Skip to main content

Microbial Precipitates Around Continental Hot Springs and Geysers

  • Chapter
Microbial Sediments

Abstract

Thermophilic microbes have long been implicated in the formation of travertine and siliceous sinter. Precipitation of CaCO3 at thermal springs is induced mainly through degassing of CO2. Cyanobacteria and other bacteria can play a role in calcite and aragonite nucleation in warm (20 – 40 °C) and mesothermal (40 – 75 °C) hot springs, and through photosynthesis and other biochemical processes may mediate some mineral precipitation. Many fabrics in warm-spring and mesothermal travertines preserve evidence of microbes. Travertine precipitated at hyperthermal (> 75 °C) spring vents is mainly abiotic and commonly exhibits high-disequilibrium crystal morphologies. Silica precipitation in hyperthermal springs and geysers results mainly from rapid cooling and evaporation. Microbes, however, can play an important role by providing templates for silica nucleation and by controlling development of many sinter and geyserite fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen ET (1934) The agency of algae in the deposition of travertine and silica from thermal waters. Am J Sci 27: 373–389

    Article  Google Scholar 

  • Barns S, Nierzwicki-Bauer, SA (1997) Microbial diversity in ocean, surface and subsurface environments. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Min Soc Am Rev Mineral 35: 35–79

    Google Scholar 

  • Bock GR, Goode JA (eds) (1996) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester (Ciba Foundation Symposium no 202 )

    Chapter  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Browne PRL, Lloyd, EF (1987) Water dominated geothermal systems and associated mineralisation. NZ Geol Sury Rec 22: 85–146

    Google Scholar 

  • Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sed Petrol 61: 226–233

    Article  Google Scholar 

  • Cady SL, Farmer JD (1996) Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester (Ciba Foundation Symposium no 202 ), pp 150–173

    Google Scholar 

  • Castenholz RW (1984) Composition of hot spring microbial mats: a summary. In: Cohen Y, Castenholz RW, Halvorsen HO (eds) Microbial mats: stromatolites. Liss, New York, pp 107–109

    Google Scholar 

  • Chafetz HS, Folk RL (1984) Travertines: depositional morphology and the bacterially constructed constituents. J Sed Petrol 54: 289–316

    Google Scholar 

  • Chafetz HS, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38: 107–126

    Article  Google Scholar 

  • Fernandez-Diaz L, Putnis A, Prieto M, Putnis CV (1996) The role of magnesium in the crystallization of calcite and aragonite in a porous medium. J Sed Res A66: 482–491

    Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1988) Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16: 149–152

    Article  Google Scholar 

  • Folk RL (1994) Interaction between bacteria, nannobacteria, and mineral precipitation in hot springs in central Italy. Géog Phys Quat 48: 233–246

    Google Scholar 

  • Folk RL, Chafetz HS, Tiezzi PA (1985) Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy. In: Schneidermann N, Harris PM (eds) Carbonate cements. Spec Publ Soc Econ Paleontol Mineral 36: 349–369

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41: 117–175

    Article  Google Scholar 

  • Fournier RO (1985) The behavior of silica in hydrothermal solutions. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Soc Econ Geol Rev Econ Geol 2: 45–61

    Google Scholar 

  • Guo L, Riding R (1994) Origin and diagenesis of Quaternary shrub fabrics, Rapolano Terme, Italy. Sedimentology 41: 499–520

    Google Scholar 

  • Jones B, Renaut RW (1995) Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya. J Sed Res A65: 154–169

    Google Scholar 

  • Jones B, Renaut RW (1996) Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand. J Sed Res A66: 265–274

    Google Scholar 

  • Jones B, Renaut RW (1997) Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile. Sedimentology 44: 287–384

    Article  Google Scholar 

  • Jones B, Renaut RW (1998) Origin of platy calcite crystals in hot- spring deposits in the Kenya Rift Valley. J Sed Res 68: 913–927

    Article  Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1996) High-temperature (gt;90 °C) calcite precipitation at Waikite Hot Springs, North Island, New Zealand. J Geol Soc Lond 153: 481–496

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1997a) Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand. J Sed Res A67: 88–1o4

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1997b) Vertical zonation of biota in microstromatolites associated with hot springs, North Island, New Zealand. Palaios 12: 220–236

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1998) Microbial biofacies in hot-spring sinters: a model based on Ohaaki Pool, North Island, New Zealand. J Sed Res 68: 413–434

    Google Scholar 

  • Konhauser KO, Ferris FG (1996) Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24: 323–326

    Article  Google Scholar 

  • Leo RF, Barghoorn ES (1976) Silicification of wood. Bot Mus Leaflets Harvard Univ 25: 1–47

    Google Scholar 

  • Love KM, Chafetz HS (1990) Petrology of Quaternary travertine deposits, Arbuckle Mountains, Oklahoma. In: Herman JS, Hubbard DA (eds) Travertine–marl: stream deposits in Virginia. VA Div Min Resour Publ 101: 65–78

    Google Scholar 

  • Oehler JH (1976) Experimental studies in Precambrian paleontology: structural and chemical changes in blue-green algae during simulated ossilization in synthetic chert. Geol Soc Am Bull 68: 117–129

    Article  Google Scholar 

  • Pentecost A (1996) High temperature ecosystems and their chemical interaction with their environment. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester, ( Ciba Foundation Symposium no 202 ), pp 99–111

    Google Scholar 

  • Pentecost A, Viles H (1994) A review and reassessment of travertine classification. Géog Phys Quat 48: 305–314

    Google Scholar 

  • Renaut RW, Jones B (1997) Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bogoria, Kenya. Can J Earth Sci 34: 801–818

    Google Scholar 

  • Renaut RW, Owen RB (1988) Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift Valley. Geology 16: 699–702

    Google Scholar 

  • Renaut RW, Jones B, Tiercelin J-J (1998) Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology 45: 1083–1103

    Google Scholar 

  • Rimstidt JD, Cole RR (1983) Geothermal mineralization I: The mechanism of formation of the Beowawe, Nevada, siliceous sinter deposit. Am J Sci 283: 861–875

    Google Scholar 

  • Schultze-Lam S, Ferris FG, Konhauser KO, Wiese RG (1995) In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can J Earth Sci 32: 2021–2026

    Article  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18: 149–158

    Article  Google Scholar 

  • Trewin N (1994) Depositional environment and preservation of biota in Lower Devonian hot-springs of Rhynie, Aberdeenshire, Scotland. Trans R Soc Edin Earth Sci 84: 433–442

    Article  Google Scholar 

  • Walter MR (1976) Geyserites of Yellowstone National Park: an example of abiogenic,stromatolites’. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 87–112

    Chapter  Google Scholar 

  • Walter MR, Bauld J, Brock JD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178: 402–405

    Article  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morpho-genesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 273–310

    Chapter  Google Scholar 

  • Walter MR, Desmarais D, Farmer JD, Hinman NW (1996) Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia. Palaios 11: 497–5i8

    Google Scholar 

  • Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Community structure and interactions among community members in hot-spring microbial mats. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities 41: 179–210

    Google Scholar 

  • Weed WH (1889) Formation of travertine and siliceous sinter by the vegetation of hot springs. US Geol Surv, 9th Annu Rep, pp 613–676

    Google Scholar 

  • White DE, Brannock WW, Murata KJ (1956) Silica in hot-spring waters. Geochim Cosmochim Acta 10: 27–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Renaut, R.W., Jones, B. (2000). Microbial Precipitates Around Continental Hot Springs and Geysers. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics