Skip to main content

Abstract

This article comments on some basic glaciological algorithms for solving the shallow-ice-approximation-based ice-sheet equation and the motion of tracers within ice. The emphasis is practical, with discussion of the merits and demerits of popular algorithms.

Finite difference, pseudo-spectral and characteristic methods are compared for the tracer equation. Second-order upstreaming is found to give the most robust results.

Robust stability criteria applicable to explicit and semi-implicit marching schemes for the ice-sheet equation are derived. The accuracies of three spatial discretization methods are compared; one method is clearly more accurate than the others, but requires twice as much computation time per time-step. A stable semi-implicit method for the ice-sheet equation is suggested by the stability analyses in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budd, W. F. and Jenssen, D. 1975. Numerical modelling of glacier systems. In: Symposium Neiges et Glaces, IAHS-AIHS Publication No. 104, 257–291.

    Google Scholar 

  2. Calov, R., Savvin, A. A., Greve, R., Hansen, I. and Hutter, K. 1998. Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. Ann. Glaciol., 27, 201–206.

    ADS  Google Scholar 

  3. Fornberg, B. 1996. A practical guide to pseudospectral methods. Cambridge University Press.

    MATH  Google Scholar 

  4. Glen, J. W. 1955. The creep of polycrystalline ice. Proc. R. Soc. Lond., Ser. A, 228, 519–538.

    Article  ADS  Google Scholar 

  5. Hindmarsh, R. C. A. 1990. Timescales and degrees of freedom operating in the evolution of continental ice-sheets. Trans. Roy. Soc. Ed. Earth Sci., 81, 371–384.

    Article  Google Scholar 

  6. Hindmarsh, R. C. A. 1993. Qualitative dynamics of marine ice-sheets. In: Ice in the Climate System, NATO ASI Series 112, ed. W. R. Peltier, Reidel, Dordrecht, 67–99.

    Chapter  Google Scholar 

  7. Hindmarsh, R. C. A. 1996. Stochastic perturbation of divide position. Ann. Glaciol., 23, 94–104.

    ADS  Google Scholar 

  8. Hindmarsh, R. C. A. 1999. On the numerical computation of temperature in an ice sheet. J. Glaciol., 45, 568–574.

    ADS  Google Scholar 

  9. Hindmarsh, R. C. A. and Hutter, K. 1988. Numerical fixed domain mapping solution of free-surface flows coupled with an evolving interior field. Int. J. Numer. Anal. Meth. Geomech., 12, 437–459.

    Article  MATH  Google Scholar 

  10. Hindmarsh, R. C. A. and Payne, A. J. 1996. Time-step limits for stable solutions of the ice-sheet equation. Ann. Glaciol., 23, 74–85.

    ADS  Google Scholar 

  11. Hindmarsh, R. C. A., Morland, L. W., Boulton, G. S. and Hutter, K. 1987. The unsteady plane flow of ice-sheets, a parabolic problem with two moving boundaries. J. Geophys. Astrophys. Fluid Dyn., 39, 183–225.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hindmarsh, R. C. A., Boulton, G. S. and Hutter, K. 1989. Modes of operation of thermo-mechanically coupled ice sheets. Ann. Glaciol., 12, 57–69.

    ADS  Google Scholar 

  13. Hutter, K. 1983. Theoretical Glaciology. Reidel, Dordrecht.

    Book  Google Scholar 

  14. Huybrechts, P. 1992. The Antarctic ice sheet and environmental change: a three-dimensional modelling study. Berichte zur Polarforschung, 99 (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven).

    Google Scholar 

  15. Huybrechts, P., Payne, A. J. and the EISMINT Intercomparison Group. 1996. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 1–12.

    ADS  Google Scholar 

  16. Jenssen, D. 1977. A three-dimensional polar ice-sheet model. J. Glaciol., 18, 373–389.

    ADS  Google Scholar 

  17. Ladyzhenskaya, O. 1997. The Bounday Value Problems of Mathematical Physics. Springer, New York etc.

    Google Scholar 

  18. Le Meur, E. and Hindmarsh, R. C. A. 2001. Coupled marine ice-sheet/earth dynamics using a dynamically consistent ice-sheet model and a self-gravitating viscous earth model. J. Glacioi. (submitted).

    Google Scholar 

  19. MahaiFy, M. A. W. 1976. A three-dimensional numerical model of ice sheets: Test on the Barnes ice cap, Northwest Territories. J. Geophys. Res., 81, 1059–1066.

    Article  ADS  Google Scholar 

  20. Nye, J. F. 1959. The motion of ice sheets and glaciers. J. Glaciol., 3, 493–507.

    ADS  Google Scholar 

  21. Oerlemans, H. and van der Veen, C. J. 1984. Ice Sheets and Climate. Reidel, Dordrecht.

    Book  Google Scholar 

  22. Peaceman, D. W. and Rachford, H. H. 1955. The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Applied Maths., 3, 28–41.

    Article  MathSciNet  MATH  Google Scholar 

  23. van der Veen, C. J. 1999. Fundamentals of Glacier Dynamics. Balkema, Rotterdam/Brookfield.

    Google Scholar 

  24. Weertman, J. 1957. On the sliding of glaciers. J. Glaciol., 3, 33–38.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hindmarsh, R.C.A. (2001). Notes on Basic Glaciological Computational Methods and Algorithms. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics