Skip to main content

Regional Section: the Individual Ecozones

  • Chapter
The Ecozones of the World

Abstract

The Polar/Subpolar Zone is present near the poles in both the Northern and Southern Hemispheres. Towards the equator it is limited by the polar tree lines (see Boreal Zone) or by sea coasts. The entire zone covers 22 million km2, 15% of the land area of the earth, of which 14 million km2 are in the Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Chapter 3.1: Polar/Subpolar Zone

  • Abrahamson G (1963) Canadas reindeer. Can Geogr J 61, 6: 189 - 193

    Google Scholar 

  • Andreyev VN (1970) Rational utilization and improvement of reindeer pasture. Problems of the North 13, pp 103-118 (translated from: Problemy Severa 13, 1970 )

    Google Scholar 

  • Armstrong T et al. (1978) The circumpolar North. Methuen, London, 303 pp

    Google Scholar 

  • Batzli GO (1981) Populations and energetics of small mammals in the tundra ecosystem. In: Bliss LC et al., pp 377-396

    Google Scholar 

  • Batzli GO, Brown J (1976) Rate - the influence of grazing on arctic tundra ecosystems. Arct Bull (Wash) 2: 153 - 160

    Google Scholar 

  • Bergerud AT (1980) A review of the population dynamics of caribou and wild reindeer in north America. In: Reimers E et al. (eds) Proc 2nd Int Reindeer/Caribou Symp. Trondheim, pp 556 - 581

    Google Scholar 

  • Billings WD (1974) Arctic and alpine vegetation: plant adaptations to cold summer climates. In: Ives JD, Barry RG, pp 403 - 443

    Google Scholar 

  • Bird JB (1979) Geomorphic processes in the arctic. In: Ives JD, Barry RG, pp 703 - 720

    Google Scholar 

  • Bliss LC (1979) Arctic heathlands. In: Specht RL, pp 415 - 424

    Google Scholar 

  • Bliss LC, Heal OW, Moore JJ (eds) (1981) Tundra ecosystems: a comparative analysis. Int Biol Prog 25. Cambridge University Press, Cambridge, 813 pp

    Google Scholar 

  • Blümel WD, Eitel B (1989) Geoecological aspects of maritime-climatic and continental periglacial regions in Antarctica (S-Shetlands, Antarctic Peninsula and Victoria-Land). Geoökodynamik 10: 201 - 214

    Google Scholar 

  • Boardman J (1990) Periglacial geomorphology. Progr Phys Geogr 14, 2: 232 - 237

    Article  Google Scholar 

  • Brown J et al. (eds) (1980) An arctic ecosystem. The coastal tundra at Barrow, Alaska. US/IBP Synthesis Ser 12. Dowden, Hutchinson and Ross, Stroudsburg, 571 pp

    Google Scholar 

  • Brown RJE (1970) Permafrost in Canada - its influence on northern development. Toronto

    Google Scholar 

  • Bunnell FL et al. (1975) Barrow, Alaska, USA. In: Rosswall T, Heal OW, pp 73 - 124

    Google Scholar 

  • Butzer KW (1976) see Chapter 2.3

    Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Dev Soil Sci 16. Amsterdam

    Google Scholar 

  • Chabot BF, Mooney HA (1985) Physiological ecology of North American plant communities. Chapman and Hall, New York, 351 pp

    Book  Google Scholar 

  • Chapin FS III et al. (1986) Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: implications for herbivory. J Ecol 74: 707 - 731

    Article  Google Scholar 

  • Chernov YI (1985) The living tundra. Cambridge University Press, Cambridge, 213 pp Chorley RJ et al. (1984) see Chapter 2. 3

    Google Scholar 

  • Christie P (1987) Nitrogen in two contrasting antarctic bryophyte communities. J Ecol 75: 73 - 93

    Article  Google Scholar 

  • Claridge GGC, Campbell IB (1977) The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci 123, 6: 377 - 384

    Article  Google Scholar 

  • Clark MJ (ed) (1988) Advances in periglacial geomorphology. Wiley, Chichester, 481 pp

    Google Scholar 

  • Cooper JP (1975) see Chapter 2.5

    Google Scholar 

  • Dahl E (1986) Zonation in arctic and alpine tundra and fellfield ecobiomes. In: Polunin N (ed) Ecosystem theory and application. Wiley, Chichester, pp 35 - 62

    Google Scholar 

  • Dunbar MJ (1973) Stability and fragility in arctic ecosystems. Arctic 26: 179 - 185

    Google Scholar 

  • Epstein DM, Valmari A (1984) Reindeer herding and ecology in Finnish Lapland. Geo Journal 8, 2: 159 - 169

    Google Scholar 

  • Everett KR et al. (1981) Tundra and analogons soils. In: Bliss LC et al., pp 139-179

    Google Scholar 

  • Fetcher N et al. (1984) Changes in arctic tussock tundra thirteen years after fire. Ecology 65, 4: 1322 - 1333

    Article  Google Scholar 

  • French HM (1976) The periglacial environment. Longman, London, 309 pp

    Google Scholar 

  • French HM (1981) Permafrost and ground ice. In: Gregory KJ, Walling DE, pp 144-162, see Chapter 2. 3

    Google Scholar 

  • Ganssen R (1965) see Chapter 2.4

    Google Scholar 

  • Gocht W, Pluhar E (1978) Erschließung and Gewinnung mineralischer Rohstoffe in der Arktis. Die Erde 109: 188 - 205

    Google Scholar 

  • Granhall U, Lid-Torsvik O (1975) Nitrogen fixation by bacteria and free-living blue-green algae in tundra areas. In: Wielgolaski, FE, pp 305 - 315

    Google Scholar 

  • Haag RW, Bliss LC (1974) Energy budget changes following surface disturbance to upland tundra. J Appl Ecol 11, 1: 355 - 374

    Article  Google Scholar 

  • Hagedorn J, Poser H (1974) see Chapter 2.3

    Google Scholar 

  • Hare FK, Ritchie JC (1972) see Chapter 3.2

    Google Scholar 

  • Harris SA (1981) Distribution of zonal permafrost landforms with freezing and thawing indices. Erdkunde 35: 82 - 90

    Article  Google Scholar 

  • Harris SA (1987) Influence of organic (Of) layer thickness on active-layer thickness at two sites in the western Canadian arctic and subarctic. Erdkunde 41: 276 - 285

    Article  Google Scholar 

  • Heal OW et al. (1981) Decomposition and accumulation of organic matter. In: Bliss LC et al., pp 587-634

    Google Scholar 

  • Holding AJ (1981) The microflora of tundra. In: Bliss LC et al., pp 561-586

    Google Scholar 

  • Höllermann P (1982) Mesoformen des heutigen Periglazialraumes. Erdkunde 36: 303 - 306

    Article  Google Scholar 

  • Hustich I (1979) Ecological concepts and biogeographical zonation in the north: the need for a generally accepted terminology. Holarct Ecol 2, 4: 208 - 217

    Google Scholar 

  • Hustich I (1979) The population of arctic, subarctic and boreal regions. Polar Geogr (Wash) 3, 1: 40 - 48

    Article  Google Scholar 

  • Ives JD, Barry RG (eds) (1974) Arctic and alpine environments. Methuen, London, 999 pp

    Google Scholar 

  • Karte J (1979) Räumliche Abgrenzung and regionale Differenzierung des Periglaziärs. Bochumer Geogr Arb 35. Paderborn

    Google Scholar 

  • Kerry KR, Hempel G (eds) (1990) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin Heidelberg New York, 427 pp

    Google Scholar 

  • Kryuchkov VV (1978) Mans impact on tundra ecosystems. Polar Geogr (Wash) 2, 3: 200 - 215

    Article  Google Scholar 

  • Kullman L (1992) High latitude environments and environmental change. Progress report. Prog Phys Geogr 16, 4: 478 - 488

    Article  Google Scholar 

  • Lent PC, Klein D (1988) Tundra vegetation as a rangeland resource. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Handb Veg Sci 14. Dr W Junk, Dordrecht, pp 307 - 337

    Chapter  Google Scholar 

  • Leser H, Seiler W (1986) Geoökologische Forschungen in Süd-Spitzbergen. Die Erde 117, 1: 1 - 21

    Google Scholar 

  • Lewis MC, Callaghan TV (1976) Tundra. In: Monteith JL, pp 399-433, see Chapter 2. 5

    Google Scholar 

  • Liestol K et al. (1975) Simulation model of a small rodent population. In: Wielgolaski FE, pp 273 - 282

    Google Scholar 

  • Longton RE (1988) Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge, 391 pp

    Book  Google Scholar 

  • Mackay DK, Loken OH (1974) Arctic hydrology. In: Ives JD, Barry RG, pp 111 - 132

    Google Scholar 

  • Mackay JR (1972) The world of underground ice. Ann Assoc Am Geogr 62, 1: 1 - 22

    Article  Google Scholar 

  • Miller PC (1976) Problems of synthesis in mineral cycling studies: the tundra as an example.

    Google Scholar 

  • Savannah River Ecology. Lab — Univ of Georgia, Inst of Ecology — ERDA, pp 59-71

    Google Scholar 

  • Mosimann T (1985) Untersuchungen zur Funktion subarktischer und alpiner Geoökosysteme Finnmark (Norwegen) und Schweizer Alpen. Physiogeographica, Baseler Beitr Physiogeogr 7. Basel

    Google Scholar 

  • Moss S (1992) Antarktis. Ökologie eines Naturreservats. Spektrum Akademischer Verlag, Heidelberg, 197 pp

    Google Scholar 

  • Ohmura A (1984) Comparative energy balance study for arctic tundra, sea surface, glaciers and boreal forests. GeoJournal 8, 3: 221 - 228

    Article  Google Scholar 

  • Oritsland NA, Odegaard HA (1984) Modern techniques for determination of carrying capacity of reindeer range: practical example from the Spitzbergen tundra. In: Di Castri F et al. (eds) Ecology in practice, part 1. UNESCO, Paris, pp 331 - 343

    Google Scholar 

  • Paffen KH (1980) see Chapter 2.1

    Google Scholar 

  • Pieper RD (1964) Production and chemical composition of arctic tundra vegetation and their relation to the lemming cycle. PhD Dissertation, Univ of California, Berkeley, 103 pp

    Google Scholar 

  • Reichle DE (1981) see Chapter 2.5

    Google Scholar 

  • Remmert H (1980) Arctic animal ecology. Springer, Berlin Heidelberg New York, 250 pp

    Book  Google Scholar 

  • Rempfler A (1989) Wasser-und nährstoflhaushaltliche Aspekte im Jahresgang hocharktischer Geosysteme (Raum Ny-Alesund, Broggerhalvoya, Nordwestspitzbergen). Die Erde 120: 225 - 238

    Google Scholar 

  • Rieger S (1974) Arctic soils. In: Ives JD, Barry RG, pp 749 - 769

    Google Scholar 

  • Riewe RR (1981) Changes in Eskimo utilisation of arctic wildlife. In: Bliss LC et al., pp 721-730

    Google Scholar 

  • Rosswall T, Heal OW (eds) (1975) Structure and function of tundra ecosystems. Ecol Bull Stockholm 20

    Google Scholar 

  • Rydén BE (1981) Hydrology of northern tundra. In: Bliss LC et al., pp 115-137

    Google Scholar 

  • Schultz AM (1969) A study of an ecosystem: the arctic tundra. In: Van Dyne GM (ed), pp 77-93, see Chapter 2. 6

    Google Scholar 

  • Schunke E (1985) Sedimentationstransport und fluviale Abtragung der Jökulsâ â Fjöllum im periglazialen Zentral-Island. Erdkunde 39: 197 - 205

    Article  Google Scholar 

  • Schunke E (1989) Schneeschmelzabfluß, Aufeis und fluviale Morphodynamik in periglazialen Flußgebieten NW-Kanadas. Erdkunde 43: 268 - 280

    Article  Google Scholar 

  • Schwerdtfeger W (1984) Weather and climate of the Antarctic. Dev Atmos Sci 15. Amsterdam

    Google Scholar 

  • Shaver GR (1986) Woody stem production in Alaskan tundra shurbs. Ecology 67, 3: 660 - 669

    Article  Google Scholar 

  • Shaver GR et al. (1986) Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol 74: 257 - 278

    Article  Google Scholar 

  • Sieg J, Wägele JW (eds) (1990) Fauna der Antarktis. Parey, Berlin, 197 pp

    Google Scholar 

  • Siegfried WR, Condy PR, Laws RM (eds) (1985) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Skartveit A et al. (1975) Climate and hydrology of some Fennoscandian tundra ecosystems. In: Wielgolaski FE, pp 41 - 53

    Book  Google Scholar 

  • Sokolov VE, Chernov YI (1983) Arctic ecosystems: conservation and development in an extreme environment. Nature and Resources 19, 3: 2 - 9

    Google Scholar 

  • Specht RL (ed) (1979, 1981 ) Heathlands and related shrublands. Ecosystems of the world 9A and B. Elsevier, Amsterdam, 497 pp and 385 pp

    Google Scholar 

  • Stäblein G (1982) Grönland am Rand der Ökumene. Geoökodynamik 3: 219 - 246

    Google Scholar 

  • Stäblein G (1982) Polarer Permafrost — klimatische Bedingungen und geomorphologische Auswirkungen. Geoökodynamik 4: 227 - 248

    Google Scholar 

  • Stäblein G (1983) Antarktis und Arktis. Charakteristik und Bedeutung der polaren Landschaftsgürtel. Geogr Rundsch 35, 3: 94 - 100

    Google Scholar 

  • Stäblein G (1985) Permafrost. Faktor des Naturraumpotentials in den kalten Randsäumen der Ökumene. Geogr Rundsch 37, 7: 322 - 329

    Google Scholar 

  • Stäblein G (1988) Polar geomorphology. Abstracts and papers symposium No. 5 of the Second International Conference on Geomorphology. Mater and Manuskr 17. Univ Bremen, Bremen

    Google Scholar 

  • Storey KB (1987) Strategies of winter survival: natural freeze tolerance in animals. Verh Dtsch Zool Ges 80: 77 - 91

    Google Scholar 

  • Sugden D (1982) Arctic and Antarctic. Blackwell, Oxford, 472 pp

    Google Scholar 

  • Swithinbank C (1988) Antarctica. US Government Printing Office, Washington, 278 pp

    Google Scholar 

  • Tedrow JCF (1977) Soils of the polar landscapes. Rutgers University Press, New Brunswick, 638 pp

    Google Scholar 

  • Thomas DC (1969) Population estimats and distribution of barren-ground caribou in Mackenzie District, N.W.T., Saskatchewan and Alberta. Can Wildlife Service Report 9

    Google Scholar 

  • Tieszen LL (1978a) Photosynthesis in the principal Barrow, Alaska, species: a summary of field and laboratory responses. In: Tieszen LL, pp 241 - 268

    Google Scholar 

  • Tieszen LL (ed) (1978b) Vegetation and production ecology of an Alaskan arctic tundra. Ecological Studies 29. Springer, Berlin Heidelberg New York, 686 pp

    Google Scholar 

  • Tischler W (1984) see Chapter 2.5

    Google Scholar 

  • Treude E (1979) Forty years of reindeer herding in the Mackenzie Delta, NWT. Polar Geogr (Wash) 3, 3: 121 - 138

    Article  Google Scholar 

  • Treude E (1982) Nutzungswandel, Nutzungspotential und Raumnutzungskonflikte in der kanadischen Arktis. Geoökodynamik 3: 247 - 269.

    Google Scholar 

  • Troll C, Paffen KH (1964) see Chapter 2.1

    Google Scholar 

  • Ugolini FC (1986) Processes and rates of weathering in cold and polar desert environments. In: Colman SM, Dethier DP (eds) Rates of weathering of rocks and minerals. Academic Press, Orlando, pp 193 - 235

    Google Scholar 

  • Venzke JF (1988) Beobachtungen zum Aufeis-Phänomen im subarktisch — ozeanischen Island. Geoökodynamik 9: 207 - 220

    Google Scholar 

  • Walter H (1968) see Chapter 2.5

    Google Scholar 

  • Walter H, Breckle SW (1986, 1991) see Chapter 1

    Google Scholar 

  • Walter H, Lieth H (1960-67) see Chapter 2.1

    Google Scholar 

  • Walton DWH (1987) Antarctic terrestial ecosystems. Environ Intern 13, 1: 83 - 93

    Article  Google Scholar 

  • Washburn AL (1979) Geocryology: a survey of periglacial processes and environments, 2nd edn. Arnold, London, 406 pp

    Google Scholar 

  • Webber PJ (1974) Tundra primary productivity. In: Ives JD, Barry RG, pp 445 - 473

    Google Scholar 

  • Webber PJ (1978) Spatial and temporal variation of the vegetation and its production, Barrow, Alaska. In: Tieszen LL, pp 37 - 112

    Google Scholar 

  • Weed R, Norton SA (1991) Siliceous crusts, quartz rinds and biotic weathering of sandstones in the cold desert of Antarctica. In: Berthelin J (ed) Diversity of environmental biogeochemistry. Developments in Geochemistry 6. Elsevier, Amsterdam, pp 327 - 339

    Google Scholar 

  • Weise 0 (1983) Das Periglazial. Geomorphologie and Klima in gletscherfreien, tiefen Regionen. Bomtraeger, Berlin, 199 pp

    Google Scholar 

  • Weller G, Holmgren B (1974) The microclimates of the arctic tundra. J Appl Meteorol 13: 854 - 862

    Article  Google Scholar 

  • White RG et al. (1981) Ungulates on arctic ranges. In: Bliss LC et al., pp 397-483

    Google Scholar 

  • Whittaker RH, Likens GE (1975) see Chapter 2.5

    Google Scholar 

  • Wielgolaski FE (ed) (1975a) Fennoscandian tundra ecosystems. Part 1: Plants and microorganisms. Part 2: Animals and systems analysis. Ecological Studies 16, 17. Springer, Berlin Heidelberg New York, 366 pp and 336 pp

    Google Scholar 

  • Wielgolaski FE (1975b) Productivity of tundra ecosystems. In: National Academy of Sciences, pp 1-12, see Chapter 2. 5

    Google Scholar 

  • Wielgolaski FE et al. (1981) Primary production of tundra. In: Bliss LC et al., pp 187-226

    Google Scholar 

  • Wilhelmy H (1974) see Chapter 2.3

    Google Scholar 

  • Williams RBG (1988) The biogeomorphology of periglacial environments. In: Viles A (ed) Biogeomorphology. Blackwell, New York, pp 222 - 252

    Google Scholar 

  • Zoltai SC, Pollett FC (1983) Wetlands in Canada: their classification, distribution and use. In: Gore AJP, pp 245-268, see Chapter 3. 2

    Google Scholar 

Chapter 3.2, Boreal Zone

  • Andreae B (1983) see Chapter 2.6

    Google Scholar 

  • Blüthgen J (1960) Der skandinavische Fjällbirkenwald als Landschaftsformation. Petermanns Mitt 104: 119 - 144

    Google Scholar 

  • Blüthgen J (1970) Problems of definition and geographical differentiation of the Subarctic with special regard to northern Europe. In: UNESCO, pp 11 - 34

    Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20: 1 - 28

    Article  Google Scholar 

  • Botch MS, Masing VV (1983) Mire ecosystems in the U.S.S.R. In: Gore AJP, pp 95 - 152

    Google Scholar 

  • Bruenig EF (1989) Die borealen Nadelwälder. Prax Geogr 19, 5: 6 - 11

    Google Scholar 

  • Bryant JP, Chapin FS (1986) Browsing-woody plant interactions during boreal forest plant succession. In: Van Cleve K et al., pp 213-225

    Google Scholar 

  • Butzer KW (1976) see Chapter 2.3

    Google Scholar 

  • Carleton TJ, Maycock, PF (1978) Dynamics of boreal forest south of James Bay. Can J Bot 56: 1157 - 1173

    Article  Google Scholar 

  • Cernusca A (1975) Eine neue Ausbildungsmethode für Umweltforschung. Umschau 75: 242 - 245

    Google Scholar 

  • Chabot BF, Mooney HA (1985) see Chapter 2.5

    Google Scholar 

  • Cogbill CV (1985) Dynamics of boreal forests of the Laurentian Highlands, Canada. Can J For Res 15: 252 - 261

    Article  Google Scholar 

  • Cole DW, Rapp M (1981) see Chapter 2.5

    Google Scholar 

  • Dingman SL, Koutz FR (1974) Relations among vegetation, permafrost and potential insolation in central Alaska. Arct Alp Res (USA) 6, 1: 37 - 42

    Article  Google Scholar 

  • Dymess CT et al. (1986) Fire in taiga communities of interior Alaska. In: Van Cleve K et al., pp 74-86

    Google Scholar 

  • Ehlers E (1984) Die agraren Siedlungsgrenzen der Erde. Gedanken zu ihrer Genese and Typologie am Beispiel des kanadischen Waldlandes. Geogr Z Beih. Wiesbaden

    Google Scholar 

  • Elliot DL (1979) The current regenerative capacity of the northern Canadian trees, Keewatin, N.W.T., Canada: some preliminary observations. Arct Alp Res (USA) 11, 2: 243 - 251

    Article  Google Scholar 

  • Foster DR, Glaser PH (1986) The raised bogs of south-eastern Labrador, Canada: classification, distribution, vegetation, and recent dynamics. J Ecol 74: 47 - 71

    Article  Google Scholar 

  • Foster DR, Fritz SC (1987) Mire development, pool formation and landscape processes on patterned fens in Dalama, central Sweden. J Ecol 75, 2: 409 - 437

    Article  Google Scholar 

  • Foster DR, King GA (1986) Vegetation pattern and diversity in S. E. Labrador, Canada: Betula papyrifera (birch) forest development in relation to fire history and physiography. J Ecol 74: 465 - 483

    Google Scholar 

  • Giese E, Klueter H (1990) Industrielle Erschließung and Entwicklung Sibiriens. Geogr Rundsch 42, 7-8: 386 - 395

    Google Scholar 

  • Gore AJP (ed) (1983) Mires: swamp, bog, fen and moor. Ecosystems of the World 4A and 4B. Elsevier, Amsterdam, 440 and 479 pp

    Google Scholar 

  • Haag RW, Bliss LC (1974) Functional effects of vegetation on the radiant energy budget of boreal forest. Can Geotech J 11, 1: 374 - 379

    Article  Google Scholar 

  • Hare FK, Ritchie JC (1972) The boreal bioclimates. Geogr Rev 62: 333 - 365

    Article  Google Scholar 

  • Heal OW et al. (1981) see Chapter 3.1

    Google Scholar 

  • Heal OW, Vitousek PM (1986) Introduction to section 3: environmental controls over ecosystem processes. In: Van Cleve K et al., pp 155-159

    Google Scholar 

  • Hemmer I (1985) Entwicklung and Struktur der Rentierwirtschaft in Finnmark and Troms (Nordnorwegen). Bamberger Geogr Schr 1. Bamberg

    Google Scholar 

  • Holtmeier FK (1985) Die klimatische Waldgrenze-Linie oder Übergangsraum (Ökoton)? Erdkunde 39: 271 - 285

    Google Scholar 

  • Hustich I (1953) The boreal limits of conifers. Arctic J 6: 149 - 162

    Google Scholar 

  • Hustich I (1966) On the forest tundra and northern tree-lines. Ann Univ Turku A II 36: 7 - 47

    Google Scholar 

  • Hustich I (1979) Ecological concepts and biogeographical zonation in the north: the need for a generally accepted terminology. Holarct Ecol 2, 4: 208 - 217

    Google Scholar 

  • Jarvis PG et al. (1976) Coniferous forest. In: Monteith JL, pp 171-240, see Chapter 2. 5

    Google Scholar 

  • Jordan CF (1983) see Chapter 3.9

    Google Scholar 

  • Karger A, Liebmann CC (1986) Sibirien. Strukturen and Funktionen ressourcenorientierter Industrieentwicklung. Problemräume der Welt 7. Köln

    Google Scholar 

  • Karte J (1979) see Chapter 3.1

    Google Scholar 

  • Kazimirov NI, Morozova RN (1973) Biological cycling of matter in spruce forests of Karelia. Leningrad

    Google Scholar 

  • Keller R (1961) see Chapter 2.3

    Google Scholar 

  • Kjelvik S, Kärenlampi L (1975) Plant biomass and primary production of Fennoscandian subarctic and subalpine forests and of alpine willow and heath ecosystems. In: Wielgolaski FE, pp 111-120, see Chapter 3. 1

    Google Scholar 

  • Klink H-J, Meyer E (1983) see Chapter 2.5

    Google Scholar 

  • Kullman L (1992) see Chapter 3.1

    Google Scholar 

  • Laaksonen K (1979) Effective temperature sums and durations of vegetative period in Fennoscandia (1921-1950). Fennia (Helsinki) 157, 2: 171 - 197

    Google Scholar 

  • Larcher W (1984) see Chapter 2.5

    Google Scholar 

  • Larsen JA (1980) The boreal ecosystems. Academic Press, New York, 500 pp

    Google Scholar 

  • Larsen JA (1982) Ecology of northern lowland bogs and conifer forests. Academic Press, New York, 255 pp

    Google Scholar 

  • Larsen JA (1988) The northern forest border in Canada and Alaska. Ecological Studies 70. Springer, Berlin Heidelberg New York, 255 pp

    Google Scholar 

  • Lenz K (1990) Der boreale Waldgürtel Kanadas. Erschließung und aktuelle Entwicklungen. Geogr Rundsch 42, 7 /8: 408 - 414

    Google Scholar 

  • Lettau H, Lettau K (1973) Regional climatonomy of tundra and boreal forests in Canada. In: Weller G, Bowling S (eds) Climate of the Arctic. Geophys Inst Univ Alaska, Washington, pp 209 - 221

    Google Scholar 

  • Mikola P (1970) Forests and forestry in subarctic regions. In: UNESCO, pp 295 - 302

    Google Scholar 

  • Milan FA (ed) (1980) The human biology of circumpolar populations. Int Biol Prog 25. Cambridge University Press, Cambridge, 813 pp

    Google Scholar 

  • Moore TR (1984) Litter decomposition in subarctic spruce-lichen woodland, eastern Canada. Ecology 65, 1: 299 - 308

    Article  Google Scholar 

  • Mosimann T (1983) Geoökologische Studien in der Subarktis und den Zentralalpen. Geogr Rundsch 35, 5: 222 - 228

    Google Scholar 

  • Müller-Hohenstein K (1981) see Chapter 1

    Google Scholar 

  • ONeill RV, De Angelis DL (1981) Comparative productivity and biomass relations of forest ecosystems. In: Reichle DE, pp 411-449, see Chapter 2. 5

    Google Scholar 

  • Persson T (ed) (1980) Structure and function of northern coniferous forests. Ecol Bull (Stockholm) 32

    Google Scholar 

  • Pruitt WO Jr (1978) Boreal ecology. London

    Google Scholar 

  • Radforth NW, Brawner CO (1977) Muskeg and the northern environment in Canada. University of Toronto Press, Toronto, 399 pp

    Google Scholar 

  • Reichle DE (1981) see Chapter 2.5

    Google Scholar 

  • Rodin LE et al. (1975) see Chapter 2.5

    Google Scholar 

  • Rouse WR et al. (1977) Evaporation in high latitudes. Water Resour Res 13: 909 - 914

    Article  Google Scholar 

  • Schroeder D (1992) see Chapter 2.4

    Google Scholar 

  • Shugart HH, Leemans R, Bonan GB (eds) (1992) A system analysis of the global boreal forest. Cambridge University Press, Cambridge, 565 pp

    Book  Google Scholar 

  • Stäblein G (1985) see Chapter 3.1

    Google Scholar 

  • Stadelbauer J (1986) Die Erschließung Sibiriens. Räumliche Gefiigemuster eines historischen Prozesses. Osteuropaforschung 17, pp 11 - 33

    Google Scholar 

  • Strasburger E et al. (1983) see Chapter 2.5

    Google Scholar 

  • Tischler W (1984) see Chapter 2.5

    Google Scholar 

  • Treter U (1984) Die Baumgrenze Skandinaviens. Ökologische und dendroklimatische Untersuchungen. Wissenschaftliche Paperbacks Geographie. Steiner, Wiesbaden, 111 pp

    Google Scholar 

  • Treter U (1990) Die borealen Waldländer. Ein physisch-geographischer Überblick. Geogr Rundsch 42, 7-8: 72 - 381

    Google Scholar 

  • Treter U (1993) Die borealen Waldländer. Das geographische Seminar. Westermann, Braunschweig, 210 pp

    Google Scholar 

  • Tukhanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67. Uppsala

    Google Scholar 

  • Tukhanen S (1984) A circumboreal system of climate-phytogeographical regions. Acta Bot Fenn 127: 1 - 50

    Google Scholar 

  • Tukhanen S (1986) Delimination of climatic-phytogeographical regions at the high-latitude area. Nor-dia 20, 1: 105 - 112

    Google Scholar 

  • UNESCO (1970) Ecology of the subarctic regions. UNESCO, Paris, 363 pp

    Google Scholar 

  • Van Cleve K, Chapin FS III, Flanagan PW (eds) (1986) Forest ecosystems in the Alaskan taiga. Ecological Studies 57. Springer, Berlin Heidelberg New York, 230 pp

    Google Scholar 

  • Varjo U, Tietze W (eds) (1987) Norden. Man and environment. Borntraeger, Stuttgart, 535 pp

    Google Scholar 

  • Venzke J-F (1986) Schnee als Ökofaktor in Borealen Landschaften. Ergebnisse eines Forschungsaufenthaltes in Nordschweden, Februar/März 1986. Geoökodynamik 7, 3: 361 - 386

    Google Scholar 

  • Venzke J-F (1989) Boreale Mittelgebirgs-Geoökotopgefiige und ihre Vergesellschaftung in Zentral-Alaska. Geoökodynamik 10: 1 - 25

    Google Scholar 

  • Venzke J-F (1990) Beiträge zur Geoökologie der borealen Landschaftszone. Geländeklimatologische und pedologische Studien in Nord-Schweden. Essener Geogr Arb 21. Essen

    Google Scholar 

  • Viereck LA, Van Cleve K, Dymess CT (1986) Forest ecosystem distribution in the taiga environment. In: Van Cleve K et al., pp 22-43

    Google Scholar 

  • Walter H (1990) see Chapter 2.5

    Google Scholar 

  • Walter H, Breckle SW (1986, 1991) see Chapter 1

    Google Scholar 

  • Walter H, Lieth H (1960-67) see Chapter 2.1

    Google Scholar 

  • Wein N (1988) Die aktuellen Strategien der Sibirien-Erschließung. Die Erde 119: 147 - 162

    Google Scholar 

  • Wein RW, Maclean DA (eds) (1983) Resources and dynamics of boreal zone. Proc of the Conf

    Google Scholar 

  • Thunder Bay, Ontario, Aug 1982. Assoc Can Univ for Northern Stud, Ottawa, 544 pp

    Google Scholar 

  • Weissenburger U (1990) Umweltprobleme in der borealen Nadelwaldzone der UdSSR. Geogr Rundsch 42, 7-8: 403 - 407

    Google Scholar 

  • Whittaker RH, Likens GE (1975) see Chapter 2.5

    Google Scholar 

  • Wielgolaski FE (1975) see Chapter 3.1

    Google Scholar 

  • Williams RBG (1988) see Chapter 3.1

    Google Scholar 

Chapter 3.3: Humid Mid-Latitudes

  • Ahnert (1987) see Chapter 2.3

    Google Scholar 

  • Alford D (1974) Snow. In: Ives JD, Barry RG, pp 85-110, see Chapter 3. 1

    Google Scholar 

  • Andersson F (1971) Methods and preliminary results of estimation of biomass and primary production in a south Swedish mixed deciduous woodland. In: Duvigneaud P, pp 281-288, see Chapter 2. 5

    Google Scholar 

  • Andreae B (1983) see Chapter 2.6

    Google Scholar 

  • Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74: 755 - 774

    Article  Google Scholar 

  • Armesto JJ, Fuentes ER (1988) Tree species regeneration in a mid-elevation, temperate rain forest in Isla de Chiloé, Chile. Vegetatio 74: 151 - 159

    Article  Google Scholar 

  • Blüthgen J, Weischet W (1980) see Chapter 2.2

    Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer, Berlin Heidelberg New York, 253 pp

    Book  Google Scholar 

  • Carlson TN (1994) Mid-latitude weather systems. Routledge, London, 507 pp

    Google Scholar 

  • Chabot BF, Mooney HD (1985) see Chapter 2.5

    Google Scholar 

  • Cole DW, Rapp M (1981) see Chapter 2.5

    Google Scholar 

  • Crow TR (1978) Biomass and production in three contiguous forests in northern Wisconsin. Ecology 59, 2: 265 - 273

    Article  Google Scholar 

  • De Angelis DL et al. (1981) see Chapter 2.5

    Google Scholar 

  • Denaeyer-De Smet S (1971) Teneurs en éléments biogènes des tapis végétaux dans les forets caducifoliées dEurope. In: Duvigneaud P, pp 509-514, see Chapter 2. 5

    Google Scholar 

  • Duvigneaud P (1971) Concepts sur la productivité primaire des écosystèmes forestiers. In: Duvigneaud P, pp 111-140, see Chapter 2. 5

    Google Scholar 

  • Duvigneaud P, Denaeyer-De Smet S (1971) Cycle des éléments biogènes dans les écosystèmes forestiers dEurope. In: Duvigneaud P, pp 527-542, see Chapter 2. 5

    Google Scholar 

  • Duvigneaud P, Kestemont P (eds) (1977) Productivité biologique en Belgique. Scope, Tray Sect Belge Progr Biol Int, Paris

    Google Scholar 

  • Duvigneaud P, Kestemont P, Ambroes P (1971) Productivité primaire des frets tempérées dessences feuillues caducifoliées en Europe occidentale. In: Duvigneaud P, pp 259-270, see Chapter 2. 5

    Google Scholar 

  • Dylis N (1971) Primary production of mixed forests. In: Duvigneaud P, pp 227-232, see Chapter 2. 5

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung. Ergebnisse des Sollingsprojekts 1966-1986. Ulmer, Stuttgart, 507 pp

    Google Scholar 

  • Falinski JB (1986) Vegetation dynamics in temperate lowland primeval forests. Ecological studies in Bialowieza forest. Geobotany 8. The Hague

    Google Scholar 

  • FAO (1988) see Chapter 2.4

    Google Scholar 

  • Froment A, Tanghe M, Duvigneaud P, Galoux A et al. (1971) La chenaie mélangée calcicole de Virelles-Blaimont, en haute Belgique. In: Duvigneaud, pp 635-665, see Chapter 2. 5

    Google Scholar 

  • Hagedorn J, Poser H (1974) see Chapter 2.3

    Google Scholar 

  • Harris WF, Sollins P, Edwards NT, Dinger BE, Shugart HH (1975) Analysis of carbon flow and productivity in a temperate deciduous forest ecosystem. In: National Academy of Sciences, see Chapter 2. 5

    Google Scholar 

  • Hildebrand-Vogel R et al (1990) Subantarctic-Andean Nothofagus pumilio forests. Vegetatio 89: 55 - 68

    Article  Google Scholar 

  • Hofmeister B (1986) Die gemäßigten Breiten. Geographisches Seminar Zonal. Westermann, Braunschweig, 216 pp

    Google Scholar 

  • Hutchison BA et al. (1986) The architecture of a deciduous forest canopy in the eastern Tennessee, U.S.A. J Ecol 74: 635 - 646

    Article  Google Scholar 

  • Ives JD, Barry RG (1974) see Chapter 3.1

    Google Scholar 

  • Jakucs P (ed) (1985) Ecology of an oak forest in Hungary. Akadkiadó, Budapest, 545 pp

    Google Scholar 

  • Johnson DW, Lindberg SE (1992) see Chapter 2.5

    Google Scholar 

  • Juan JA, Figueroa J (1987) Stand structure and dynamics in the temperate rain forests of Chiloe Archipelago, Chile. J Biogeogr 14, 4: 367 - 376

    Article  Google Scholar 

  • Lang GE, Forman RT (1978) Detrital dynamics in a mature oak forest: Hutcheson Memorial Forest, New Jersey. Ecology 59, 3: 580 - 595

    Article  Google Scholar 

  • Larcher W (1984) see Chapter 2.5

    Google Scholar 

  • Lieth H (1964) see Chapter 2.5

    Google Scholar 

  • Lieth H (1971) The phenological viewpoint in productivity studies. In: Duvigneaud P, pp 71-84, see Chapter 2. 5

    Google Scholar 

  • McClaugherty CA (1985) see Chapter 2.5

    Google Scholar 

  • Miller RB (1971) Forest productivity in the temperate-humid zone of the Southern Hemisphere. In: Duvigneaud P, pp 299-305, see Chapter 2. 5

    Google Scholar 

  • Müller-Wille W (1978) see Chapter 2.6

    Google Scholar 

  • Nihlgard B, Lindgren L (1977) Plant biomass, primary production and bioelements of three mature beech forests in South Sweden. Oikos 28: 95 - 104

    Article  Google Scholar 

  • Olson JS (1971) Primary productivity: temperate forests, especially American deciduous types. In: Duvigneaud P, pp 235-258, see Chapter 2. 5

    Google Scholar 

  • ONeill RV, De Angelis DL (1981) see Chapter 2.5

    Google Scholar 

  • Pastor J et al. (1987) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65, 1: 256 - 268

    Google Scholar 

  • Pastor J, Bockheim JG (1984) Distribution and cycling of nutrients in an aspen-mixed-hardwoodspodosol ecosystem in northern Wisconsin. Ecology 65, 2: 339 - 353

    Article  Google Scholar 

  • Peterken GF, Jones EW (1987) Forty years of change in Lady Park Wood, the old-growth stands. J Ecol 75: 477 - 512

    Article  Google Scholar 

  • Phillipson J et al. (1975) Litter input, litter decomposition and the evolution of carbon dioxide in a beech woodland-Wytham Woods, Oxford. Oecologia 20: 203 - 217

    Article  Google Scholar 

  • Potter CS et al. (1991) Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy. J Ecol 79: 97 - 115

    Article  Google Scholar 

  • Putman RJ (1986) Grazing in temperate ecosystems: large herbivores and the ecology of the New Forest. Croom Helm, London, 210 pp

    Book  Google Scholar 

  • Rauner JL (1976) Deciduous forests. In: Montheith JL, pp 241-264, see chapter 2. 5

    Google Scholar 

  • Read J, Hill RS (1988) The dynamics of some rainforest associations in Tasmania. J Ecol 76: 558 - 584

    Article  Google Scholar 

  • Reichle DE (1970) Temperate forest ecosystems. Ecological Studies 1. Springer, Berlin Heidelberg New York, 304 pp

    Google Scholar 

  • Reichle DE (1981) see Chapter 2.5

    Google Scholar 

  • Ricklefs RE (1980) see Chapter 2.5

    Google Scholar 

  • Rogers RS (1985) Local coexistence of deciduous-forest groundlayer species growing in different seasons. Ecology 66, 3: 701 - 707

    Article  Google Scholar 

  • Röhrig E, Ulrich B (eds) (1991) Temperate deciduous forests. Ecosystems of the world 7. Elsevier, Amsterdam, 635 pp

    Google Scholar 

  • Runkle JR, Yetter TC (1987) Treefalls revisited: gap dynamics in the southern Appalachians. Ecology 68, 2: 417 - 424

    Article  Google Scholar 

  • Satchell JE (1971) Feasibility study of an energy budget for Meathop Wood. In: Duvigneaud P, pp 619-630, see Chapter 2. 5

    Google Scholar 

  • Satoo T (1983) Temperate broad-leaved evergreen forests of Japan. In: Ovington JD (ed) Temperate broad-leafed evergreen forests. Ecosystems of the world 10. Elsevier, Amsterdam, pp 169 - 189

    Google Scholar 

  • Schachtschabel P et al. (1982, 1992) see Chapter 2.4

    Google Scholar 

  • Schnock G (1971) Le bilan de leau dans lécosystème forêt. Application à une chenaie mélangée de haute Belgique. In: Duvigneaud P, pp 41-47, see Chapter 2. 5

    Google Scholar 

  • Schroeder D (1984) 4th edn, see Chapter 2.4

    Google Scholar 

  • Sellers WD (1967) Physical climatology. University of Chicago Press, Chicago, 272 pp

    Google Scholar 

  • Sollins P (1972) Organic matter budget and model for a southern Appalachian Liriodendron forest. PhD Diss, Univ of Tennessee, Knoxville

    Google Scholar 

  • Strasburger et al. (1983) see Chapter 2.5

    Google Scholar 

  • Tischler W (1984) see Chapter 2.5

    Google Scholar 

  • Troll C, Paffen KH (1964) see Chapter 2.1

    Google Scholar 

  • UNESCO (1978) see Chapter 2.3

    Google Scholar 

  • Walter H (1979), 4th edn, see Chapter 2.5

    Google Scholar 

  • Walter H, Breckle SW (1983, 1986, 1989, 1991) see Chapter 1

    Google Scholar 

  • Walter H, Lieth H (1960-67) see Chapter 2.1

    Google Scholar 

  • Weischet W (1983) see Chapter 2.2

    Google Scholar 

Chapter 3.4: Arid Mid-Latitudes and Arid Lands in General

  • Achtnich W, Lüken H (1986) see Chapter 3.5

    Google Scholar 

  • Agnew C, Anderson E (1992) Water resources in the arid realm. Routledge, London, 329 pp

    Google Scholar 

  • Andreae B (1983) see Chapter 2.6

    Google Scholar 

  • Bazilevich NJ, Rodin LY (1971) see Chapter 2.5

    Google Scholar 

  • Bazilevich NJ, Titlyanova AA (1980) Comparative studies of ecosystem function. In: Breymeyer AI, Van Dyne GM, pp 713 - 758

    Google Scholar 

  • Beaumont P (1989) Drylands. Environmental management and development, 2nd edn. Routledge, London, 536 pp

    Google Scholar 

  • Besler H (1992) see Chapter 2.3

    Google Scholar 

  • Bishay A, Dregne H (eds) (1991) Desert development, parts 1 and 2, Harvard Academic Publ, Chur, 654 and 655 pp

    Google Scholar 

  • Breymeyer AI, Van Dyne GM (eds) (1980) Grasslands, systems analysis and man. Intern Biol Prog 19. Cambridge University Press, Cambridge, 950 pp

    Google Scholar 

  • Budyko MI (1963) see Chapter 2.2

    Google Scholar 

  • Bünstorf J (1984) Landnutzungsbeispiele der argentinischen Trockenzone. Praxis Geogr 11: 17 - 22

    Google Scholar 

  • Caldwell MM, White RS, Moore RT, Camp LB (1975) Primary production of grazing lands. In: Cooper JP, pp 41-73, see Chapter 2. 5

    Google Scholar 

  • Caldwell MM, White RS, Moore RT, Camp LB (1977) Carbon balance, productivity and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29: 275 - 300

    Article  Google Scholar 

  • Carlson TN (1994) see Chapter 3.3

    Google Scholar 

  • Cemusca A (1975) see Chapter 3.2

    Google Scholar 

  • Chabot BF, Mooney HA (1985) see Chapter 2.5

    Google Scholar 

  • Cloudsley-Thompson JL (ed) (1991) Ecophysiology of desert arthropods and reptiles. Springer, Berlin Heidelberg New York, 220 pp

    Book  Google Scholar 

  • Collins SL (1987) Interaction of disturbances in tallgrass prairie: a field experiment. Ecology 68, 5: 1243 - 1250

    Article  Google Scholar 

  • Coupland RT (ed) (1979) Grassland ecosystems of the world: analysis of grasslands and their uses. Int Biol Prog 18. Cambridge University Press, Cambridge, 401 pp

    Google Scholar 

  • Coupland RT (ed) (1992, 1993) Natural grasslands. Ecosystems of the world 8A and 8B. Elsevier, Amsterdam, 469 pp and 556 pp

    Google Scholar 

  • Coupland RT, Van Dyne GM (1979) Natural temperate grasslands: systems synthesis. In: Coupland RT, pp 97 - 106

    Google Scholar 

  • Cox GW (1987) Nearest-neighbour relationships of overlapping circles and the dispersion pattern of desert shrubs. J Ecol 75: 193 - 199

    Article  Google Scholar 

  • Curry-Lindahl K (1986) The conflict between development and nature conservation, with special reference to desertification. In: Polunin N (ed) Ecosystem theory and application. Wiley, Chichester, pp 106 - 130

    Google Scholar 

  • Day AD, Ludeke KL (1993) Plant nutrients in desert environments. Springer, Berlin Heidelberg New York, 117 pp

    Book  Google Scholar 

  • Doornkamp JC, Ibrahim HAM (1990) Salt weathering. Prog Phys Geogr 14, 3: 335 - 348

    Article  Google Scholar 

  • Dregne HE (1976) Soils of arid regions. Dev Soil Sci 6. Elsevier, Amsterdam, 237 pp

    Google Scholar 

  • Dürr H, Widmer U (1984) Steppenprobleme in China. Praxis Geogr 11: 37 - 41

    Google Scholar 

  • El-Baz F (1984) Deserts and arid lands. Nijhoff, The Hague, 222 pp

    Book  Google Scholar 

  • Evenari M (1981) Management of arid lands: synthesis. In: Goodall DW, Perry RA, pp 555-591 Evenari M (1985) The desert environment. In: Evenari M et al., pp 1-22, see Chapter 3. 5

    Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Handbuch der Pflanzenanatomie, vol 13, 3. Bomtraeger, Berlin, 176 pp

    Google Scholar 

  • FAO (1976) Conservation in arid and semi-arid zones. Forest Resources Division, Rome

    Google Scholar 

  • Fitzpatrick EA (1979) Radiation. In: Goodall DW, Perry RA, pp 347 - 371

    Google Scholar 

  • Flecker P (ed) (1986) Tree plantings in semi-arid regions. Elsevier, Amsterdam, 444 pp

    Google Scholar 

  • Fowler N (1986) The role of competition in plant communities in arid and semiarid regions. Annu Rev Ecol Syst 17: 89 - 110

    Article  Google Scholar 

  • Frankenberg P (1985) Zum Problem der Trockengrenze. Geogr Rundsch 37, 7: 350 - 358

    Google Scholar 

  • Franklin WL, Fritz MA (1991) Sustained harvesting of the Patagonia guanaco: Is it possible or too late? In: Robinson JG, Redford KH (eds) Neotropical wildlife use and conservation. University of Chicago Press, Chicago, pp 317 - 336

    Google Scholar 

  • French NR (1979a) Perspectives in grassland ecology. Ecological Studies 32. Springer, Berlin Heidelberg New York, 204 pp

    Google Scholar 

  • French NR (1979b) Natural temperate grasslands: introduction. In: Coupland RT, pp 41 - 48

    Google Scholar 

  • Ganssen R (1968) Trockengebiete. Bibliogr Inst, Mannheim, 186 pp

    Google Scholar 

  • Glantz MH (ed) (1977) Desertification. Westview Press, Colorado, 346 pp

    Google Scholar 

  • Goodall DW, Perry RA (eds) (1979, 1981 ) Arid-land ecosystems: structure, functioning and management, 2 vols. Int Biol Prog 16 and 17. Cambridge University Press, Cambridge, 881 pp and 605 pp

    Google Scholar 

  • Graetz RD, Cowan I (1979) Microclimate and evaporation. In: Goodall DW, Perry RA, pp 409 - 434

    Google Scholar 

  • Graf WL (1987) Fluvial processes in dryland rivers. Springer Series in Physical Environment 3. Springer, Berlin Heidelberg New York, 346 pp

    Google Scholar 

  • Hagedorn H (1987) Wüstenforschung. Geogr Rundsch 39, 7 /8: 376 - 385

    Google Scholar 

  • Jätzold R (1984) Steppengebiete der Erde. Praxis Geogr 11: 10 - 15

    Google Scholar 

  • Jätzold R (1986) Wüsten und Halbwüsten der Erde. Praxis Georg 10: 6 - 11

    Google Scholar 

  • Joss PJ, Lynch PW, Williams OW (eds) (1986) Rangelands: a resource under siege. Aust Acad Sci, Canberra, 634 pp

    Google Scholar 

  • Knapp AK (1985) Effect of fire and drought on the ecophysiology of Andropogon geradii and Panicum virgatum in a tallgrass prairie. Ecology 66, 4: 1309 - 1320

    Article  Google Scholar 

  • Lancaster N (1992) Arid geomorphology. Progress report. Prog Phys Geogr 16, 4: 489 - 495

    Article  Google Scholar 

  • Larcher W (1984) see Chapter 2.5

    Google Scholar 

  • Lauenroth WK (1979) Grassland primary production: North American grasslands in perspective. In: French NR, pp 3 - 24

    Google Scholar 

  • Ludwig JA, Whitford WG (1981) Short-term water and energy flow in arid ecosystems. In: Goodall DW, Perry RA, pp 271 - 300

    Google Scholar 

  • Mabbutt JA (1977) Desert landforms. MIT Press, Cambridge, 340 pp

    Google Scholar 

  • MacMahon JA, Wagner FH (1985) The Mojave, Sonoran and Chihuahuan Deserts of North America. In: Evenari M et al., pp 105-202, see Chapter 3. 5

    Google Scholar 

  • Mainguet M (1991) Desertification. Natural background and human mismanagement. Springer, Berlin Heidelberg New York, 305 pp

    Google Scholar 

  • McGinnies WG (1979) General description of desert areas. In: Goodall DW, Perry RA, pp 5 - 20

    Google Scholar 

  • McGinnies WG, Goldmann BJ, Paylose P (eds) (1968) Deserts of the world. University of Arizona Press, Tucson, 788 pp

    Google Scholar 

  • Meckelein W (1983) Die Trockengebiete der Erde, Reserveräume für die wachsende Menschheit? Colloq Geogr 17: 25 - 58

    Google Scholar 

  • Meigs P (1953) World distribution of arid and semi-arid homoclimates. In: UNESCO. Review of research on arid zone hydrology. Paris, pp 203 - 209

    Google Scholar 

  • Mensching H (ed) (1982) Physische Geographie der Trockengebiete. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Netchayeva N, Babayev A (1984) Setting up a stable fodder base in the sandy deserts of Soviet Middle Asia. In: Di Castri F, Baker FW, Hadley M (eds) Ecology in practice 1. UNESCO, Paris, pp 306 - 314

    Google Scholar 

  • Nir D (1974) The semi-arid world: man on the fringe of desert. Longman, London, 187 pp

    Google Scholar 

  • Nobel PS, Franco AC (1986) Annual root growth and intraspectific competition for a desert bunch-grass J Ecol 74: 1119 - 1126

    Google Scholar 

  • Phillips DL, MacMahon JA (1978) Gradient analysis of a Sonoran Desert bajada. Southwest Nat 23: 669 - 680

    Article  Google Scholar 

  • Rickard WH et al. (eds) (1988) Shrub-steppe. Balance and change in a semi-arid terrestrial ecosystem. Dev Agric Manage-For Ecol 20. Elsevier, Amsterdam, 272 pp

    Google Scholar 

  • Rinschede G (1984) Nutzungswandel der Steppen in Wyoming/USA. Praxis Geogr 11: 22 - 30

    Google Scholar 

  • Risser PG, Goodall DW, Perry RA, Howes KMW (eds) (1981) The true prairie ecosystem. US/IBP Synthesis Ser 16. Stroudsburg, 881 pp

    Google Scholar 

  • Rodin LE (1979) Productivity of desert communities in central Asia. In: Goodall DW, Perry RA, pp 273 - 298

    Google Scholar 

  • Rohdenburg H (1971) see Chapter 2.3

    Google Scholar 

  • Rostankowski P (1984) Steppen der Sowjetunion. Prax Geogr 11: 32 - 36

    Google Scholar 

  • Schachtschabel P et al. (1982) see Chapter 2.4

    Google Scholar 

  • Scheffer F, Schachtschabel P (1992) see Chapter 2.4

    Google Scholar 

  • Schimel D, Stillwell MA, Goodmansee RG (1985) Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66, 1: 276 - 282

    Article  Google Scholar 

  • Schroeder D (1984) 4th edn, see Chapter 2.4

    Google Scholar 

  • Scott JA, French NR, Leetham JW (1979) Patterns of consumption in grasslands. In: French NR, pp 89 - 105

    Google Scholar 

  • Semmel A (1983) 2nd edn, see Chapter 2.4

    Google Scholar 

  • Shmida A (1985) Biogeography of the desert flora. In: Evenari M et al., pp 23-78, see Chapter 3. 5

    Google Scholar 

  • Sims PL et al. (1978) The structure and function of ten western North American grasslands. J Ecol 66: 251-285, 547 - 597

    Google Scholar 

  • Sims PL, Coupland RT (1979) Natural temperate grasslands: producers. In: Coupland RT, pp 49 - 72

    Google Scholar 

  • Singh RP et al. (eds) (1990) Dryland agriculture. Strategies for sustainability. Advances in Soil Science 13. Springer, Berlin Heidelberg New York, 373 pp

    Google Scholar 

  • Solbrig OT (1986) Evolution of life-forms in desert plants. In: Polunin N (ed) Ecosystem theory and application. Wiley, Chichester, pp 89 - 105

    Google Scholar 

  • Soriano A, Volkheimer W (1983) Deserts and semi-deserts of Patagonia. In: West NE, pp 423 - 460

    Google Scholar 

  • Späth HJ (1980) see Chapter 2.6

    Google Scholar 

  • Stanton NL (1988) The underground in grasslands. Annu Rev Ecol Syst 19: 573 - 589

    Article  Google Scholar 

  • Strasburger E (1983) see Chapter 2.5

    Google Scholar 

  • Strojan CL, Randall DC, Turner FB (1987) Relationship of leaf litter decompostion rates to rainfall in the Mojave desert. Ecology 68, 3: 741 - 744

    Article  Google Scholar 

  • Thomas DSG (1988) The biogeomorphology of arid and semi-arid environments. In: Viles A (ed) Biogeomorphology. Blackwell, New York, pp 193 - 221

    Google Scholar 

  • Thomas DSG (ed) (1989) Arid zone geomorphology. Bellhaven, London, 372 pp

    Google Scholar 

  • Thomas DSG (1988, 1989, 1990, 1991 ) Arid geomorphology — progress report. Prog Phys Geogr 12: 595-606; 13: 442-451; 14: 221-231; 15: 157 - 163

    Google Scholar 

  • Titlyanova AA, Bazilevich NI (1979) Semi-natural temperate meadows and pastures: nutrient cycling. In: Coupland RT, pp 170 - 180

    Google Scholar 

  • Tueller PT (ed) (1988) Vegetation science applications for rangeland analysis and management. Handbook of Vegetation Science 14. Dr W Junk, Dordrecht, 642 pp

    Google Scholar 

  • UNESCO (1977) Map of the world distribution of arid regions. MAB Technical Notes 7, Paris

    Google Scholar 

  • Unger PW et al (eds) (1988) Challenges in dryland agriculture. A global perspective. Proc Int Conf on Dryland Farming, 15-19 August 1988, Amarillo, 965 pp

    Google Scholar 

  • US Agricultural Department (1954) Saline and alkali soils. Handbook 60. Washington, DC

    Google Scholar 

  • Vogg R (1981) Bodenressourcen arider Gebiete. Stuttgarter Geogr Stud 97. Geographisches Inst Univ, Stuttgart, 224 pp

    Google Scholar 

  • Walter H (1968) see Chapter 2.5

    Google Scholar 

  • Walter H (1990) see Chapter 2.5

    Google Scholar 

  • Walter H, Box EO (1983) The Pamir — an ecologically wellstudied high-mountain desert biome. In: West NE, pp 237 - 270

    Google Scholar 

  • Walter H, Breckle SW (1983-1991) see Chapter 1

    Google Scholar 

  • Wein N (1981) Die ostsibirische Steppenlandschaft — Neulandgewinnung and ihre ökologische Problematik. Erdkunde 35: 262 - 273

    Article  Google Scholar 

  • West NE (1981) Nutrient cycling in desert ecosystems. In: Goodall DW, Perry RA, pp 301 - 324

    Google Scholar 

  • West NE (ed) (1983) Temperate deserts and semi-deserts. Ecosystems of the world 5. Elsevier, Amsterdam 1983, 522 pp

    Google Scholar 

  • West NE, Skujins J (1977) The nitrogen cycle in North American cold-winter semi-desert ecosystems. Oecol Plant 12: 45 - 53

    Google Scholar 

  • Whitehead EE, Hutchinson CF, Timmermann BN, Varady RG (eds) (1988) Arid lands, Westview Press, Boulder, 1435 pp

    Google Scholar 

  • Wickens GE, Goodin JR, Field DV (eds) (1985) Plants for arid lands. Allen and Unwin, London, 452 pp

    Google Scholar 

  • Yaron B, Danfors E, Vaadia Y (eds) (1973) Arid zone irrigation. Ecological Studies 5. Springer, Berlin Heidelberg New York, 434 pp

    Google Scholar 

Chapter 3.5: Tropical /Subtropical Arid Lands

  1. Achtnich W, Lüken H (1986) Bewässerungslandbau in den Tropen und Subtropen. In: Rehm S, pp 285-342, see Chapter 2. 6

    Google Scholar 

  2. Agnew C, Anderson E (1992) see Chapter 3.4

    Google Scholar 

  3. Ahnert F (1988) Das Morphoklima und seine Bedeutung für die Hangentwicklung in Trockengebieten. In: Hagedorn J, Mensching HG (eds) Aktuelle Morphodynamik und Morphogenese in den semiariden Randtropen und Subtropen. Abh Akad Wiss Göttingen, Math-Phys KI 3, 41. Göttingen, pp 229 - 244

    Google Scholar 

  4. Anhuf D (1989) Klima und Ernteertrag — eine statistische Analyse an ausgewählten Beispielen nord-und südsaharischer Trockenräume — Senegal, Sudan Tunesien. Bonner Geogr Abh 77. Diimmler, Bonn, 233 pp

    Google Scholar 

  5. Bähr J (1983) Wildbewirtschaftung in Südwestafrika/Namibia. Erdkunde 37: 199 - 203

    Article  Google Scholar 

  6. Barth HK (1987) Agrarerschließung in den Wüsten Saudi-Arabiens. Geogr Rundsch 39, 7-8: 386 - 393

    Google Scholar 

  7. Beadle NCW (1981) The vegetation of the arid zone. In: Keast A (ed) Ecological biogeography of Australia. Dr W Junk, The Hague, pp 695 - 731

    Chapter  Google Scholar 

  8. Beaumont P (1989) 2nd edn, see Chapter 3.4

    Google Scholar 

  9. Bernhard-Reversat F (1982) Biochemical cycle of nitrogen in semi-arid savanna. Oikos 38: 321 - 332

    Article  Google Scholar 

  10. Besler H (1992) see Chapter 2.3

    Google Scholar 

  11. Bille JC (1977) Etude de la production primaire nette dun écosystem sahélien. Tray Doc ORSTOM (Paris) 65: 1 - 82

    Google Scholar 

  12. Bille JC, Poupon H (1972) Recherches écologiques sur une savane sahélienne du Ferlo septentrional, Sénégal. Terre Vie (Paris) 26: 351 - 382

    Google Scholar 

  13. Breman H, Cissé AM (1977) Dynamics of Sahelian pastures in relation to drought and grazing. Oecologia 28: 301 - 315

    Article  Google Scholar 

  14. Cloudsley-Thompson JL (ed) (1984) Sahara desert. Pergamon Press, Oxford, 348 pp

    Google Scholar 

  15. Cloudsley-Thompson JL (1991) see Chapter 3.4

    Google Scholar 

  16. Cornet A, Poupon H (1977) Description des facteurs du milieu et de la végétation dans cinq parcelles situées le long dun gradient climatique en zone sahélienne au Sénégal. Rapport ORSTOM, Dakar

    Google Scholar 

  17. Coupland RT (1979, 1992, 1993) see Chapter 3.4

    Google Scholar 

  18. Crawford CS (1986) Dynamics of desert resources and ecosystem processes. In: Polunin N (ed) Ecosystem theory and application. Wiley, Chichester, pp 63 - 88

    Google Scholar 

  19. Cunnington WM, Rowntree PR (1986) Simulations of the Saharan atmosphere — dependence on moisture and albedo. J R Met Soc 112: 971 - 999

    Google Scholar 

  20. Curry-Lindahl K (1986) see Chapter 3.4

    Google Scholar 

  21. Davidson DW, Samson DA, Inouye RS (1985) Granivory in the Chihuahuan desert: interactions within and between trophic levels. Ecology 66, 2: 486 - 502

    Article  Google Scholar 

  22. Day AD, Ludeke KL (1993) see Chapter 3.4

    Google Scholar 

  23. De Planhol X, Rognon P (1970) Les zones arides tropicales et subtropicales. Paris, 488 pp

    Google Scholar 

  24. Doornkamp JC, Ibrahim HAM (1990) see Chapter 3.4

    Google Scholar 

  25. Duvigneaud P (1971) see Chapter 2.5

    Google Scholar 

  26. El-Baz F (1984) see Chapter 3.4

    Google Scholar 

  27. Eriksen W (1983) Aridität und Trockengrenzen in Argentinien — ein Beitrag zur Klimageographie der Trockendiagonale Südamerikas. Colloq Geogr 16, Studia Geographica, pp 43 - 68

    Google Scholar 

  28. Evenari M, Shanan L, Tadmor N (1982) The Negev: the challenge of a desert, 2nd edn. Harvard University Press, Cambridge, 345 pp

    Google Scholar 

  29. Evenari M, Noy-Meir I, Goodall DW (eds) 1985, 1986 ) Hot deserts and arid shrublands. Ecosystems of the world 12 A and B. Elsevier, Amsterdam, 365 pp and 451 pp

    Google Scholar 

  30. Fahn A, Cutler DF (1992) see Chapter 3.4

    Google Scholar 

  31. FAO (1988) see Chapter 2.4

    Google Scholar 

  32. FAO-UNESCO-WMO (1977) World map of desertification at scale of 1:25 000 000. Rome, Paris

    Google Scholar 

  33. Flecker P (1986) see Chapter 3.4

    Google Scholar 

  34. Fowler N (1986) see Chapter 3.4

    Google Scholar 

  35. Frankenberg P (1985) Vegetationskundliche Grundlagen zur Sahelproblematik. Die Erde 116, 2 /3: 121 - 135

    Google Scholar 

  36. Frankenberg P (1985) see Chapter 3.4

    Google Scholar 

  37. Frankenberg P (1986) Erfassung geoökologischer Gradienten am Nord-und Südrand der Sahara bzw. des Sahel. Geomethodica 11: 27 - 78

    Google Scholar 

  38. Frankenberg P, Klaus D (1987) Studien zur Vegetationsdynamik Sudosttunesiens. Quantitative Bewertung klimatischer und anthropo-edaphischer Bestimmungsfaktoren. Bonn Geogr Abh 74. Dümmler, Bonn, 110 pp

    Google Scholar 

  39. Gabriel B (1990) Forschungen in ariden Gebieten. Berliner Geogr Studien 30. Technische Universität Berlin, Berlin, 300 pp

    Google Scholar 

  40. Giessner K (1988) Die subtropisch-randtropische Trockenzone. Globale Verbreitung, innere Differen-zierung, geoökologische Typisierung und Bewertung. Geoökodynamik 9: 135 - 183

    Google Scholar 

  41. Gillet H (1986) Desert and Sahel. In: Lawson GW (ed) Plant ecology in West Africa. Wiley, Chichester, pp 151 - 181

    Google Scholar 

  42. Goodall DW, Perry RA (eds) (1979, 1981) see chapter 3.4

    Google Scholar 

  43. Götz E (1987) Zur Biologie einiger häufiger Saharapflanzen. Stuttgarter Geogr Stud 106: 49 - 117

    Google Scholar 

  44. Goudie A (1973) Duricrusts in tropical and subtropical landscapes. Oxford University Press, Oxford, 174 pp

    Google Scholar 

  45. Graf WL (1987) see Chapter 3.4

    Google Scholar 

  46. Regional Section: the Individual Ecozones

    Google Scholar 

  47. Hadley NF (ed) (1975) Environmental physiology of desert organisms. Dowden, Hutchinson and Ross, Stroudsburg, 283 pp

    Google Scholar 

  48. Hagedorn J, Mensching HG (eds) (1988) Aktuelle Morphodynamik und Morphogenese in den semi-ariden Randtropen und Subtropen. Abh Akad Wiss Göttingen, Math-Phys KI 3, 41, Vandenhoek and Ruprecht, Göttingen, 343 pp

    Google Scholar 

  49. Ibrahim F (1980) Desertification in Nord Dafur. Hamburger Geogr Studien 35. Hirt, 175 pp

    Google Scholar 

  50. Jätzold R (1986) see Chapter 3.4

    Google Scholar 

  51. Joss RI et al. (1986) see Chapter 3.4

    Google Scholar 

  52. Kemp PR (1983) Phenological patterns of Chihuahuan Desert plants in relation to the timing of water availability. J Ecol 71: 427 - 436

    Article  Google Scholar 

  53. Klaus D (1981) Klimatologische und klima-öklogische Aspekte de Dürre im Sahel. Steiner, Wiesbaden, 175 pp

    Google Scholar 

  54. Klaus D (1986) Desertifikation im Sahel. Ökologische und sozialökonomische Konsequenzen. Geogr Rundsch 38, 11: 577 - 583

    Google Scholar 

  55. Klaus D, Frankenberg P (1980) Pflanzengeographische Grenzen der Sahara und ihre Beeinflussung durch Desertifikationsprozesse. Geomethodica 5: 109 - 137

    Google Scholar 

  56. Kubiena WL (1953) see Chapter 2.4

    Google Scholar 

  57. Lancaster N (1992) see Chapter 3.4

    Google Scholar 

  58. Lauer W (1986) Das Klima der Tropen und Subtropen. In: Rehm S (ed) Grundlagen des Pflanzenbaues in den Tropen und Subtropen. Hdb der Landwirtschaft und der Ernährung in den Entwicklungsländern, vol 3. Ulmer, Stuttgart, pp 15 - 45

    Google Scholar 

  59. Lauer W, Frankenberg P (1977) Zum Problem der Tropengrenze in der Sahara. Erdkunde 31, 1: 1 - 15

    Article  Google Scholar 

  60. Le Houérou HN (1980) The rangelands of the Sahel. J Range Manage 33: 41 - 46

    Article  Google Scholar 

  61. Le Houérou HN (1989) The grazing land ecosystems of the African Sahel. Ecological Studies 75. Springer, Berlin Heidelberg New York, 282 pp

    Google Scholar 

  62. Lieth H, Barth H (1983) Untersuchungen über die Möglichkeit zur Einrichtung von Mangrovenpflanzungen in Küstenwüsten. Verh Ges Ökol 11, Göttingen, pp 265 - 276

    Google Scholar 

  63. Löffler E, Sullivan ME (1987) The development of the Strzelecki desert dunefields, Central Australia. Erdkunde 41: 42 - 48

    Article  Google Scholar 

  64. Mäckel R, Menz G, Walther D (1989) Weidepotential und Landdegradierung in den Trockengebieten Kenias, dargestellt an Testflächen im Samburu-Distrikt. Erdkunde 43: 253 - 267

    Article  Google Scholar 

  65. Mäckel R, Walther D (1993) Naturpotential und Landdegradierung in den Trockengebieten Kenias. Erdkundliches Wissen 113, Stuttgart

    Google Scholar 

  66. Mainguet M (1991) see Chapter 3.4

    Google Scholar 

  67. Mensching HG (1983) Die Wirksamkeit des “arid-morphodynamischen Systems” am mediterranen Nordrand. und am randtropischen Südrand (Sahel) der Sahara. Ein Beitrag zur zonalen Klima-Geomorphologie. Geoökodynamik 4: 173 - 190

    Google Scholar 

  68. Mensching HG, (1985) Die Sahelzone — Probleme ohne Lösung? Die Erde 116, 2 /3: 99 - 108

    Google Scholar 

  69. Mensching HG, Ibrahim F (1976) Das Problem der Desertifikation. Geogr Z 64, 2: 81 - 93

    Google Scholar 

  70. Müller-Hohenstein K (1986) Methodische Probleme vegetationskundlichen Arbeitens in semiariden Räumen am Beispiel des Nordjemen. Geomethodica 11: 109 - 143

    Google Scholar 

  71. Mundlak Y, Singer SF (eds) (1977) Arid zone development: potentialities and problems. Ballinger, Cambridge, MA, 293 pp

    Google Scholar 

  72. Noy-Meir I (1985) Desert ecosystem structure and function. Ecosystems of the world 12A. Elsevier, Amsterdam, pp 93 - 103

    Google Scholar 

  73. Orians GH, Solbrig OT (eds) (1977) Convergent evolution in warm deserts. Dowden, Hutchinson and Ross, Stroudsburg, 333 pp

    Google Scholar 

  74. Phillips DL, MacMahon JA (1981) Competition and spacing patterns in desert shrubs. J Ecol 69: 97 - 115

    Article  Google Scholar 

  75. Poupon H (1979) Structure et dynamique de la strate ligneuse dune steppe sahélienne au nord du Sénégal. Thesis, Université de Paris Sud, Paris

    Google Scholar 

  76. Prinz D (1986) Ökologisch angepaßte Produktionssysteme. In: Rehm S, pp 115-168, see Chapter 2.6 Rouse WR (1981) Man-modified climates. In: Gregory KJ, Walling DE, pp 38-54, see Chapter 2.3 Ruthenberg H (1980) see Chapter 2. 6

    Google Scholar 

  77. Mediterranean-Type Subtropics 279

    Google Scholar 

  78. Schneider U (1990) Pflanzenökologische Untersuchungen an Wild-und Kulturpflanzen in der Extremwüste Südägyptens. Dissertationes Botanicae 153. Borntraeger, Berlin, 292 pp

    Google Scholar 

  79. Seely MK (1978) Grassland productivity: the desert end of the curve. S Afr J Sci 74: 295 - 297

    Google Scholar 

  80. Shmida A, Noy-meir I, Goodall DW (1986) Hot desert ecosystems: an integrated view. In: Evenari M et al. (eds) Hot deserts and arid shrublands. Ecosystems of the world 12B. Elsevier, Amsterdam, pp 379 - 387

    Google Scholar 

  81. Singh RP et. al (eds) (1990) see Chapter 3.4

    Google Scholar 

  82. Sutton MD (1981) Recreation and tourism in arid lands. In: Goodall DW, Perry RA, pp 495-518, see Chapter 3. 4

    Google Scholar 

  83. Thalen DCP (1980) Prozesse der Desertifikation und Probleme der Wüstenabgrenzung — Ein Vergleich des Nahen Ostens (Irak) mit dem südlichen Afrika (Botswana). Geomethodica 5: 43 - 80

    Google Scholar 

  84. Thames JL, Fischer JN (1981) Mangement of water resources in arid lands. In: Goodall DW, Perry RA, pp 519-547, see Chapter 3. 4

    Google Scholar 

  85. Thomas DSG (1988) see Chapter 3.4

    Google Scholar 

  86. Thomas DSG (1989) see Chapter 3.4

    Google Scholar 

  87. Thomas DSG (1988-1991) see Chapter 3.4

    Google Scholar 

  88. Troll C (1960) Die Physiognomik der Gewächse als Ausdruck der ökologischen Lebensbedingungen. In: Verh Dtsch Geographentag 32. Wiesbaden, pp 97-122

    Google Scholar 

  89. Troll C (1963) Qanat-Bewässerung in der Alten und Neuen Welt. Mitt Österr Geogr Ges 105: 313 - 330

    Google Scholar 

  90. Troll C, Paffen KH (1964) see Chapter 2.1

    Google Scholar 

  91. Tueller PT (1988) see Chapter 3.4

    Google Scholar 

  92. UNESCO (1975) Regional meeting on the establishment of cooperative programmes of interdisciplinary ecological research, training and rangeland management for arid and semi-arid zones of Northern Africa. MAB Rep Ser 30. UNESCO, Paris

    Google Scholar 

  93. Van Wambeke A (1992) see Chapter 2.4

    Google Scholar 

  94. Walter H (1939) Grasland, Savanne und Busch der arideren Teile Afrikas in ihrer ökologischen Bedingtheit. Jahrb Wiss Bot 87: 750 - 860

    Google Scholar 

  95. Walter H (1973) see Chapter 2.5

    Google Scholar 

  96. Walter H, Breckle SW (1984) see Chapter 1

    Google Scholar 

  97. Weischet W (1983) 3rd edn, see Chapter 2.2

    Google Scholar 

  98. Wickens GE et al. (1985) see Chapter 3.4

    Google Scholar 

  99. Wieneke F (1986) Mechanisierung im tropischen und subtropischen Pflanzenbau. In: Rehm S, pp 343-376, see Chapter 2. 6

    Google Scholar 

  100. Wirthmann A (1987) see Chapter 2.3

    Google Scholar 

  101. Young A (1976) see Chapter 2.4

    Google Scholar 

Chapter 3.6, Mediterranean-Type Subtropics

  • Arroyo, MTK, Zedler PH, Fox MD (eds) (1995) Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Ecological Studies 108. Springer, Berlin Heidelberg New York, 455 pp

    Google Scholar 

  • Barbour MG, Major J (eds) (1977) Terrestrial vegetation of California. Wiley, New York, 1002 pp

    Google Scholar 

  • Biddiscombe EF (1987) The productivity of mediterranean and semi-arid grasslands. In: Snaydon RW (ed) Managed grasslands. Ecosystems of the world 17B. Elsevier, Amsterdam, pp 19 - 27

    Google Scholar 

  • Blümel WD (1981) Pedologische und geomorphologische Aspekte der Kalkkrustenbildung in Südwestafrika und Südostspanien. Karlsruher Geogr H 10. Geographisches Inst Univ Karlsruhe, Karlsruhe, 228 pp

    Google Scholar 

  • Booysen PDV, Tainton NM (eds) (1984) Ecological effects of fire in South African ecosystems. Ecological Studies 48. Springer, Berlin Heidelberg New York, 426 pp

    Google Scholar 

  • Bruckner H (1986) Mans impact on the evolution of the physical environment in the Mediterranean region in historical times. GeoJournal 13, 1: 7 - 17

    Google Scholar 

  • Cody ML, Mooney HA (1978) Convergence versus nonconvergence in mediterranean-climate ecosystems. Annu Rev Ecol Syst 9: 265 - 321

    Article  Google Scholar 

  • Cole DW, Rapp M (1981) see Chapter 2.5

    Google Scholar 

  • Day J et al. (eds) (1979) Fynbos ecology: a preliminary synthesis. S-Afr Nat Sci Progr Rep 40, Pretoria

    Google Scholar 

  • Debano LF, Conrad CE (1978) The effect of fire on nutrients in a chaparral ecosystem. Ecology 59, 3: 489 - 497

    Article  Google Scholar 

  • Debazac EF (1983) Temperate broad-leaved evergreen forests of the mediterranean region and the Middle East. In: Ovington JD, pp 107-123, see Chapter 3. 8

    Google Scholar 

  • Dell B, Hopkins AJM, Lamont BB (eds) (1986) Resilience in mediterranean-type ecosystems. Tasks for vegetation science 16. Dr W Junk, The Hague, 168 pp

    Google Scholar 

  • Di Castri F, Goodall DW, Specht RL (eds) (1981) Mediterranean-type shrublands. Ecosystems of the world 11. Elsevier, Amsterdam, 643 pp

    Google Scholar 

  • Di Castri F, Mooney HA (eds) (1973) Mediterranean type ecosystems: origin and structure. Ecological Studies 7. Springer, Berlin Heidelberg New York, 405 pp

    Google Scholar 

  • Drude 0 (1890) Handbuch der Pflanzengeographie. Engelhorn, Stuttgart, 582 pp

    Google Scholar 

  • Emberger L (1930) Sur une formule applicable en géographie botanique. C R Acad Sci Fr 191: 389 - 390

    Google Scholar 

  • Emberger L (1955) Une classification biogéographique des climates. Recl Tray Lab Bot Géoi Zool Sér Bot 7: 3 - 43

    Google Scholar 

  • Endlicher W (1983) Zur Witterungsklimatologie der Winterregen-Subtropen Chiles. Erdkunde 37: 258 - 268

    Article  Google Scholar 

  • Endlicher W (1991) Bodenerosion und Badlandbildung in den Winterregen-Subtropen Chiles. Geogr Rundschau 43, 7-8: 438 - 445

    Google Scholar 

  • Francis CF, Thornes JB, Romero Diaz A, Lopez Bermudez F, Fisher GC (1986) Topographic control of soil moisture, vegetation cover and land degradation in a moisture stressed mediterranean environment. Catena 13: 211 - 225

    Article  Google Scholar 

  • Fuentes ER, Hoffmann AJ, Poinni A, Alliende MC (1986) Vegetation change in large clearings: patterns in the Chilean matorral. Oecologia 68: 358 - 366

    Article  Google Scholar 

  • Fuentes ER (1990) Landscape change in Mediterranean-type habitats of Chile: patterns and processes. In: Zoneveld IS, Forman RTT (eds) Changing landscapes: an ecological perspective. New York, pp 165 - 190

    Chapter  Google Scholar 

  • Giessner K (1990) Geo-ecological controls of fluvial morphodynamics in the mediterranean subtropics. Geoökodynamik 11: 17 - 42

    Google Scholar 

  • Goldammer JG (ed) (1990) Fire in the tropical biota. Ecosystem processes and global challenges. Ecological Studies 84. Springer, Berlin Heidelberg New York, 497 pp

    Google Scholar 

  • Gray JT (1983) Nutrient use by evergreen and deciduous shrubs in southern California. I. Community nutrient cycling and nutrient-use efficiency. J Ecol 71: 21 - 41

    Article  Google Scholar 

  • Grigg DB (1974) see Chapter 2.6

    Google Scholar 

  • Grisebach A (1872) Die Vegetation der Erde nach ihrer klimatischen Anordnung, 2 vols. Engelmann, Leipzig, 603 and 635 pp

    Google Scholar 

  • Hagedorn J, Poser H (1974) see Chapter 2.3

    Google Scholar 

  • Hobbs RJ (ed) (1992) Biodiversity of Mediterranean ecosystems in Australia. Surrey Beatty, Chipping Norton, 246 pp

    Google Scholar 

  • Hübl E (1988) Lorbeerwälder und Hartlaubwälder (Ostasien, Mediterraneis und Makronesien). Düsseldorfer Geobot Kolloq 5: 3 - 26

    Google Scholar 

  • Keeley JE (1987) Role of fire in seed germination of woody taxa in California chaparral. Ecology 68, 2: 434 - 443

    Article  Google Scholar 

  • Keeley SC (ed) (1989) The California chaparral. Paradigms reexamined. Science Series 34. Natural History Museum of Los Angeles County, Los Angeles, 171 pp

    Google Scholar 

  • Kruger FJ (1979) South African heathlands. In: Specht RL, pp 19 - 80

    Google Scholar 

  • Kruger FJ, Mitchell DT, Jarvis JVM (eds) (1983) Mediterranean-type ecosystems. Ecological Studies 43. Springer, Berlin Heidelberg New York, 552 pp

    Google Scholar 

  • Le Houérou HN (1981) Impact of man and his animals on mediterranean vegetation. In: Di Castri F et al., pp 479-521

    Google Scholar 

  • Lossaint P (1973) Soil-vegetation relationships in Mediterranean ecosystems of southern France. In: Di Castri F, Mooney HA, pp 199 - 210

    Google Scholar 

  • Lossaint P, Rapp M (1971) Répartition de la matière organique, productivité et cycles des éléments minéraux dans des écosystèmes de climat méditerranéen. In: Duvigneaud P, pp 597-617, see Chapter 2. 5

    Google Scholar 

  • Malanson GP, Trabaud L (1987) Ordination analysis of components of resilience of Quercus coccifera garrigue. Ecology 68, 3: 463 - 472

    Article  Google Scholar 

  • Malanson GP, Trabaud L (1988) Vigour of post-fire resprouting by Quercus coccifera L. J Ecol 76: 351 - 365

    Article  Google Scholar 

  • Margaris NS (1981) Adaptive strategies in plants dominating Mediterranean-type ecosystems. In: Di Castri F et al., pp 309-315

    Google Scholar 

  • Margaris NS, Mooney HA (eds) (1981) Components of productivity of Mediterranean-climate regions. Tasks for vegetation science 4. Dr W Junk, The Hague, 279 pp

    Google Scholar 

  • May T (1990) Die Entwicklung der Vegetationsstruktur nach Bränden im Mittelmeergebiet — Konsequenzen für die Bodenerosion und Landschaftsdegradation (Beispiele aus Hochandalusien). Geoökodynamik 11: 43 - 64

    Google Scholar 

  • Meurer M (1986) Macchie and Garrigue im mediterranen Nordwesten Tunesiens. Okologische Belastung und standortgemäße Nutzung. Geogr Rundsch 38, 7-8: 396 - 403

    Google Scholar 

  • Milewski AV (1979) A climatic basis for the study of convergence of vegetation structure in mediterranean Australia and southern Africa. J Biogeogr 6: 293 - 299

    Article  Google Scholar 

  • Miller PC (ed) (1981) Resource use by chaparral and matorral. Ecological Studies 39. Springer, Berlin Heidelberg New York, 455 pp

    Google Scholar 

  • Mills JN (1986) Herbivores and early postfire succession in southern California chaparral. Ecology 67, 6: 1637 - 1649

    Article  Google Scholar 

  • Mitchell DT, Coley PGF, Webb S, Allsopp N (1986) Litterfall and decomposition processes in the coastal fynbos vegetation, South Western Cape, South Africa. J Ecol 74: 977 - 993

    Article  Google Scholar 

  • Moll EJ et al. (1984) A description of major vegetation categories in and adjacent to the Fynbos biome. S Afr Nat Sci Progr Rep 83, Pretoria

    Google Scholar 

  • Mooney HA (1977) Convergent evolution in Chile and California. IBP Synthesis Series 5. Dowden, Hutchinson and Ross, Stroudsberg, 224 pp

    Google Scholar 

  • Mooney HA (1981) Primary production in mediterranean-climate regions. In: Di Castri F et al., pp 249-255

    Google Scholar 

  • Moreno JM, Oechel WC (eds) (1994) The role of fire in mediterranean-type ecosystems. Ecological Studies 107. Springer, Berlin Heidelberg New York, 201 pp

    Google Scholar 

  • Müller-Hohenstein K (1991) Der Mittelmeerraum. Ein vegetationsgeographischer Überblick. Geogr Rundsch 43, 7-8: 409 - 416

    Google Scholar 

  • Munoz MR, Fuentes ER (1989) Does fire induce shrub germination in the Chilean matorral? Oikos 56: 177 - 181

    Article  Google Scholar 

  • Nahal I (1981) The mediterranean climate from a biological viewpoint. In: Di Castri F et al., pp 63-86

    Google Scholar 

  • Oberdorfer E (1960) Das Mittelchilenische Hartlaub-Gebiet. In: Tüxen R (ed) Flora et Vegetatio Mundi, vol 2. Pflanzensoziologische Studien in Chile. Ein Vergleich mit Europa. Weinheim, pp 4 - 31

    Google Scholar 

  • Oechel WC, Hastings SJ (1983) The effects of fire on photosynthesis in chaparral resprouts. In: Kruger FJ et al., pp 274-285

    Google Scholar 

  • Oechel WC, Mustafa J (1979) Energy utilization and carbon metabolism in mediterranean scrub vegetation of Chile and California. II. The relationship between photosynthesis and cover in chaparral evergreen shrubs. Oecologia 41: 305 - 315

    Article  Google Scholar 

  • Orshan G (1964) Seasonal dimorphism of desert and mediterranean chamaephytes and their significance as a factor in their water economy. In: Rutter AJ, Whitehead FH (eds) Water relation of plants. Blackwell, Oxford, pp 206 - 222

    Google Scholar 

  • Orshan G (1983) Approaches to the definition of mediterranean growth forms. In: Kruger FJ et al., pp 86-100

    Google Scholar 

  • Ozenda P (1975) Sur les étages de végétation dans les montagnes du bassin méditerranéen. Doc Cartogr Ecol 16: 1 - 32

    Google Scholar 

  • Parsons DJ, Moldenke AR (1975) Convergence in vegetation structure along analogous climatic gradients in California and Chile. Ecology 56: 950 - 957

    Article  Google Scholar 

  • Poissonet P, Poissonet J, Thiault M (eds) (1981) Vegetation dynamics in grasslands, heathlands and mediterranean ligneous formations. Advances in vegetation science 4. Dr W Junk, The Hague, 286 pp

    Google Scholar 

  • Quézel P (1976) Les forêts du pourtour mediterranéen. In: UNESCO Forêts et maquis méditerranéens: écologie, conservation et aménagement. MAB Technical Notes 2. Paris, pp 9-33

    Google Scholar 

  • Quézel P (1981) Floristic composition and phytosociological structure of sclerophyllous matorral around the Mediterranean. In: Di Castri F et al., pp 107-121

    Google Scholar 

  • Rapp M, Lossaint P (1981) Some aspects of mineral cycling in the garrigue of southern France. In: Di Castri F et al., pp 289-301

    Google Scholar 

  • Read DJ, Mitchell DT (1983) Decomposition and mineralization processes in mediterranean-type ecosystems in heathlands of similar structure. In: Kruger FJ et al., pp 208-232

    Google Scholar 

  • Rikli M (1943, 1946, 1948 ) Das Pflanzenkleid der Mittelmeerländer, 3 vols. Huber, Bern, 1418 pp

    Google Scholar 

  • Rohdenburg H, Sabelberg U (1969) „Kalkkrusten“ und ihr klimatischer Aussagewert - Neue Beobachtungen aus Spanien und Nordafrika. Gött Bodenkdl Ber 7: 3-26

    Google Scholar 

  • Rother K (1984) Mediterrane Subtropen. Geogr Seminar Zonal. Westermann, Braunschweig, 207 pp

    Google Scholar 

  • Rother K (1991) Die mediterranen Subtropen. Geogr Rundsch 43, 7-8: 402 - 408

    Google Scholar 

  • Rundel PW, Parsons DJ (1984) Post-fire uptake of nutrients by diverse ephemeral herbs in chamise chaparral. Oecologia 61: 285 - 288

    Article  Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Fischer, Jena, 876 pp

    Google Scholar 

  • Schlesinger WH (1985) Decomposition of chaparral shrub foliage. Ecology 66, 4: 1353-1359 Schmithüsen J (1968) see Chapter 2. 5

    Google Scholar 

  • Sevink J, Imeson AC, Verstraten JM (1989) Humus form development and hillslope runoff, and the effects of fire and management, under mediterranean forest in NE-Spain. Catena 16: 461 - 475

    Article  Google Scholar 

  • Specht RL (1969) A comparison of the sclerophyllous vegetation characteristic of mediterranean type climates in France, California and southern Australia. Aust J Bot 17: 277 - 308

    Article  Google Scholar 

  • Specht RL (1973) Structure and functional response of ecosystems in the mediterranean climate of Australia. In: Di Castri F, Mooney HA, pp 113 - 120

    Google Scholar 

  • Specht RL (ed) (1979, 1981 ) Heathlands and related shrublands. Ecosystems of the world 9 A and 9 B. Elsevier, Amsterdam, 497 pp and 385 pp

    Google Scholar 

  • Specht RL (1981) Primary production in mediterranean-climate ecosystems regenerating after fire. In: Di Castri F et al., pp 257-267

    Google Scholar 

  • Stock WD, Lewis OAM (1986) Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem. J Ecol 74: 317 - 328

    Article  Google Scholar 

  • Taylor HC (1978) Capensis. In: Werger MJA (ed) Biogeography and ecology of southern Africa. Dr W Junk, The Hague, pp 171 - 229

    Chapter  Google Scholar 

  • Tenhunen TD, Meister HP, Caldwell MM, Lange OL (1985) Environmental constraints on productivity of the mediterranean sclerophyll shrub Quercus coccifera. Intecol Bull 11: 15 - 18

    Google Scholar 

  • Tomaselli R (1976) La dégradation du maquis méditerranéen. In: UNESCO Forêts et maquis méditerranéens: écologie, conservation et aménagement. MAB Technical Notes 2. Paris, pp 35-76

    Google Scholar 

  • Tomaselli R (1981) Main physiognomic types and geographic distribution of shrub systems related to mediterranean climates. In: Di Castri F et al., pp 95-106

    Google Scholar 

  • Trabaud L (1981) Man and fire: impacts on mediterranean vegetation. In: Di Castri F et al., pp 523-537

    Google Scholar 

  • UNESCO-FAO (1963) Bioclimatic map of the Mediterranean zone. Paris

    Google Scholar 

  • UNESCO-FAO (1970) Carte de la végétation de la région mediterranéenne. Paris

    Google Scholar 

  • Wagner HG (1988) Das Mittelmeergebiet als subtropischer Lebensraum. Zur Wechselwirkung ökologischer und sozioökonomischer Hemmnisse seiner Entwicklung. Geoökodynamik 9: 103 - 133

    Google Scholar 

  • Walter H (1968) see Chapter 2.5

    Google Scholar 

  • Walter H (1990) see Chapter 2.5

    Google Scholar 

  • Wieslander AE, Gleason CH (1954) Major brushland areas of the coast ranges and the Sierra-Cascade foothills in California. US Forest Service California, Misc Pap 15, pp 1 - 9

    Google Scholar 

  • Wilgen BWV, Higgins KB, Bellstedt DU (1990) The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire-prone fynbos shrublands of South Africa. J Ecol 78: 210 - 222

    Article  Google Scholar 

  • Wilhelmy H (1975) see Chapter 2.3

    Google Scholar 

  • Williams OB (1979) Ecosystems of Australia. In: Goodall DW, Perry RA, pp 145-212, see Chapter 3. 4

    Google Scholar 

  • Witkowski ETF, Mitchell DT (1987) Variations in soil phosphorus in the fynbos biome, South Africa. J Ecol 75: 1159 - 1171

    Article  Google Scholar 

Chapter 3.7: Seasonal Tropics

  • Ackermann E (1936) Dambos in Nordrhodesien. Wiss Veröff Dtsch Mus Länderkunde (Leipzig) NF 4, pp 147 - 157

    Google Scholar 

  • Afolayan TA (1978) Effects of fire on the vegetation and soils in Kainki Lake National Park, Nigeria. In: Hyder DN (ed) Proc 1st Int Rangeland Congr, pp 55 - 59

    Google Scholar 

  • Ahnert F (1982) Untersuchungen über das Morphoklima und die Morphologie des Inselberggebietes von Machakos, Kenia. In: Ahnert F, Rohdenburg H, Semmel A (eds) Beiträge zur Geomorphologie der Tropen. Catena Suppl 2: 1 - 72

    Google Scholar 

  • Ahnert F (1987) see Chapter 2.3

    Google Scholar 

  • Allan W (1949) Studies in African land usage in Northern Rhodesia. Rhodes-Livingstone Papers 15. Manchester, 86 pp

    Google Scholar 

  • Andersen AN, Lonsdale WM (1990) Herbivory by insects in Australian tropical savannas: a review. J Biogeogr 17: 433 - 444

    Article  Google Scholar 

  • Belsky AJ (1986) Population and community processes in a mosaic grassland in the Serengeti, Tanzania. J Ecol 74: 841 - 856

    Article  Google Scholar 

  • Belsky AJ (1990) Tree/grass ratios in East African savannas: a comparison of existing models. J Biogeogr 17: 483 - 489

    Article  Google Scholar 

  • Blain D, Keliman M (1991) The effect of water supply on tree seed germination and seedling survival in a tropical seasonal forest in Veracruz, Mexico. J Trop Ecol 7: 69 - 83

    Article  Google Scholar 

  • Boast R (1990) Dambos: a review. Progr Phys Geogr 14, 2: 153 - 177

    Article  Google Scholar 

  • Bourliere F (ed) (1983) Tropical savannas. Ecosystems of the world 13. Elsevier, Amsterdam, 730 pp

    Google Scholar 

  • Braun HMH (1973) Primary production in the Serengeti; purpose, methods and some results of research. Ann Université Abidjan, Serie E (Ecologie), Tome VI, 2, pp 171 - 188

    Google Scholar 

  • Brian MV (ed) (1978) Production ecology of ants and termites. Int Biol Prog 13. Cambridge University Press, Cambridge, 409 pp

    Google Scholar 

  • Büdel J (1981) see Chapter 2.3

    Google Scholar 

  • Cass A, Savage MJ, Wallis FM (1984) The effect of fire on soil and microclimate. In: De Booysen PV, Tainton NM, pp 311 - 325

    Google Scholar 

  • César J, Menaut JC (1974) Analyse dun écosystème tropical humide: la savane de Lamto (Côte dIvoire). Le peuplement végétal des savanes de Lamto. Bull de liaison des Chercheurs de Lamto (Paris) 2

    Google Scholar 

  • Cole MM (1986) The savannas; biogeography and geobotany. Academic Press, London, 300 pp

    Google Scholar 

  • Cole MM (1987) The savannas. Prog Phys Geogr 11, 3: 334 - 355

    Article  Google Scholar 

  • Coupland (1979, 1992, 1993) see Chapter 3.4

    Google Scholar 

  • Coutinho LM (1982) Ecological effects of fire in Brazilian cerrado. In: Huntley BJ, Walker BH, pp 273 - 291

    Google Scholar 

  • Coventry RJ, Moss AJ, Verster E (1988) Thin surface soil layers attributable to rain-flow transportation on low-angle slopes: an example from semi-arid tropical Queensland, Australia. Earth Surface Processes and Landforms 13, pp 421 - 430

    Article  Google Scholar 

  • De Booysen PV, Tainton NM (eds) (1984) Ecological effects of fire in South African ecosystems. Ecological Studies 48. Springer, Berlin Heidelberg New York, 426 pp

    Google Scholar 

  • Dye PJ (1983) Prediction of variation in grass growth in a semi-arid induced grassland. PhD Thesis, University of Witwatersrand, Johannesburg

    Google Scholar 

  • Ellenbroek GA (1987) Ecology and productivity of an Africa wetland system. The Kafue Flats, Zambia. Geobotany 7. Dr W Junk, The Hague, 267 pp

    Google Scholar 

  • Emmerich KH, Sabel KJ (1990) Geoökologische Untersuchungen in der Savannenlandschaft Zentralbrasiliens. Geoökodynamik 11: 1 - 15

    Google Scholar 

  • Ernst WHO (1991) Fire, dry heat and germination of savanna grasses in Botswana. In: Esser G, Overdieck D (eds) Modem ecology: basic and applied aspects. Elsevier, Amsterdam, pp 349 - 361

    Google Scholar 

  • Ernst WHO, Tolsma DJ (1989) Mineral nutrients in some Botswana savanna types. In: Proctor J, pp 97 - 120

    Google Scholar 

  • Frost P, Robertson F (1987) The ecological effects of fire in savannas. In: Walker BH, pp 93 - 140

    Google Scholar 

  • Frost P, Menaut J-C, Walker B, Medina E, Solbrig OT, Swift M (eds) (1986) Responses of savannas to stress and disturbance. A proposal for a collaborative programme of research. Biol Int, Spec Issue 10, 82 pp

    Google Scholar 

  • Furley PA et al. (eds) (1992) Nature and dynamics of forest-savanna boundaries. Chapman and Hall, London, 616 pp

    Google Scholar 

  • Georgiadis NJ (1989) Microhabitat variation in an African savanna: effects of woody cover and herbivores in Kenia. J Trop Ecol 5, 2: 93 - 108

    Article  Google Scholar 

  • Gillon D (1983) The fire problem in tropical savannas. In: Bourliere F, pp 617 - 641

    Google Scholar 

  • Goldammer JG (1990) see Chapter 3.6

    Google Scholar 

  • Golley FB, Medina E (1975) see Chapter 3.9

    Google Scholar 

  • Greig-Smith P (1991) Pattern in a derived savanna in Nigeria. J Trop Ecol 7: 491 - 502

    Article  Google Scholar 

  • Griffin GF, Friedel MH (1984) Effects of fire on central Australian rangelands. Aust J Ecol 9: 381 - 403

    Article  Google Scholar 

  • Guy PR (1989) The influence of elephants and fire on a Brachystegia-Julbernardia woodland in Zimbabwe. J Trop Ecol 5, 2: 215 - 226

    Article  Google Scholar 

  • Hagedorn J, Poser H (1974) see Chapter 2.3

    Google Scholar 

  • Harris DR (ed) (1980) Human ecology in savanna environments. Academic Press, London, 522 pp

    Google Scholar 

  • Herrmann R (1977) see Chapter 2.3

    Google Scholar 

  • Hoegberg P, Piearce GD (1986) Mycorrhizas in Zambian trees in relation to host taxonomy, vegetation type and successional patterns. J Ecol 74: 775 - 785

    Article  Google Scholar 

  • Hoegberg P (1989) Root symbioses of trees in savannas. In: Proctor J, pp 121 - 136

    Google Scholar 

  • Hopkins B (1983) Successional processes. In: Bourliere F, pp 605 - 616

    Google Scholar 

  • Huntley BJ (1982) Southern African Savannas. In: Huntley BJ, Walker BH, pp 101 - 119

    Google Scholar 

  • Huntley BJ, Walker BH (eds) (1982) Ecology of tropical savannas. Ecological Studies 42. Springer, Berlin Heidelberg New York, 669 pp

    Google Scholar 

  • Hustler K, Howells WW (1990) The influence of primary production on a raptor community in Hwange National Park, Zimbabwe. J Trop Ecol 6: 343 - 354

    Article  Google Scholar 

  • Isichei AO, Muoghalu JI (1992) The effects of tree canopy cover on soil fertility in a Nigerian savanna. J Trop Ecol 8, 3: 329 - 338

    Article  Google Scholar 

  • Jackson EA (1958) A study of soils and some aspects of the hydrology at Yudnapinna Station, South Australia. Commonw Sci Ind Res Org, Australia, Melbourne

    Google Scholar 

  • Jätzold R (1984) see Chapter 2.6

    Google Scholar 

  • Johnson RW, Tothill JC (1985) Definition and broad geographic outline of savanna lands. In: Tothill JC, Mott JJ, pp 1 - 13

    Google Scholar 

  • Jones JA (1990) Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. J Trop Ecol 6: 291 - 305

    Article  Google Scholar 

  • Joosten JHL (1962) Wirtschaftliche and agrarpolitische Aspekte tropischer Landbausysteme. Göttingen (mimeographed)

    Google Scholar 

  • Joss PJ (1986) see Chapter 3.4

    Google Scholar 

  • Kellmann M (1989) Mineral nutrient dynamics during savanna-forest transformation in Central Africa. In: Proctor J, pp 137 - 152

    Google Scholar 

  • Koechlin J, Menaut JC (1979) Phenology and primary production of tropical grazing land ecosystems. In: UNESCO, pp 119 - 145

    Google Scholar 

  • Koechlin J et al. (1979) Description and floristic composition of tropical grazing land ecosystems. In: UNESCO, pp 25 - 55

    Google Scholar 

  • Lal R (1987) Tropical ecology and physical edaphology. Wiley, Chichester, 732 pp

    Google Scholar 

  • Lamotte M (1975) The structure and function of a tropical savannah ecosystem. In: Golley FB, Medina E, pp 179-222, see Chapter 3. 9

    Google Scholar 

  • Lamotte M (1978) La savane préforestière de Lamto, Côte d Ivoire. In: Lamotte M, Bourliere F (eds) Structure et fonctionnement des écosystèmes terrestres. Masson, Paris, pp 231 - 311

    Google Scholar 

  • Lamotte M (1978) Consumption and decomposition in tropical grassland ecosystems at Lamto, Ivory Coast. In: Huntley BJ, Walker BH, pp 415 - 429

    Google Scholar 

  • Lamotte M, Bourliere F (1983) Energy flow and nutrient cycling in tropical savannas. In: Bourliere F, pp 583 - 603

    Google Scholar 

  • Lampe MGD, Bergeron Y, McNeil R, Leduc A (1992) Seasonal flowering and fruiting patterns in tropical semi-arid vegetation of northeastern Venezuela. Biotropica 24, 1: 64 - 76

    Article  Google Scholar 

  • Lamprey HF (1979) Structure and functioning of the semi-arid grazing land ecosystem of the Serengeti region ( Tanzania) In: UNESCO, pp 562 - 601

    Google Scholar 

  • Lamprey HF (1983) Pastoralism yesterday and today: the over-grazing problem. In: Bourliere F, pp 643 - 666

    Google Scholar 

  • Lauer W (1952) see Chapter 2.5

    Google Scholar 

  • Lauer W (1975) Vom Wesen der Tropen. Abh Math-Nat Klasse 3. Steiner, Wiesbaden, 52 pp

    Google Scholar 

  • Lawton RM (1978) A study of the dynamic ecology of Zambian vegetation. J Ecol 66: 175 - 198

    Article  Google Scholar 

  • Le Houérou HN (1977) The grasslands of Africa: evolution and development outlook. In: Proc 13th Int Grasslands Congress, Leipzig, pp 99-116

    Google Scholar 

  • Lee DW (1989) Canopy dynamics and light climates in a tropical moist deciduous forest in India. J Trop Ecol 5, 1: 65 - 79

    Article  Google Scholar 

  • Leuthold W (1977) African ungulates. A comparative review of their ethnology and behavioral ecology. Springer, Berlin Heidelberg New York, 307 pp

    Google Scholar 

  • Long SP et al. (1992) see Chapter 2.5

    Google Scholar 

  • Louis H (1964) Über Rumpfflächen-and Talbildung in den wechselfeuchten Tropen, besonders nach Studien in Tanganyika. Z Geomorph NF 8 Spec Issue: 43 - 70

    Google Scholar 

  • Louis H (1967) Reliefumkehr durch Rumpfflächenbildung in Tanganyika. Geogr Ann 49A: 256 - 267

    Article  Google Scholar 

  • Mäckel R (1974) Dambos. A study in morphodynamics activity on the plateau regions of Zambia. Catena 1: 327 - 365

    Article  Google Scholar 

  • Manshard W (1968) see Chapter 2.6

    Google Scholar 

  • Martinez-Yrizar A, Sarukhan J (1990) Litterfall patterns in a tropical deciduous forest in Mexico over a five-year period. J Trop Ecol 6: 433 - 444

    Article  Google Scholar 

  • Martinez-Yrizar A, Sarukhan J, Perez-Jimenez A et al. (1992) Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México. J Trop Ecol 8: 87 - 96

    Article  Google Scholar 

  • Matthews DA (1984) Grass dynamics in a southern African grass-herbivore system. MSc Thesis, University of Witwatersrand. Johannesburg

    Google Scholar 

  • McNaughton SJ, Georgiadis MJ (1986) Ecology of African grazing and browsing mammals. Annu Rev Ecol Syst 17: 39 - 65

    Article  Google Scholar 

  • McNaughton SJ, Tarrants JL, McNaughton MM, Daris RH (1985) Silica as a defense against herbivory and growth promoter in African grasses. Ecology 66, 2: 528 - 535

    Article  Google Scholar 

  • Medina E (1982) Physiological ecology of neotropical savanna plants. In: Huntley BJ, Walker BH, pp 308 - 335

    Google Scholar 

  • Medina E (1987) Requirements, conservation and cycles of nutrients in the herbaceous layer of tropical savannas. In: Walker BH, pp 39 - 65

    Google Scholar 

  • Medina E, Bilbao B (1991) Significance of nutrient relations and symbiosis for the competitive interaction between grasses and legumes in tropical savannas In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 295 - 319

    Google Scholar 

  • Medina E, Silva JF (1990) Savannas of northern South America: a steady state regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 17: 403 - 413

    Article  Google Scholar 

  • Menaut JC (1977) Analyse quantitative des ligneux dans une savane arbustive préforestière de Côte d Ivoire. Geo- Eco- Trop 1: 77 - 94

    Google Scholar 

  • Menaut JC (1983) The vegetation of African savannas. In: Bourlière F, pp 109 - 150

    Google Scholar 

  • Menaut JC, César J (1982) The structure and dynamics of a West African savanna. In: Huntley BJ, Walker BH, pp 80 - 100

    Google Scholar 

  • Menaut JC, Barbault R, Lavelle P, Lepage M (1985) African savannas: biological systems of humification and mineralization. In: Tothill JC, Mott JJ, pp 14 - 33

    Google Scholar 

  • Menaut JC, Gignoux J, Prado C, Clobert J (1990) Tree community dynamics in a humid savanna of the Cote dIvoire: modelling the effects of fire and competition with grass and neighbours. J Biogeogr 17: 471 - 481

    Article  Google Scholar 

  • Meyer JA (1960) Resultats agronomiques dun essai de nivellement des termitières realisé dans la luvelle centrale Congolaise. Bull Afr Congo Belge 51: 1047 - 1059

    Google Scholar 

  • Morellato LPC (1992) Nutrient cycling in two south-east Brazilian forests. I. Litterfall and litter standing crop. J Trop Ecol 8, 2: 205 - 215

    Article  Google Scholar 

  • Mott JJ, Williams J, Andrew MH, Gillison AN (1985) Australian savanna ecosystems. In: Tothill JC, Mott JJ, pp 56 - 82

    Google Scholar 

  • Murphy PG (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17: 67 - 88

    Article  Google Scholar 

  • Nair PKR (1989) see Chapter 2.6

    Google Scholar 

  • Norton-Griffiths M (1979) The influence of grazing, browsing and fire on the vegetation dynamics of the Serengeti. In: Sinclair ARE, Norton-Griffiths M, pp 310 - 352

    Google Scholar 

  • Nye PH (1955) Some soil-forming processes in the humid tropics. J Soil Sci 6: 73 - 83

    Article  Google Scholar 

  • Ohiagu CE, Wood TG (1980) Grass production and decomposition in southern Guinea savanna, Nigeria. Oecologia 40: 155 - 165

    Google Scholar 

  • Ojasti J (1991) Human exploitation of Capybara. In: Robinson JG, Redford KH (eds) Neotropical wildlife use and conservation. University of Chicago Press, Chicago, pp 236 - 252

    Google Scholar 

  • Owen-Smith N, Cooper S (1987) Palatability of woody plants to browsing ruminants in a South African savanna. Ecology 68: 319 - 331

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Met Soc A 193: 120 - 145

    Article  Google Scholar 

  • Pieri CJMG (1989) Fertility of soils. A future for farming in the West African savannah. Springer Series in Physical Environment 10. Springer, Berlin Heidelberg New York, 348 pp

    Google Scholar 

  • Proctor J (ed) (1989) Mineral nutrients in tropical forest and savanna ecosystems. Spec Publ 9 of the Br Ecol Soc. Blackwell, Oxford, 473 pp

    Google Scholar 

  • Rehm S (1986) see Chapter 2.6

    Google Scholar 

  • Rehm S (1989) see Chapter 2.6

    Google Scholar 

  • Riddoch I, Grace J, Fasehun FE, Riddoch V, Ladipo DO (1991) Photosynthesis and successional status of seedlings in a tropical semi-deciduous rain forest in Nigeria. J Ecol 79: 491 - 503

    Article  Google Scholar 

  • Rohdenburg H (1971) see Chapter 2.3

    Google Scholar 

  • Roth I (1981) Structural patterns of tropical barks. Handbuch der Pflanzenanatomie, vol 9, 3. Bomtraeger, Berlin, 609 pp

    Google Scholar 

  • Ruess RW (1987) The role of large herbivores in nutrient cycling of tropical savannas. In: Walker BH, pp 67 - 91

    Google Scholar 

  • Russel EW (1966) Soils and soil fertility. In: Davies W, Skidmore CL (eds) Tropical pastures. Faber, London, pp 30 - 45

    Google Scholar 

  • Ruthenberg H (1980) Farming systems in the tropics, 3rd edn. Clarendon Press, Oxford, 424 pp

    Google Scholar 

  • San José JJ, Farinas MR (1983) Changes in tree density and species composition in a protected Trachypogon savanna, Venezuela. Ecology 64: 447 - 453

    Article  Google Scholar 

  • San José JJ, Medina E (1975) Effect of fire on organic matter production and water balance in a tropical savannah. In: Golley FB, Medina E, pp 251-264, see Chapter 3. 9

    Google Scholar 

  • San José JJ, Medina E (1976) Organic matter production in the Trachypogon savanna at Calabozo, Venezuela. Trop Ecol 17: 113 - 124

    Google Scholar 

  • Sanford WW, Isichei AO (1986) Savanna. In: Lawson GW (ed) Plant ecology in West Africa. Wiley, Chichester, pp 95 - 149

    Google Scholar 

  • Sarmiento G, Monasterio M (1975) A critical consideration of the environmental conditions associated with the occurence of savanna ecosystems in tropical America. In: Golley FB, Medina E, pp 223-250, see Chapter 3. 9

    Google Scholar 

  • Sarmiento G, Monasterio M (1983) Life forms and phenology. In: Bourlière F, pp 79-108 Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge, MA, 235 pp

    Google Scholar 

  • Schachtschabel P et al. (1992) see Chapter 2.4

    Google Scholar 

  • Schmidt-Lorenz R (1986) see Chapter 2.4

    Google Scholar 

  • Schultz J (1971) Agrarlandschaftliche Veränderungen in Tanzania. Afrika-Studien 64. Weltforum, München, 215 pp

    Google Scholar 

  • Schultz J (1976) Land use in Zambia. Afrika-Studien 95. Weltforum, München, 215 pp

    Google Scholar 

  • Schultz J (1976) Einige Aspekte der Fremdenverkehrsentwicklung in Zambia. Afrika Spektrum 1, 11: 17 - 27

    Google Scholar 

  • Schultz J (1984) see Chapter 2.6

    Google Scholar 

  • Sinclair ARE (1975) The resource limitation of trophic levels in tropical grassland ecosystems. J Anim Ecol (Oxford) 44: 497 - 520

    Article  Google Scholar 

  • Sinclair ARE, Norton-Griffiths M (eds) (1979) Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago, 389 pp

    Google Scholar 

  • Singh JS (1989) Mineral nutrients in dry deciduous forest and savanna ecosystems in India. In: Proctor J, pp 153 - 168

    Google Scholar 

  • Singh JS, Hanxi Y, Sajise PE (1985) Structural and functional aspects of Indian and southeast Asian savanna ecosystems. In: Tothill JC, Mott JJ, pp 34 - 51

    Google Scholar 

  • Singh KP, Misra R (eds) (1978) Structure and functioning of natural, modified and sylvicultural ecosystems of eastern Uttar Pradesh. Varanasi

    Google Scholar 

  • Smith TM, Goodman PS (1986) The effect of competition on the structure and dynamics of acacia savannas in southern Africa. J Ecol 74: 1031 - 1044

    Article  Google Scholar 

  • Spain AV, McIvor JG (1988) The nature of herbaceous vegetation associated with termitaria in north-eastern Australia. J Ecol 76: 181 - 191

    Article  Google Scholar 

  • Spönemann J (1974) Studien zur Morphogenese und rezenten Morphodynamik im mittleren Ostafrika. Göttinger Geogr Abh 62. Goltze, Göttingen, 98 pp

    Google Scholar 

  • Stott P (1990) Stability and stress in the savanna forests of mainland South-East Asia. J Biogeogr 17: 373 - 383

    Article  Google Scholar 

  • Stott P (1991) Recent trends in the ecology and management of the worlds savanna formations. Progr Phys Geogr 15, 1: 18 - 28

    Article  Google Scholar 

  • Sukumar R (1989, 1990 ) Ecology of the Asian elephant in southern India. I. Movement and habitat utilization patterns. II. Feeding habits and crop raiding patterns. J Trop Ecol 5, 1, 1989: 1-18 and 6, 1990: 33 - 53

    Google Scholar 

  • Swaine MD, Hawthorne WD, Orgle TK (1992) The effects of fire exclusion on savanna vegetation at Kpong, Ghana. Biotropica 24, 2a: 166 - 172

    Google Scholar 

  • Thomas MF (1974) see Chapter 2.3

    Google Scholar 

  • Thomas MF, Goudie AS (eds) (1985) Dambos: small channelless valleys in the tropics. Z Geomorph Suppl 52. Berlin, 222 pp

    Google Scholar 

  • Thomthwaite CW, Mather JR (1955) The water balance. Publ Climatol 8: 1 - 104

    Google Scholar 

  • Tothill JC, Mott JJ (eds) (1985) Ecology and management of the worlds savannas. Aust Acad Sci, Canberra, 384 pp

    Google Scholar 

  • Trapnell CG, Friend MT, Chamberlain GT, Birch HF (1976) The effects of fire and termites on a Zambian woodland soil. J Ecol 64: 577 - 588

    Article  Google Scholar 

  • Trochain JL (1980) Écologie de la zone intertropicale non désertique. Université Paul Sabatier, Toulouse

    Google Scholar 

  • Troll C, Paffen KLI (1964) see Chapter 2.1

    Google Scholar 

  • Trollope WSW (1982) Ecological effects of fire in South African savannas In: Huntley BJ, Walker BH, pp 292 - 306

    Google Scholar 

  • Trollope WSW (1984) Fire in savanna. In: De Booysen PV, Tainton NM, pp 149-175 and 199-217 UNESCO ( 1979 ) Tropical grazing land ecosystems. UNESCO, Paris, 655 pp

    Google Scholar 

  • Van Wambeke A (1992) see Chapter 2.4

    Google Scholar 

  • Von Wissmann H (1948) Pflanzenklimatische Grenzen der warmen Tropen. Erdkunde 2: 81 - 92

    Google Scholar 

  • Vuattoux R (1976) Contribution à létude de lévolution des strates arborie et arbustive dans la savane de Lamto (Côte d Ivoire). Ann Univ Abidjan C 12: 35 - 63

    Google Scholar 

  • Walker BH (1985) Structure and function of savannas: an overview. In: Tothill JC, Mott JJ, pp 83 - 91

    Google Scholar 

  • Walker BH (ed) (1987) Determinants of tropical savannas. IUBS Monogr Ser 3. IRL Press, Paris, 156 pp

    Google Scholar 

  • Walter H (1955) see Chapter 2.2

    Google Scholar 

  • Walter H (1990) see Chapter 2.5

    Google Scholar 

  • Walter H, Breckle SW (1983, 1984) see Chapter 1

    Google Scholar 

  • Weischet W (1983) 3rd edn, see Chapter 2.2

    Google Scholar 

  • Werger MJA (ed) (1978) Biogeography and ecology of southern Africa. Monogr Biol 31, 2 vols. Dr W Junk, The Hague, 1439 pp

    Book  Google Scholar 

  • Werner PA (ed) (1991) Savana ecology and management. Australian perspectives and intercontinental comparisons. Blackwell, Oxford, 221 pp

    Google Scholar 

  • Whyte RO (1974) Tropical grazing lands. Dr W Junk, The Hague, 222 pp

    Book  Google Scholar 

  • Wirthmann A (1987) see Chapter 2.3

    Google Scholar 

  • Wood TG (1978) Food and feeding habits of termites. In: Brian MV, pp 55 - 80

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV, pp 245 - 292

    Google Scholar 

  • Wrigley G (1981) see Chapter 2.6

    Google Scholar 

  • Yeaton RI (1989) Porcupines, fire and the dynamics of the tree layer of the Burkea africana savanna. J Ecol 76: 1017 - 1029

    Google Scholar 

  • Young A (1976) see Chapter 2.4

    Google Scholar 

  • Young MD, Solbrig OT (eds) (1993) The worlds savannas — economic driving forces, ecological constraints and policy options for sustainable land use. Man and the Biosphere Ser 12. Paris

    Google Scholar 

Chapter 3.8: Humid Subtropics

  • Basset Y (1992) Aggregation and synecology of arboreal arthropods associated with an overstorey rain forest tree in Australia. J Trop Ecol 8: 317 - 327

    Article  Google Scholar 

  • Chabot BF, Mooney HA (1985) see Chapter 2.5

    Google Scholar 

  • Donald DGM, Theron JM (1983) Temperate broad-leaved evergreen forests of Africa south of the Sahara. In: Ovington JD, pp 135 - 168

    Google Scholar 

  • Glauner HJ (1983) see Chapter 2.6

    Google Scholar 

  • Hegarty EE (1990) Leaf life-span and leafing phenology of lianes and associated trees during a rain-forest succession. J Ecol 78: 300 - 312

    Article  Google Scholar 

  • Hegarty EE (1991) Leaf litter production by lianes and trees in a sub-tropical Australian rain forest. J Trop Ecol 7: 201 - 214

    Article  Google Scholar 

  • Henning I (1988) Zum Pampa-Problem. Die Erde 119: 25 - 30

    Google Scholar 

  • Hübl E (1988) see Chapter 3.6

    Google Scholar 

  • Johnson DW, Lindberg SE (1992) see Chapter 2.5

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn J Ecol 17: 70 - 87

    Google Scholar 

  • Monk CD (1966) An ecological significance of evergreeness. Ecology 47: 504 - 505

    Article  Google Scholar 

  • Monk CD, Day FP Jr (1988) Biomass, primary production and selected nutrient budgets for an undisturbed watershed. In: Swank WT, Crossley DA, pp 151 - 160

    Google Scholar 

  • Morellato LPC (1992) see Chapter 3.7

    Google Scholar 

  • Olson DF (1983) Temperate broad-leaved evergreen forests of the southeastern North America. In: Ovington JD, pp 103 - 105

    Google Scholar 

  • Ovington JD (ed) (1983) Temperate broad-leaved evergreen forests. Ecosystems of the world 10. Elsevier, Amsterdam, 241 pp

    Google Scholar 

  • Ovington JD, Pryor LD (1983) Temperate broad-leaved evergreen forests of Australia. In: Ovington JD, pp 73 - 101

    Google Scholar 

  • Potter CS et al. (1991) see Chapter 3.3

    Google Scholar 

  • Rehm S (1989) see Chapter 2.6

    Google Scholar 

  • Satoo T (1983) Temperate broad-leaved evergreen forests of Japan. In: Ovington, pp 169-189 Schmithüsen J (1968) see Chapter 2. 5

    Google Scholar 

  • Swank WT, Crossley DA Jr (eds) (1988) Forest hydrology and ecology at Coweeta. Ecological Studies 66. Springer, Berlin Heidelberg New York, 469 pp

    Google Scholar 

  • Walter H, Breckle SW (1984) see Chapter 1

    Google Scholar 

  • Wambeke AV (1992) see Chapter 2.4

    Google Scholar 

  • Wardle P, Bulfin MJA, Dugdale J (1983) Temperate broad-leaved evergreen forests of New Zealand. In: Ovington JD, pp 33 - 71

    Google Scholar 

  • Werger MJA (ed) (1978) see Chapter 3.7

    Google Scholar 

Chapter 3.9: Humid Tropics

  • Abe T (1978) The role of termites in the breakdown of dead wood in the forest floor of Pasoh Study Area. Malay Nat J 30: 391 - 404

    Google Scholar 

  • Aina PO (1984) Contribution of earthworm to porosity and water infiltration in a tropical soil under forest and long-terni cultivation. Pedobiologia 26: 131 - 137

    Google Scholar 

  • Alexander I (1989) Mycorrhizas in tropical forests. In: Proctor J, pp 169 - 188

    Google Scholar 

  • Anderson JM, Proctor J, Vallack HW (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. III. Decomposition processes and nutrient losses from leaf litter. J Ecol 71: 503 - 527

    Article  Google Scholar 

  • Ashton PS (1988) Dipterocarp biology as a window to the understanding of tropical forest structure. Annu Rev Ecol Syst 19: 347 - 370

    Article  Google Scholar 

  • Ayensu ES (ed) (1980) Jungles. Cape, London, 208 pp

    Google Scholar 

  • Bähr J, Corms C, Noodt W (eds) (1989) Die Bedrohung tropischer Wälder. Kieler Geogr Schr 73. Kiel, 149 pp

    Google Scholar 

  • Basnet K, Likens GE, Scatena FN, Lugo AE (1992) Hurricane Hugo: damage to a tropical rain forest in Puerto Rico. J Trop Ecol 8: 47 - 55

    Article  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21: 399 - 422

    Article  Google Scholar 

  • Bee OJ (1990) The tropical rain forest: patterns of exploitation and trade. J Trop Geogr (Singapur) 2, 2: 117 - 142

    Article  Google Scholar 

  • Benzing DH (1984) Epiphytic vegetation: a profile and suggestions for future inquiries. In: Medina E et al., pp 155-171

    Google Scholar 

  • Bernhard-Reversat F (1975) Nutrients in throughfall and their quantitative importance in rain forest mineral cycles. In: Golley FB, Medina B, pp 153 - 159

    Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987) Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99: 401 - 410

    Article  Google Scholar 

  • Borchert R (1992) Computer simulation of tree growth periodicity and climatic hydroperiodicity in tropical forests. Biotropica 24, 3: 385 - 395

    Article  Google Scholar 

  • Borota J (1991) Tropical forests. Some African and Asian case studies of composition and structure. Developments in Agricultural and Managed-Forest Ecology 22. Elsevier, Amsterdam, 274 pp

    Google Scholar 

  • Bourgeron PS (1983) Spatial aspects of vegetation structure. In: Golley FB, pp 29 - 47

    Google Scholar 

  • Bourlière F (1983) Animal species diversity in tropical forests. In: Golley FB, pp 77 - 91

    Google Scholar 

  • Brasell HM, Sinclair DF (1983) Elements returned to forest floor in two rainforest and three plantation plots in tropical Australia. J Ecol 71: 367 - 378

    Article  Google Scholar 

  • Bravard S, Righi D (1991) The dynamics of organic matter in a latosol-podsol toposequence in Amazonia (Brasil). In: Berthelin J (ed) Diversity of environmental biogeochemistry. Developments in Geochemistry 6. Elsevier, Amsterdam, pp 407 - 417

    Google Scholar 

  • Bremer H, Schnütgen A, Späth H (1981) Zur Morphologie in den feuchten Tropen. Verwitterung und Reliefbildung am Beispiel von Sri Lanka. Borntraeger, Berlin, 296 pp

    Google Scholar 

  • Brinkman WLF (1985) Studies on hydrobiogeochemistry of a tropical lowland forest system. Geojournal 11, 1: 89 - 101

    Article  Google Scholar 

  • Brinkmann WLF (1986) Particulate and dissolved materials in the Rio Negro-Amazon basin. In: Sly PG (ed) Sediments and water interactions. Springer, Berlin Heidelberg New York, pp 3 - 12

    Chapter  Google Scholar 

  • Brinkmann WLF (1988) Natural pollution control in tropical river systems. In: Quesada V, Gutiérrez J, Landner L (eds) Water resources management and protection in tropical climates. Havanna, pp 68 - 81

    Google Scholar 

  • Brinkmann WLF, Vose PB (eds) (1989) Tropical rainforest. GeoJournal 19, 4: 346 - 447

    Google Scholar 

  • Brokaw NVL (1987) Gap-phase regeneration of three pioneer tree species in a tropical forest. J Ecol 75: 9 - 19

    Article  Google Scholar 

  • Browder JO (1988) Public policy and deforestation in the Brazlian Amazon. In: Repetto R, Gillis M (eds) Public policies and the misuse of forest resources. Cambridge University Press, Cambridge, pp 247 - 297

    Chapter  Google Scholar 

  • Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14, 3: 161 - 187

    Article  Google Scholar 

  • Bruenig EF et al. (1975) Tropical moist forest. Mitt Bundesforschungsanst Forst- Holzwirtschaft 109: 1 - 86

    Google Scholar 

  • Bruenig EF (1983) Vegetation structure and growth. In: Golley FB, pp 49 - 75

    Google Scholar 

  • Bruenig EF (1991) Der tropische Regenwald im Spannungsfeld “Mensch und Biosphäre”. Geogr Rundsch 43, 4: 224 - 230

    Google Scholar 

  • Bruenig EF, Huang Ya-Wen (1987) Bawang Ling Nature Reserve: a potential international research and demonstration site and MAB biosphere reserve. Plant Res Dev 26: 19 - 35

    Google Scholar 

  • Bruijnzeel LA (1982) Hydrological and biochemical aspects of man-made forests in south-central Java, Indonesia. Dissertation, Vrije Universiteit, Amsterdam, 250 pp

    Google Scholar 

  • Bruijnzeel LA (1989) Nutrient content of bulk precipitation in south-central Java, Indonesia. J Trop Ecol 5, 2: 187 - 202

    Article  Google Scholar 

  • Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. UNESCO Int Hydrolog Progr, Free University, Amsterdam

    Google Scholar 

  • Bruijnzeel LA (1991) Nutrient input-output budgets of tropical forest ecosystems: a review. J Trop Ecol 7: 1 - 24

    Article  Google Scholar 

  • Büdel J (1971) see Chapter 2.3

    Google Scholar 

  • Burgess RL (1981) Physiognomy and phytosociology of the international woodlands research sites. In: Reichle DE, pp 1-35, see Chapter 2. 5

    Google Scholar 

  • Castellanos AEV, Duran R, Guzman S, Brions O, Feria M (1992) Three-dimensional space utilization of lianas: a methodology. Biotropica 24, 3: 395 - 401

    Google Scholar 

  • Chadwick AC, Sutton SL (eds) (1984) Tropical rain-forest: the Leeds Symposium. Philosophical and Library Society, Leeds, 335 pp

    Google Scholar 

  • Charlton CA (1987) Problems and prospects for sustainable agricultural systems in the humid tropics. Appl Geogr 7: 153 - 174

    Article  Google Scholar 

  • Chazdon RL (1986) Light variation and carbon gain in rain forest understorey palms. J Ecol 74: 995 - 1012

    Article  Google Scholar 

  • Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rainforest in Costa Rica. J Ecol 72: 553 - 564

    Article  Google Scholar 

  • Chone T et al. (1991) Changes in organic matter in an oxisol from the central Amazonian forest during eight years as pasture, determined by 13C isotopic composition. In: Berthelin J (ed) Diversity of environmental biogeochemistry. Developments in Geochemistry 6. Elsevier, Amsterdam, pp 397 - 406

    Google Scholar 

  • Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody hemiepiphytes in Costa Rican tropical wet forest. J Trop Ecol 6: 321 - 331

    Article  Google Scholar 

  • Clark DB, Clark DA (1991) The impact of physical damage on canopy tree regeneration in tropical rain forest. J Ecol 79: 447 - 457

    Article  Google Scholar 

  • Coelho Netto AL (1987) Overlandflow production in a tropical rainforest catchment: the role of litter cover. Catena 14: 213 - 231

    Article  Google Scholar 

  • Collins NM, Sayer JA, Whitmore TC (eds) (1991) Asia and the Pacific. The conservation-atlas of tropical forests. MacMillan, London, 256 pp

    Google Scholar 

  • Constantino R (1992) Abundance and diversity of termites (insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24, 3: 420 - 430

    Article  Google Scholar 

  • Corley RHV (1985) Yield potentials of plantation crops. In: International Potash Institute: potassium in the agricultural systems of the humid tropics. Worblaufen-Bern, pp 61-80

    Google Scholar 

  • Correa JC, Reichardt K (1989) The spatial variability of Amazonian soils under natural forest and pasture. GeoJouetal 19, 4: 423 - 427

    Google Scholar 

  • Crowther J (1987) Ecological observations in tropical karst terrain, west Malaysia. II. Rainfall interception, litterfall and nutrient cycling, III. Dynamics of the vegetation-soil-bedrock-system. J Biogeogr 14: 145-155 and 157 - 164

    Google Scholar 

  • Dantas M, Phillipson J (1989) Litterfall and litter nutrient content in primary and secondary Amazonian `terra firme rain forest. J Trop Ecol 5, 1: 27 - 36

    Article  Google Scholar 

  • De Angelis DL, Mulholland PJ, Palumbo AV et al. (1989) Nutrient dynamics and food-web stability. Annu Rev Ecol Syst 20: 71 - 95

    Article  Google Scholar 

  • Denevan WM, Padoch C (eds) (1987) Swidden-fallow agroforestry in the Peruvian Amazon. Adv Econ Bot 5. NY Bot Gard, New York

    Google Scholar 

  • Denslow JS (1987) Tropical rain forest gaps and tree species diversity. Annu Rev Ecol Syst 18: 431 - 451

    Article  Google Scholar 

  • Detwiler RP (1986) Land use and global carbon cycle: the role of tropical soils. Biogeochemistry 2: 67 - 93

    Article  Google Scholar 

  • Detwiler RP, Hall CAS (1988) Tropical forests and the global carbon cycle. Science 239: 42 - 47

    Article  Google Scholar 

  • Deutscher Bundestag (1990) Schutz der tropischen Wälder: Eine internationale Schwerpunktaufgabe. Zweiter Bericht der Enquete-Kommission des 11. Deutschen Bundestages Vorsorge zum Schutz der Erdatmosphäre. Economica, Bonn, 983 pp

    Google Scholar 

  • Dickinson RE (ed) (1987) The geophysiology of Amazonia. Vegetation and climate interactions. Wiley, New York, 526 pp

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modelling tropical deforestation: a study of GCM land-surface parametrization. Q J R Meteorol Soc 114: 439 - 462

    Article  Google Scholar 

  • Dilmy A (1971) The primary productivity of equatorial tropical forests in Indonesia. In: Duvigneaud P, pp 333-337, see Chapter 2. 5

    Google Scholar 

  • Dirzo R (1984) Insect-plant interactions: some ecophysiological consequences of herbivory. In: Medina E et al., pp 208-224

    Google Scholar 

  • Domrös M (1991) The tropical forest ecosystem: reviewing the effects of deforestation on climate and environment. In: Takeuchi K, Yoshino M (eds) The global environment. Springer, Berlin Heidelberg New York, pp 70 - 80

    Google Scholar 

  • Douglas I (1977) see Chapter 2.3

    Google Scholar 

  • Douglas I, Spencer T (1985) see Chapter 2.3

    Google Scholar 

  • Duvigneaud P, Denaeyer-De-Smet S (1971) see Chapter 3.3

    Google Scholar 

  • Eden MJ (ed) (1990) Ecology and land management in Amazonia. Bellhaven Press, London, 269 pp

    Google Scholar 

  • Edwards PJ (1982) Studies of mineral cycling in a montane forest in New Guinea. V. Rates of cycling in throughfall and litter fall. J Ecol 70: 807 - 827

    Article  Google Scholar 

  • Edwards PJ, Grubb Pi (1982) Studies of mineral cycling in a montane forest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil. J Ecol 70: 649 - 666

    Article  Google Scholar 

  • Emmerich KH (1989) Die Campos Vom Humaita (Amazonas). Ein Beispiel zur geoökologischen Bewertung von Savannen-Inseln im Regenwald. Geoökodynamik 10: 87 - 101

    Google Scholar 

  • Emmons LH, Feer F (1990) Neotropical rainforest mammals. A field guide. University of Chicago Press, Chicago, 281 pp

    Google Scholar 

  • Ewel J, Berish C, Brown B, Price N, Raich J (1981) Slash and burn impacts on a Costa Rican wet forest site. Ecology 62, 3: 816 - 829

    Article  Google Scholar 

  • Ewel J (1986) Designing agricultural ecosystems for the humid tropics. Annu Rev Ecol Syst 17: 245 - 271

    Article  Google Scholar 

  • FAO (1981) Tropical forest resources assessment project, 4 vols. Rome

    Google Scholar 

  • Feamside PM (1986) Human carrying capacity of the Brazilian rainforest. Columbia University Press, New York

    Google Scholar 

  • Feamside PM (1987) Rethinking continuous cultivation in Amazonia. BioScience 37, 3: 209 - 214

    Google Scholar 

  • Feamside PM (1988a) Yurimaguas reply, letter to the editor. BioScience 38, 8: 525 - 527

    Google Scholar 

  • Feamside PM (1988b) An ecological analysis of predominant land uses in the Brazilian Amazon. The Environmentalist 8, 4: 281 - 300

    Article  Google Scholar 

  • Feamside PM (1989) Forest management in Amazonia: the need for new criteria in evaluating development options. For Ecol Manage 27: 61 - 79

    Article  Google Scholar 

  • Fittkau EJ, Klinge H (1973) On the biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5: 2 - 14

    Article  Google Scholar 

  • Flenly J (1979) The equatorial rain forest: a geological history. Butterworth, London, 162 pp

    Google Scholar 

  • Fölster H, De Las Salas G, Khanna P (1976) A tropical evergreen forest site with perched water table, Magdalena Valley, Columbia. Biomass and bioelement inventory of primary and secondary vegetation. Oecol Plant 11: 297 - 320

    Google Scholar 

  • Furley PA (1994) The forest frontier. Settlement and change in Brazilian Roraima. Routledge, New York, 235 pp

    Book  Google Scholar 

  • Furley PA et al. (eds) (1992) see Chapter 3.7

    Google Scholar 

  • Furtado JI (1986) The future of tropical forests. In: Polunin N (ed) Ecosystem theory and application. Chichester, pp 145 - 171

    Google Scholar 

  • Galoux A et al. (1981) see Chapter 2.2

    Google Scholar 

  • George U (1987) Regenwald, Vorstoß in das tropische Universum. Groner & Jahr, Hamburg, 380 pp

    Google Scholar 

  • Givnish TJ (1984) Leaf and canopy adaptations in tropical forests. In: Medina E et al., pp 51-84

    Google Scholar 

  • Givnish TJ, Vermeij GJ (1976) Sizes and shapes of liane leaves. Am Nat 110: 743 - 778

    Article  Google Scholar 

  • Glauner Hi (1983) see Chapter 2.6

    Google Scholar 

  • Goldammer JG (1990a) Waldumwandlung and Waldverbrennung in den Tiefland-Regenwäldern des Amazonasbeckens: Ursachen and ökologische Implikationen. Ber Naturforsch Ges Freib 80: 119142

    Google Scholar 

  • Goldammer JG (1990b) see Chapter 3.6

    Google Scholar 

  • Golley FB (1975) Productivity and mineral cycling in tropical forests. In: National Academy of Sciences (Washington), pp 106-115, see Chapter 2. 5

    Google Scholar 

  • Golley FB (ed) (1983) Tropical rain forest ecosystems. Ecosystems of the world 14A. Elsevier, Amsterdam, 381 pp

    Google Scholar 

  • Golley FB, Lieth H (1972) Bases of organic production in the tropics. In: Golley PM, Golley FB (eds) Tropical ecology with an emphasis on organic production. Athens (Georgia), pp 1 - 26

    Google Scholar 

  • Golley FB, Medina E (eds) (1975) Tropical ecological systems: trends in terrestrial and aquatic research. Ecological Studies 11. Springer, Berlin Heidelberg New York, 398 pp

    Google Scholar 

  • Golley FB, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43: 9 - 19

    Article  Google Scholar 

  • Goulding M, Carvalho ML, Ferreira EG (1988) Rio Negro, rich life in poor water. Amazonian diversity and food chain ecology as seen through fish communities. The Hague

    Google Scholar 

  • Grabert H (1991) Der Amazonas. Geschichte eines Stromgebietes zwischen Pazifik und Atlantik. Springer, Berlin Heidelberg New York, 235 pp

    Google Scholar 

  • Grammel R (1990) Ist eine nachhaltige Holznutzung im Amazonas-Regenwald möglich? Ber Naturforsch Ges Freib 80: 143 - 168

    Google Scholar 

  • Grassi H (1990) Die Bedeutung der tropischen Regenwälder fiir das Klima. Allg Forstzeitschrift 1-2: 6 - 8

    Google Scholar 

  • Grimm U, Fassbender HW (1981) Ciclos bioquimicos en un ecosistema forestal de los Andes Occidentales Venezuela. Turrialba 31: 27-37; 89 - 99

    Google Scholar 

  • Hadley M, Lanly J-P (1983) Tropical forest ecosystems: identifying differences, seeking similarities. Nature Resources 19, 1: 2 - 19

    Google Scholar 

  • Haines B (1975) Impact of leaf-cutting ants on vegetation development at Barro Colorado Island. In: Golley FB, Medina E, pp 99 - 111

    Google Scholar 

  • Hall JB, Swaine MD (1981) Distribution and ecology of vascular plants in a tropical rain forest. Geobotany 1. The Hague

    Google Scholar 

  • Hardy F (1936) Some aspects of cocoa soil fertility in Trinidad. Trop Agric (Trinidad) 13: 315 - 317

    Google Scholar 

  • Harmelin-Vivien ML, Bourliere F (eds) (1989) Vertebrates in complex tropical systems. Ecological Studies 69. Springer, Berlin Heidelberg New York, 200 pp

    Google Scholar 

  • Hartmann G (ed) (1989) Amazonien im Umbruch. Reimer, Berlin 389 pp

    Google Scholar 

  • Hase H, Fölster H (1982) Bioelement inventory of a tropical (semi-)evergreen seasonal forest on eutrophic alluvial soils, western Llanos, Venezuela. Acta Oecol 3: 331 - 346

    Google Scholar 

  • Hecht SB (ed) (1982) Amazonia. Agriculture and land use research. University of Missouri, Columbia, MO

    Google Scholar 

  • Hemming J (ed) (1985) Change in the Amazon Basin, vol 1. Mans impact on forests and rivers. Manchester University Press, Manchester

    Google Scholar 

  • Henderson-Sellers A (1987) Effects of change in land use on climate in the humid tropics. In: Dickinson RE (ed) The geophysiology of Amazonia. New York, pp 463 - 498

    Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Wilson MF (1988) Tropical deforestation: important processes for climate models. Climat Change 13: 43 - 67

    Article  Google Scholar 

  • Henwood K (1973) A structural model of forces in buttressed tropical rain forest trees. Biotropica 5: 83 - 93

    Article  Google Scholar 

  • Herrera R, Medina E, Klinge H, Jordan CF, Uhl C (1984) Nutrient retention mechanisms in tropical forests: the Amazon caatinga, San Carlos Pilot Project, Venezuela. In: Di Castri F, Baker FW, Hadley M (eds) Ecology in practice. Part I: Ecosystem management. Paris, pp 85 - 97

    Google Scholar 

  • Herwitz SR (1987) Calcium, magnesium and potassium use efficiency of tropical rainforests. Phys Geogr 8, 4: 324 - 332

    Google Scholar 

  • Hurst P (1990) Rainforest politics. Ecological destruction in South-East Asia. Zed Books, London, 303 pp

    Google Scholar 

  • Jacobs M (1988) The tropical rain forest. A first encounter. Springer, Berlin Heidelberg New York, 295 pp

    Book  Google Scholar 

  • Janos DP (1984) Methods of vesicular-arbuscular mycorrhiza research in the lowland wet tropics. In: Medina E et al., pp 173-187

    Google Scholar 

  • Janzen DH (ed) (1983) Costa Rican natural history. University of Chicago Press, Chicago. 816 pp

    Google Scholar 

  • Janzen DH (1986) see Chapter 2.5

    Google Scholar 

  • Jarret HR (1977) Tropical geography. McDonald and Evans, Plymouth, 222 pp

    Google Scholar 

  • Johnson DW et al. (1977) Carbonic acid leaching in a tropical, temperate, subalpine and northern forest soil. Arct Alp Res 9: 329 - 343

    Article  Google Scholar 

  • Jordan CF (1983) Productivity of tropical rain forest ecosystems and the implications for their use as future wood and energy sources. In: Golley FB, pp 117 - 136

    Google Scholar 

  • Jordan CF (1984) Nutrient regime in the wet tropics: physical factors. In: Medina E et al., pp 3-12

    Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems: principles and their application in management and conservation. Wiley, Chichester, 250 pp

    Google Scholar 

  • Jordan CF (ed) (1986) Amazonian rain forests. Ecological Studies 60. Springer, Berlin Heidelberg New York, 133 pp

    Google Scholar 

  • Jordan CF (1988) The tropical rain forest landscape. In: Viles A (ed) Biogeomorphology. New York, pp 146 - 165

    Google Scholar 

  • Jordan CF (1989a) Jari: a pulp plantation in the Brazilian Amazon. GeoJournal 19, 4: 429 - 435

    Google Scholar 

  • Jordan CF (ed) (1989b) An Amazonian rain forest: the structure and function of nutrient stressed ecosystem and the impact of slash and burn agriculture. UNESCO, MAB Ser 2, Pans

    Google Scholar 

  • Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? Nature Resources 17, 2: 7 - 13

    Google Scholar 

  • Kan JR (1975) Production, energy pathways and community diversity in forest birds. In: Golley FB, Medina E, pp 161 - 176

    Google Scholar 

  • Kaufman L (1988) The role of developmental crises in the formation of buttresses: a unified hypothesis. Evol Trends Plants 2, 1: 39 - 51

    Google Scholar 

  • Keulen HV (1985) Physical resources of the humid tropics and their relation to yield potentials of food crops. In: International Potash Institute, Potassium in the agricultural systems of the humid tropics. Bangkok, pp 31 - 59

    Google Scholar 

  • Kikkawa J, Dwyer PD (1992) Use of scattered resources in rain forest of humid tropical lowlands. Biotropica 24, 2b: 293 - 308

    Google Scholar 

  • Kira T, Ogawa H (1971) Assessment of primary production in tropical and equatorial forests. In: Duvigneaud P, pp 309-321, see Chapter 2. 5

    Google Scholar 

  • Klinge H (1976) Bilanzierung von Hauptnährstoffen im Okosystem tropischer Regenwald (Manaus). Biogeographica 7: 59 - 76

    Google Scholar 

  • Klink H-J, Mayer E (1983) see Chapter 2.5

    Google Scholar 

  • Kohlhepp G (1980) Analysis of state and private regional development projects in the Brazilian Amazon basin. Appl Geogr Dev (Tübingen) 16: 53 - 79

    Google Scholar 

  • Lal R (1987) see Chapter 3.7

    Google Scholar 

  • Lal R (1989) Soil management options in the tropics as alternatives to slash and burn. Soil Technol 2: 253 - 270

    Article  Google Scholar 

  • Lal R, Russel EW (eds) (1981) Tropical agricultural hydrology. Watershed management and land use. Wiley, Chichester, 482 pp

    Google Scholar 

  • Lal R, Sanchez PA, Cummings RW Jr (eds ) (1986) Land clearing and development in the tropics. Rotterdam

    Google Scholar 

  • Lamprecht H (1972) Einige Strukturmerkmale natürlicher Tropenwaldtypen and ihre waldbauliche Bedeutung. Forstw cbl (Berl) 91: 270 - 277

    Article  Google Scholar 

  • Lamprecht H (1986) see Chapter 2.6

    Google Scholar 

  • Landsberg JJ (1984) Physical aspects of the water regime of wet tropical vegetation. In: Medina E et al., pp 13-25

    Google Scholar 

  • Lanly J-P (1982) Tropical forest resources. FAO, Rome, 106 pp

    Google Scholar 

  • Lauer W (ed) (1984) Natural environment and man in tropical mountain ecosystems. Erdwiss Forsch 18. Steiner, Stuttgart, 354 pp

    Google Scholar 

  • Lawson GW (1987) see Chapter 2.5

    Google Scholar 

  • Leigh EG (1975) Structure and climate in tropical rain forest. Annu Rev Ecol Syst 6: 67 - 86

    Article  Google Scholar 

  • Lescure JP, Boulet R (1985) Relationships between soil and vegetation in a tropical rain forest in French Guiana. Biotropica 17, 2: 155 - 164

    Article  Google Scholar 

  • Lewis WM (1986) Nitrogen and phosphorus runoff losses from a nutrient-poor tropical moist forest. Ecology 67, 5: 1275 - 1282

    Article  Google Scholar 

  • Liebermann M, Liebermann D, Hartshorn GS, Peralta R (1985) Small scale attitudinal variation in lowland wet tropical forest vegetation. J Ecol 73: 505 - 516

    Article  Google Scholar 

  • Lieth H, Werger MJA (eds) (1989) Tropical rain forest ecosystems. Ecosystems of the world 14B. Elsevier, Amsterdam, 713 pp

    Google Scholar 

  • Longman KA, Jenik J (1974) Tropical forest and its environment. Longman, London 196 pp

    Google Scholar 

  • Lowman MD (1988) Litterfall and leaf decay in three Australian rainforest formations. J Ecol 76: 451 - 465

    Article  Google Scholar 

  • Lugo A. et al. (1973) Tropical ecosystem structure and function. In: Farnworth E, Golley FB (eds) Fragile ecosystems. Springer, Berlin Heidelberg New York, pp 67 - 111

    Google Scholar 

  • Luizao FJ (1989) Litter production and mineral element input to forest floor in a central Amazonian forest. GeoJoumal 19, 4: 407 - 417

    Google Scholar 

  • Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76: 466 - 482

    Article  Google Scholar 

  • Marrs RH, Thompson J, Scott D, Proctor J (1991) Nitrogen mineralization and nitrification in terra firme forest and savanna soils in Ilha de Maraca, Roraima, Brazil. J Trop Ecol 7: 123 - 137

    Article  Google Scholar 

  • Martin C (1989) Die Regenwälder Westafrikas. Ökologie, Bedrohung and Schutz. Birkhäuser, Basel, 239 pp

    Google Scholar 

  • Martinelli LA, Victoria RL, Devol AH, Forsberg BR (1989) Suspended sediment load in the Amazon basin: an overview. GeoJoumal 19, 4: 381 - 389

    Google Scholar 

  • Matson PA, Vitousek PM, Ewel JJ, Mazzarino MJ (1987) Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68, 3: 491 - 502

    Article  Google Scholar 

  • Medina E (1984) Nutrient balance and physiological processes at the leaf level. In: Medina E et al., pp 139-154

    Google Scholar 

  • Medina E, Mooney HA, Vazgues Yanes C (eds) (1984) Physiological ecology of plants of the wet tropics. Tasks for Vegetation Science 12. The Hague

    Google Scholar 

  • Milne G (1937) Essays in applied pedology. I. Soil type and soil management in relation to plantation agriculture in East Usambara. East Afr Agric J 3: 7 - 20

    Google Scholar 

  • Monk CD (1966) see Chapter 3.8

    Google Scholar 

  • Monk CD, Day FP (1988) see Chapter 3.8

    Google Scholar 

  • Montgomery GG, Sunquist ME (1975) Impact of sloths on neotropical forest energy flow and nutrient cycling. In: Golley, Medina, pp 69 - 98

    Google Scholar 

  • Morellato LPC (1992) see Chapter 3.7

    Google Scholar 

  • Morrow PA (1984) Assessing the effects of herbivory. In: Medina E et al., pp 225-231

    Google Scholar 

  • Mortatti J, Ferreira JR, Martinelli LA et al. (1989) Biogeochemistry of the Madeira River basin. GeoJoumal 19, 4: 391 - 397

    Google Scholar 

  • Murphy PG (1975) Net primary productivity in tropical terrestrial ecosystems. In: Lieth H, Whittaker RH, pp 217-223, see Chapter 2. 5

    Google Scholar 

  • Myers N (1988) Tropical deforestation and climatic change. Environ Consery 15, 4: 293-298 Nair PKR (1989) see Chapter 2. 6

    Google Scholar 

  • Newbery DMC, Proctor J (1982) Ecological studies in four contrasting lowland raip forests in Gunung Mulu National Park, Sarawak. IV. Associations between tree distribution and soil factors. J Ecol 72: 475 - 493

    Google Scholar 

  • Nicolson TH (1975) Evolution of vesicular-arbuscular mycorrhizas. In: Sanders FE et al. (eds) Endomycorrhizas. London, pp 25 - 34

    Google Scholar 

  • Nye PH (1961) Organic matter and nutrient cycles under moist tropical forest. Plant Soil 13: 333 - 346

    Article  Google Scholar 

  • Obemdörfer D (1990) Schutz der tropischen Regenwälder (Feuchtwälder) durch ökonomische Kompensation. Ber Naturforsch Ges Freib 80: 225 - 261

    Google Scholar 

  • Odum HT, Pigeon RF (eds) (1970) A tropical rain forest: a study of irradiation and ecology at El Verde, Puerto Rico. US Atomic Energy Commission, 3 vols, Washington, DC

    Google Scholar 

  • Okali DUU (1992) Sustainable use of West African moist forest lands. Biotropica 24, 2b: 335 - 344

    Google Scholar 

  • Owen DF (1983) The abundance and biomass of forest animals. In: Golley FB, pp 93 - 100

    Google Scholar 

  • Poore D et al. (1989) No timber without trees. Sustainability in the tropical forest. London

    Google Scholar 

  • Prance GT (ed) (1982) Biological diversification in the tropics. Columbia University Press, New York, 559 pp

    Google Scholar 

  • Prinz D (1986) see Chapter 3.5

    Google Scholar 

  • Proctor J (1983) Mineral nutrients in tropical forests. Prog Phys Geogr 7: 422 - 431

    Article  Google Scholar 

  • Proctor J (1985) Tropical rain forest: ecology and physiology. Prog Phys Geogr 9, 3: 402 - 413

    Google Scholar 

  • Proctor J (1987) Nutrient cycling in primary and old secondary rainforests. Appl Geogr 7: 135 - 152

    Article  Google Scholar 

  • Proctor J (1987-1989) Tropical rain forests. Prog Phys Geogr 11,3 1987: 406-418; 12, 1988: 495-420; 13, 1989: 409-430; 14, 1990: 251-269; 15, 1991: 291 - 303

    Google Scholar 

  • Proctor J (1989) see Chapter 3.7

    Google Scholar 

  • Proctor J, Anderson JM, Fogden SCL, Vallock HW (1983a) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. II. Litterfall, litter standing crop and preliminary observations on herbivory. J Ecol 71: 261 - 283

    Article  Google Scholar 

  • Proctor J, Anderson JM, Chai P, Vallock HW (1983b) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. J Ecol 71: 237 - 260

    Article  Google Scholar 

  • Proctor J, Phillips C, Duff GK, Heaney A, Robertson FM (1988, 1989 ) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics, II. Some forest processes. J Ecol 76, 1988: 320-340; 77, 1989: 317 - 331

    Google Scholar 

  • Putz FE, Chai P (1987) Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. J Ecol 75: 523 - 531

    Article  Google Scholar 

  • Rai SN, Proctor J (1986) Ecological studies on four rainforests in Karnataka, India. I. Environment, structure, floristics and biomass, II. Litterfall. J Ecol 74: 439-454; 455 - 463

    Google Scholar 

  • Raich JW, Khoon GW (1990) Effects of canopy openings on tree seed germination in a Malaysian dipterocarp forest. J Trop Ecol 6: 203 - 217

    Article  Google Scholar 

  • Rehm S (1986) see Chapter 2.6

    Google Scholar 

  • Rehm S (1989) see Chapter 2.6

    Google Scholar 

  • Reichholf JH (1990) Der Tropische Regenwald. Die Ökologie des artenreichsten Naturraums der Erde, 2nd edn. Dtv, München, 207 pp

    Google Scholar 

  • Richards PW (1970) The life of the jungle. McGraw-Hill, New York, 232 pp

    Google Scholar 

  • Richards PW (1976) The tropical rain forest: an ecological study, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Richards PW (1986) The nature of tropical forest ecosystems. In: Polunin N (ed) Ecosystem theory and application. Wiley, Chichester, pp 131 - 144

    Google Scholar 

  • Robertson GP (1984) Nitrification and nitrogen mineralization in the lowland rainforest succession in Costa Rica, Central America. Oecologica 61: 99 - 104

    Article  Google Scholar 

  • Rodin LE, Bazilevich NI (1967) see Chapter 2.5

    Google Scholar 

  • Rohdenburg W (1971) see Chapter 2.3

    Google Scholar 

  • Roth I (1980) Blattstruktur von Pflanzen aus feuchten Tropenwäldern. Bot Jahrb Syst 101 /4: 489 - 525

    Google Scholar 

  • Roth I (1981) see Chapter 3.7

    Google Scholar 

  • Roth I (1984) Stratification in tropical forests as seen in leaf structure. Tasks for Vegetation Science 6. Dr W Junk, The Hague, 522 pp

    Google Scholar 

  • Roth I (1987) Stratification of a tropical forest as seen in dispersal types. Tasks for Vegetation Science 17. Dr W Junk, The Hague, 324 pp

    Google Scholar 

  • Ruthenberg H (1980) see Chapter 3.7

    Google Scholar 

  • Salati E, Vose PB (1984) Amazon basin: a system in equilibrium. Science 255: 129 - 138

    Article  Google Scholar 

  • Salati E, Vose PB (1986) The water cycle in tropical forests, with special reference to the Amazon. In: Marini-Bettolo GB (ed) Chemical events in the atmosphere and their impact on the environment. Studies in Envir Sci 26. Amsterdam, pp 623 - 648

    Google Scholar 

  • Saldarriaga JG (1986) Recovery following shifting cultivation. In: Jordan CF, pp 24 - 33

    Google Scholar 

  • Saldarriaga JG, Luxmoore RJ (1991) Solar energy conversion efficiencies during succession of a tropical rain forest in Amazonia. J Trop Ecol 7: 233 - 242

    Article  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York, 618 pp

    Google Scholar 

  • Sanchez PA, Buol SW (1975) Soils of the tropics and the world food crisis. Science 188: 598 - 603

    Article  Google Scholar 

  • Sanchez PA, Villachia JH, Nicholaides JJ (1982) Amazon basin soils: management for continuous crop production. Science 216: 821 - 827

    Article  Google Scholar 

  • Sanchez PA, Villachia JH, Bandy DE (1983) Soil fertility dynamics after clearing a tropical rain forest in Peru. Soil Sci Soc Am J 47: 1171 - 1178

    Article  Google Scholar 

  • Sanchez PA, Palm CA, Davey CB (1985) Tree crops as soil improvers in the humid tropics? In: Cannell, MGR, Jackson JE (eds) Attributes of trees as crop plants. Monks Wood, pp 327 - 358

    Google Scholar 

  • Satchell JE (1971) see Chapter 3.3

    Google Scholar 

  • Sayer JA, Harcourt CS, Collins NM (eds) (1992) The conservation atlas of tropical forests: Africa. BP, Hants, 288 pp

    Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8: 51 - 81

    Article  Google Scholar 

  • Schmidt-Lorenz R (1986) see Chapter 2.4

    Google Scholar 

  • Schnell R (1970-1977) Introduction à la phytogéographie des pays tropicaux. I-IV. Paris

    Google Scholar 

  • Scholz U (ed) (1991) Tropischer Regenwald als Ökosystem. Giessener Beiträge zur Entwicklungs-forschung, Reihe I (Symposien), vol 19. Tropeninstitut Giessen, Giessen, 153 pp

    Google Scholar 

  • Schultz J (1982) Das ökologische Potential der feuchten Tropen fir die agrare Nutzung. Freiburger Geogr Hefte 18, pp 27 - 43

    Google Scholar 

  • Seibert P (1984) Die Vegetation des tropischen Regenwaldes. Spixiana (Munch) Suppl 10: 13 - 33

    Google Scholar 

  • Sharma AK, Dagar JC, Pal RN (1991) Comparitive yield performance and water use efficiency of eleven exotic fodder grasses in the humid tropics. Trop Ecol 32, 2: 245 - 254

    Google Scholar 

  • Singh JS, Misra R (1978) see Chapter 3.7

    Google Scholar 

  • Sioli H (1983) Amazonien. Grundlagen der Ökologie des größten tropischen Waldlandes. Wissenschaftl Verl Gesell, Stuttgart, 64 pp

    Google Scholar 

  • Sioli H (ed) (1984) The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin. Dr W Junk, Dordrecht, 763 pp

    Google Scholar 

  • Sioli H (1987) The effects of deforestation in Amazonia. The Ecologist 17, 4-5: 134 - 138

    Google Scholar 

  • Sioli H (1990) Amazonien: Versuch einer interdiziplinären Annäherung. Ber Naturforsch Ges Freib 80: 7 - 17

    Google Scholar 

  • Smith AP (1972) Buttressing of tropical trees: a descriptive model and new hypothesis. Am Nat 106: 32 - 46

    Article  Google Scholar 

  • Squire GR (1990) see Chapter 2.6

    Google Scholar 

  • Stanley RH (1987) Calcium, Magnesium and Potassium use efficiency of tropical rainforests. Phys Geogr 8, 4: 324 - 332

    Google Scholar 

  • Stein N (1988) Podsole, Relief und Vegetation in Nordborneo. Erdkunde 42: 294 - 310

    Article  Google Scholar 

  • Stein N (1989) Die Bedeutung der floristischen und physiognomischen Struktur von Waldge-sellschaften für die Ausgliederung von Geoökotopen innerhalb der humiden Tropen (am Beispiel

    Google Scholar 

  • Sarawaks/Borneo). Geomethodica (Basel) 14: 111-140

    Google Scholar 

  • Steinlin H (1990) Andere Möglichkeiten als die Holzproduktion zur Nutzung tropischer Wald-Ökosysteme. Ber Naturforsch Ges Freib 80: 169 - 192

    Google Scholar 

  • Strasburger E et al. (1983) see Chapter 2.5

    Google Scholar 

  • Sutton SL et al. (eds) (1983) Tropical rain forest: ecology and management. Blackwell, Oxford, 498 pp

    Google Scholar 

  • Swaine MD, Hall JB (1983) Early succession on cleared forest land in Ghana. J Ecol 71: 601 - 627

    Article  Google Scholar 

  • Swaine MD, Hall JB (1986) Forest structure and dynamics. In: Lawson GW (ed) Plant ecology in West Africa. Wiley, Chichester, pp 47 - 93

    Google Scholar 

  • Terborgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24, 2b: 283 - 292

    Google Scholar 

  • Terborgh J (1992) Diversity and the tropical rain forest. Scientific American Library, New York, 242 pp

    Google Scholar 

  • Thomas MF (1974) Tropical geomorphology. London

    Google Scholar 

  • Tilley P (1988) Sultriness as a characterising feature of humid tropical warm climate: with special reference to the Philippines. Erdkunde 42: 100 - 114

    Article  Google Scholar 

  • Toky OP, Ramakrishnan PS (1983) Secondary succession following slash and burn agriculture in north-eastern India. I. Biomass, litterfall and productivity; II. Nutrient cycling. J Ecol 71: 735-745; 747 - 757

    Google Scholar 

  • Tomlinson PB (1987) Architecture of tropical plants. Annu Rev Ecol Syst 18: 1 - 21

    Article  Google Scholar 

  • Tomlinson PB, Zimmermann MH (eds) (1978) Tropical trees as living systems. Proc 4th Cabot Symp Harvard Forest, Petersham, MA 1976, Cambridge University Press, Cambridge, MA, 675 pp

    Google Scholar 

  • Tricart J, Cailleux A (1972) see Chapter 2.3

    Google Scholar 

  • Troll C, Paffen KLI (1964) see Chapter 2.1

    Google Scholar 

  • Trudgill ST (ed) (1986) Solute processes. Wiley, Chichester, 512 pp

    Google Scholar 

  • Turton SM (1992) Understorey light environments in a north-east Australian rain forest before and after a tropical cyclone. J Trop Ecol 8, 3: 241 - 252

    Article  Google Scholar 

  • Uhl C (1987) Factors controlling succession following slash-and-burn agriculture in Amazonia. J Ecol 75: 377 - 407

    Article  Google Scholar 

  • Uhl C, Jordan CF (1984) Vegetation and nutrient dynamics during the first five years of succession following forest cutting and burning in the Rio Negro region of Amazonia. Ecology 65: 1476 - 1490

    Article  Google Scholar 

  • Uhlig H (1983) Reisbausysteme und -ökotope in Südostasien. Erdkunde 37: 269 - 282

    Article  Google Scholar 

  • UNESCO, UNEP, FAO (1978) Tropical forest ecosystems. Paris, 683 pp

    Google Scholar 

  • Unruh JD (1991) Canopy structure in natural and agroforest successions in Amazonia. Trop Ecol 34, 2: 168 - 181

    Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, Stuttgart, 293 pp

    Google Scholar 

  • Victoria RL, Martinelli LA, Trivelin PCO et al. (1992) The use of stable isotopes in studies of nutrient cycling: carbon isotope composition of Amazon Varzea sediments. Biotropica 24, 2b: 240 - 249

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65: 285 - 298

    Article  Google Scholar 

  • Vitousek PM, Denslow JS (1986) Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. J Ecol 74: 1167 - 1178

    Article  Google Scholar 

  • Vitousek PM, Matson PA (1992) Tropical forests and trace gases: potential interactions between tropical biology and the atmospheric sciences. Biotropica 24, 2b: 233 - 239

    Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17: 137 - 167

    Article  Google Scholar 

  • Vose PB (1989) Amazon bio-geosciences: Towards a synthesis through Amazonia I. GeoJournal 19, 4: 361 - 380

    Google Scholar 

  • Walter H (1936) Nährstoffgehalt des Bodens and natürliche Waldbestände. Forst Wochenschrift Silva 24: 201-205; 209 - 213

    Google Scholar 

  • Walter H, Breckle SN (1984) see Chapter 1

    Google Scholar 

  • Wambeke AV (1992) see Chapter 2.4

    Google Scholar 

  • Webb LJ, Tracey JG (1981) Australian rainforests: patterns and change. In: Keast A (ed) Ecological biogeography of Australia. The Hague, pp 605 - 6694

    Chapter  Google Scholar 

  • Weischet W (1980) Die ökologische Benachteiligung der Tropen, 2nd edn. Teubner, Stuttgart, 127 pp

    Google Scholar 

  • Weischet W (1990) Das Klima Amazoniens and seine geoökologischen Konsequenzen. Ber Naturforsch Ges Freib: 59 - 91

    Google Scholar 

  • Went FW, Stark N (1968) Mycorrhiza. Bioscience 18: 1035 - 1039

    Google Scholar 

  • Whitmore TC (1984) A vegetation map of Malesia at scale 1:5 million. J Biogeogr 11: 461 - 471

    Article  Google Scholar 

  • Whitmore TC (1984) Tropical rain forests of the Far East, 2nd edn. Oxford University Press, Oxford, 352 pp

    Google Scholar 

  • Whitmore TC (1989a) Changes over twenty-one years in the Kolombangara rain forest. J Ecol 77: 469 - 483

    Article  Google Scholar 

  • Whitmore TC (1989b) Forty years of rain forest ecology 1948-1988 in perspective. GeoJournal 19, 4: 347 - 360

    Google Scholar 

  • Whitmore TC (1990) Tropische Regenwälder. Eine Einführung. Spektrum Akad Verl, Heidelberg, 275 pp

    Google Scholar 

  • Whitmore TC (1993) An introduction to tropical rain forests. Oxford University Press, Oxford, 320 pp

    Google Scholar 

  • Whittaker RH, Likens GE (1975) see Chapter 2.5

    Google Scholar 

  • Whitten Ai, Damanik JS, Anwar J, Hisyam N (1984) The ecology of Sumatra. University of Gadjah Mada Press, Yogayakarta

    Google Scholar 

  • Wirthmann A (1983) Lösungsabtrag von Silikatgesteinen and Tropengeomorphologie. Geoökodynamik 4: 149 - 172

    Google Scholar 

  • Wirthmann A (1985) Offene Fragen der Tropengeomorphologie. Z Geomorph NF Suppl 56: 1 - 12

    Google Scholar 

  • Wirthmann A (1987) see Chapter 2.3

    Google Scholar 

  • Wirthmann A (1993) Der Abtragungszyklus in den Tropen und die zunehmende strukturelle Steuerung von Tal-und Hangentwicklung. Würzb Geogr Arb 87: 211 - 220

    Google Scholar 

  • Wirthmann A, Lange U (1989) Geomorphology and Geoecology in the humid tropics. Geoökodynamik 10, 2-3: 177 - 200

    Google Scholar 

  • Wrigley G (1981) see Chapter 2.6

    Google Scholar 

  • Yoda K, Kira T (1982) Accumulation of organic matter, carbon, nitrogen and other nutrient elements in the soil of a lowland rainforest at Pasoh, peninsular Malaysia. Jpn J Ecol 32, 2: 275 - 291

    Google Scholar 

  • Young A (1976) see Chapter 2.4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schultz, J. (1995). Regional Section: the Individual Ecozones. In: The Ecozones of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03161-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03161-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03163-6

  • Online ISBN: 978-3-662-03161-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics