar 

  • Pelet T, Curran J, and Kolakofsky D (1991) The P gene of bovine parainfluenza virus 3 expresses all three reading frames from a single mRNA editing site. EMBO J. 10, 443–448

    PubMed  CAS  Google Scholar 

  • Pikart CM (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533

    Article  Google Scholar 

  • Poole E, He B, Lamb RA, Randal RE, and Goodbourn S (2002) The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-ß. Virology. 303, 33–46

    Article  PubMed  CAS  Google Scholar 

  • Power UF, Ryan KW, and Portner A (1992) The P genes of human parainfluenza virus type 1 clinical isolates are polycistronic and microheterogeneous. Virology 189, 340–343

    Article  PubMed  CAS  Google Scholar 

  • Radecke F, and Billeter MA (1996) The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology 217, 418–421

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Parisien JP, and Horvath CM (2002) Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J.Virol. 76, 11476–11483

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Chen C-H, Caldwell J, Jamieson L, Orr E, and Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta sub-unit of G protein. Proc. Natl. Acad. Sci. USA 91, 839–843

    Google Scholar 

  • Rose KJ, and Whitt MA (2001) Rhabdoviridae: the viruses and their replication. pp. 1221–1244. In Fields Virology 4th ed. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Saito S, Ogino T, Miyajima N, Kato A, and Kohase M (2002) Dephosphorylation failure of tyrosine-phosphorylated STAT1 in IFN-stimulated Sendai virus C protein-expressing cells. Virology 293, 205–209

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Kiyotani K, Kato A, Asakawa M, Fujii Y, Nagai Y, and Yoshida T (1997) Phosphorylation of the Sendai virus M protein is not essential for virus replication either in vitro or in vivo. Virology 235, 360–366

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Kiyotani K, Watanabe H, Huang C, Fukuhara N, Fujii Y, Shimazu Y, Sugahara F, Nagai Y, and Yoshida T (2003) Masking of the contribution of V protein to Sendai virus pathogenesis in an infection model with a highly virulent field isolate. Virology 313, 581–587

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Uchiyama T, Huang C, Fukuhara N, Kiyotani K, Nagai Y, and Yoshida T (2002) Alteration of Sendai virus morphogenesis and nucleocapsid incorporation due to mutation of cysteine residues of the matrix protein. J. Virol. 76, 1682–1690

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Kaelin K, and Billeter MA (1997) Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227, 314–322

    Article  PubMed  CAS  Google Scholar 

  • Schlender J, Bossert B, Buchholz U, and Conzelmann KK (2000) Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/beta interferon-induced antiviral response. J. Virol. 74 8234–8242

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Kato A, Kobune F, Sakata H, Li Y, Shioda T, Sakai Y, Asakawa M, and Nagai Y (1998) Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J. Virol. 72, 8690–8696

    PubMed  CAS  Google Scholar 

  • Takeda M, Kato A, Sakaguchi T, Kobune F, Li Y, and Nagai Y (1999) The genome nucleotide sequence of a contemporary wild-strain of measles virus and its comparison with the classical Edmonston strain genome. Virology 256, 340–350

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Takeuchi K, Miyajima N, Kobune F, Ami Y, Nagata N, Suzuki Y, Nagai Y, and Tashiro M (2000) Recovery of pathogenic measles virus from cloned cDNA. J. Virol. 74, 6643–6647

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Tanabayashi K, Hishiyama M, et al (1991) Variation of nucleotide sequences and transcription of the SH gene among mumps virus strains. Virology 181, 364–366

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Komatsu T, Yokoo J, Kato A, Shioda T, Nagai Y, and Gotoh B (2001) Sendai virus C protein physically associates with Statl. Genes Cells 6, 545–557

    Article  PubMed  CAS  Google Scholar 

  • Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, and Garcia-Sastre A (2000) Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 74, 7989–7996

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Sato M, Lamphier MS, Nozawa H, Oda E, Noguchi S, Schreiber RD, Tsujimoto Y, and Taniguchi T (1998) Type 1 interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 3, 29–37

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi T, Ogasawara K, Takaoka A, and Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655

    Google Scholar 

  • Tapparel C, Hausmann S, Pelet T, Curran J, Kolakofsky D, and Roux L (1997) Inhibition of Sendai virus genome replication due to promoter-increased electivity: a possible role for the accessory C proteins. J. Virol. 71, 9588–9599

    PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, and Yanagi Y (2000) SLAM(CDw150) is a cellular receptor for measles virus. Nature 406, 893–897

    Article  PubMed  CAS  Google Scholar 

  • Teng MN, and Collins PL (1999) Altered growth characteristics of recombinant respiratory syncytial viruses, which do not produce NS2 protein. J. Virol. 73, 466–473

    PubMed  CAS  Google Scholar 

  • Thomas SM, Lamb RA, and Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the para-myxovirus SV5. Cell 54, 891–902

    Article  PubMed  CAS  Google Scholar 

  • Tidona CA, Kurz HW, Gelderblom HR, and Darai G (1999) Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews. Virology 258, 425–434

    Article  PubMed  CAS  Google Scholar 

  • Tober C, Seufert M, Schneider H, Billeter MA, Johnston ICD, Niewiesk S, ter Meulen V, and Schneider-Schaulies S (1998) Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J. Virol. 72, 8124–8132

    PubMed  CAS  Google Scholar 

  • Trono D (1995) HIV accessory proteins: Leading roles for the supporting cast. Cell 82, 189–192

    Article  PubMed  CAS  Google Scholar 

  • Ulane CM, and Horvath CM (2002) Paramyxoviruses SV5 and hPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304, 160–166

    Article  PubMed  CAS  Google Scholar 

  • Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croz E, and Colamonici 0 (2001) The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J. Biol. Chem. 276, 22948–22953

    Google Scholar 

  • Valle M, and Cantell K (1965) The ability of Sendai virus to overcome cellular resistance to vesicular stomatitis, virus I. Ann. Med. Exp. Biol. Fenn. 43, 57–60

    PubMed  CAS  Google Scholar 

  • Valsamakis A, Schneider H, Auwaerter PG., Kaneshima H, Billeter MA, and Griffin DE (1998) Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo. J. Virol. 72, 7754–7761

    Google Scholar 

  • Vidal S, Curran J, and Kolakofsky D (1990a) A stuttering model for paramyxovirus P mRNA editing. EMBO J. 9, 2017–2022

    PubMed  CAS  Google Scholar 

  • Vidal S, Curran J, and Kolakofsky D (1990b) Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J. Virol. 64, 239–246

    PubMed  CAS  Google Scholar 

  • Wang LF, Michalski WP, Yu M, Pritchard LI, Crameri G, Shiell B, and Eaton BT (1998) A novel PN/C gene in a new member of the Paramyxovirus family, which causes lethal infection in humans, horses, and other animals. J. Virol. 72, 1482–1490

    PubMed  CAS  Google Scholar 

  • Wansley EK, and Parks GD (2002) Naturally occurring substitutions in the P/V gene convert the noncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death. J. Virol. 76, 10109–10121

    Article  PubMed  CAS  Google Scholar 

  • Whitehead SS, Bukreyev A, Teng MN, Firestone CY, St Claire M, Elkins WR, Collins PL, and Murphy BR (1999) Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J. Virol. 73, 3438–3442

    PubMed  CAS  Google Scholar 

  • Yanagi Y, Ono N, Tatsuo H, Hashimoto K, and Minagawa H (2002) Measles virus receptor SLAM (CD150) Virology 299, 155–161

    PubMed  CAS  Google Scholar 

  • Yokosawa N, Yokota S, Kubota T, and Fujii N (2002) C-terminal region of STAT la is not necessary for its ubiquitination and degradation caused by mumps virus V protein. J. Virol. 17, 12683–12690

    Article  CAS  Google Scholar 

  • Yokota S, Saito H, Kubota T, Yokosawa N, Amano K, and Fujii N (2003) Measles virus suppresses interferon-a signaling pathway: suppression of Jakl phosphorylation and association of viral accessory proteins, C and V, with interferon-a receptor complex. Virology 305 (in press)

    Google Scholar 

  • Yonemitsu Y, Kiston C, Ferrari S, Farley R, Griesenbach U, Judd D, Steel R, Scheid P, Zhu J, Jeffery PK, Kato A, Hasan MK, Nagai Y, Fukumura M, Hasegawa M, Geddes DM, and Alton EWFW (2000). Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat. Biotech. 18, 970–974

    Google Scholar 

  • Yoshida T, Nagai Y, Yoshii S, Maeno K, Matsumoto T, and Hoshino M (1976) Membrane (M) protein of HVJ (Sendai virus): its role in virus assembly. Virology 71, 143–161

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Nagai Y, Maeno K, Iinuma M, Hamaguchi M, Matsumoto T, Nagayoshi S, and Hoshino M (1979) Studies on the role of M protein in virus assembly using a is mutant of HVJ (Sendai virus): its role in virus assembly. Virology 71, 143–161

    Article  Google Scholar 

  • Young DF, Didcock L, Goodbourn S, and Randall RE (2000) Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269, 383–390

    Article  PubMed  CAS  Google Scholar 

  • Young DF, Chatziandreou N, He B, Goodbourn S, Lamb RA, and Randall RE (2001) Single amino acid substitution in the V protein of simian virus 5 differentiates its ability to block interferon signaling in human and murine cells. J. Virol. 75, 3363–3370

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Shioda T, Kato A, Hasan MK, Sakai Y, and Nagai Y (1997) Sendai virus-based expression of HIV-1 gp120: reinforcement by the V(-) version. Genes Cells 2, 457–466

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagai, Y., Kato, A. (2004). Accessory Genes of the Paramyxoviridae, a Large Family of Nonsegmented Negative-Strand RNA Viruses, as a Focus of Active Investigation by Reverse Genetics. In: Kawaoka, Y. (eds) Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics. Current Topics in Microbiology and Immunology, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06099-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06099-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07375-5

  • Online ISBN: 978-3-662-06099-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics