Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 22))

Abstract

The main purpose of this article is to present a brief outline of the unitary group approach to the many-electron correlation problem, its underlying principles, development and present achievements, as well as its relationship to other approaches to the problem of spin adaptation and Hamiltonian matrix evaluation. Thus, a foundation will be laid for the subsequent articles in these proceedings which address these problems from different viewpoints and in much greater detail, and also deal with and suggest solutions to the various facets of this and related topics. The space available here is clearly inadequate to cover all these aspects at any length. Consequently, we will restrict ourselves to a brief outline, giving appropriate references and, wherever possible, illustrating the underlying concepts via simple examples and physical intuition rather than attempting to develop a mathematically rigorous general theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cf., e.g., J. Paldus and J. Ciäek, Advan. Quantum Chem. 9, 105 (1975).

    Article  CAS  Google Scholar 

  2. F. A. Matsen, Advan. Quantum Chem. 1, 59 (1964)

    Article  CAS  Google Scholar 

  3. F. A. Matsen, Intern. J. Quantum Chem. 10, 525 (1976).

    Article  CAS  Google Scholar 

  4. R. Pauncz, Spin Eigenfunctions: Construction and Use ( Plenum, New York, 1979 ).

    Google Scholar 

  5. P. Jordan, Z. Phys. 94, 531 (1935).

    Article  Google Scholar 

  6. M. Moshinsky, in Many-Body Problems and Other Selected Topics in Theoretical Physics, edited by M. Moshinsky, T. A. Brody and G. Jacob ( Gordon and Breach, New York, 1966 ), p. 289.

    Google Scholar 

  7. M. Moshinsky: Group Theory and the Many Body Problem ( Gordon and Breach, New York, 1968 ).

    Google Scholar 

  8. J. Paldus, J. Chem. Phys. 61, 5321 (1974).

    Article  CAS  Google Scholar 

  9. C. R. Sarma and S. Rettrup, Theor. Chim. Acta 46, 63 (1977)

    CAS  Google Scholar 

  10. C. R. Sarma and K. V. Dinesha, J. Math. Phys. 19, 1662 (1978).

    Article  Google Scholar 

  11. P. E. S. Wormer and J. Paldus, Intern. J. Quantum Chem. 16, 1307 (1979).

    Article  CAS  Google Scholar 

  12. A. P. Jucys, I. B. Levinson and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momenta (Israel Program for Scientific Translations, Jerusalem, 1962 and Gordon and Breach, New York, 1964 ).

    Google Scholar 

  13. A. P. Jucys and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics (Mokslas, Vilnius, 2nd edition, 1977 ), in Russian.

    Google Scholar 

  14. D. M. Brink and G. R. Satchler, Angular Momentum (Clarendon Press, Oxford, 2nd edition, 1968), Ch. VII, p. 112.

    Google Scholar 

  15. E. El Baz and B. Castel, Graphical Methods of Spin Algebras (M. Dekker, New York, 1972).

    Google Scholar 

  16. Jordan considered only the case of n.

    Google Scholar 

  17. Cf., e.g., A. O. Barut and R. Raczka, Theory of Group Representations and Applications ( Polish Scientific Publishers, Warszawa, 1977 ).

    Google Scholar 

  18. Whenever confusion cannot arise, we will drop the argument(s) Li.e., m in this case] for simplicity. Cf., also, Eq. (16).

    Google Scholar 

  19. In fact, the lexical ordering is very close to what we could call the “reverse weight ordering”: h’ follows h if the £aat non-vanishing component in (h’ -h) is positive. However, if there are more vectors of the same weight, only one of them will be in the position defined by the reverse weight order, while the remaining ones are always placed after the vectors, whose last nonvanishing wieght component has maximal occupancy (in our case 2).

    Google Scholar 

  20. Cf., e.g., J. Cláek and J. Paldus, Intern. J. Quantum Chem. 12, 875 (1977).

    Article  Google Scholar 

  21. J. Paldus, in Theoretical Chemistry: Advances and Perspectives, Vol. 2., edited by H. Eyring and D. Henderson ( Academic Press, New York, 1976 ), p. 131.

    Google Scholar 

  22. H. Weyl, Classical Groups (Princeton Univ. Press, Princeton, New Jersey, 1939 ).

    Google Scholar 

  23. G. de B. Robinson, Representation Theory of the Symmetric Group (Univ. of Toronto Press, Toronto, Ontario, 1961 ).

    Google Scholar 

  24. More precisely with respect to the subgroup [U(1) + 1], which is isomorphic to U(1). In the same sense we shall speak about subgroups U(k) of U(n), k-n, meaning the subgroups of matrices A + In-k where A ∈ U(k) and Itdesignates the 2 x 2 identity matrix.

    Google Scholar 

  25. A. J. Coleman, in Group Theory and Its Applications, edited by E. M. Loebl ( Academic Press, New York, 1968 ), p. 57.

    Google Scholar 

  26. I. M. Gelfand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71, 825, 1070 (1950)

    Google Scholar 

  27. I. M. Gelfand and M. I. Graev, Izv. Akad. Nauk SSSR, Ser. Mat. 29, 1329 (1965)

    Google Scholar 

  28. I. M. Gelfand and M. I. Graev, Amer. Math. Soc. Transl. 64, 116 (1967).

    Google Scholar 

  29. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1964).

    Google Scholar 

  30. J. D. Louck, Am. J. Phys. 38, 3 (1970).

    Article  Google Scholar 

  31. Note that the rows of Gelfand tableaux are numbered from the bottom upward, and the rows of Weyl tableaux from the top downward.

    Google Scholar 

  32. J. J. C. Mulder, Mol. Phys. 10, 479 (1966).

    Article  CAS  Google Scholar 

  33. I. Shavitt, Intern. J. Quantum Chem. S11, 131 (1977).

    Google Scholar 

  34. I. Shavitt, Intern. J. Quantum Chem. S12, 5 (1978).

    CAS  Google Scholar 

  35. B. R. Brooks and H. F. Schaefer III, J. Chem. Phys. 70, 5092 (1979).

    Article  CAS  Google Scholar 

  36. B. R. Brooks, W. D. Laidig, P. Saxe, N. C. Handy and H. F. Schaefer III, Physica Scripta 21, 312 (1980).

    Article  CAS  Google Scholar 

  37. I. Shavitt, this issue.

    Google Scholar 

  38. B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard and H. F. Schaefer III, this issue.

    Google Scholar 

  39. J. Paldus, Intern. J. Quantum Chem. S9, 165 (1965).

    Article  Google Scholar 

  40. J. Paldus, in Electrons in Finite and Infinite Structures, edited by P. Phariseau and L. Scheire ( Plenum Press, New York, 1977 ), p. 411.

    Google Scholar 

  41. J. Paldus, in Group Theoretical Methods in Physics, edited by W. Beiglböck, A. Böhm and E. Takasugi ( Springer Verlag, New York, 1979 ), p. 51.

    Chapter  Google Scholar 

  42. F. A. Matsen, Intern. J. Quantum Chem. S8, 379 (1974)

    Article  CAS  Google Scholar 

  43. F. A. Matsen, Advan. Quantum Chem. 12, 223 (1978).

    Article  Google Scholar 

  44. W. G. Harter, Phys. Rev. A8, 2819 (1973)

    Article  CAS  Google Scholar 

  45. W. G. Harter and C. W. Patterson, Phys. Rev. A13, 1067 (1976)

    Article  Google Scholar 

  46. W. G. Harter and C. W. Patterson, A Unitary Calculus for Electronic Orbitals ( Springer Verlag, Berlin, 1976 )

    Google Scholar 

  47. C. W. Patterson and W. G. Harter, Phys. Rev. A15, 2572 (1977).

    Google Scholar 

  48. J. Paldus, Phys. Rev. A14, 1620 (1976).

    Article  CAS  Google Scholar 

  49. M. Moshinsky and T. H. Seligman, Ann. Phys. (N.Y.) 66, 311 (1971).

    Article  Google Scholar 

  50. P.E.S. Wormer, Ph.D. Thesis (University of Nijmegen, The Netherlands, 1975).

    Google Scholar 

  51. P.E.S. Wormer, this issue.

    Google Scholar 

  52. J. Paldus and M. J. Boyle, Physica Scripta 21, 295 (1980).

    Article  CAS  Google Scholar 

  53. M.J. Boyle, Ph. D. Thesis (University of Waterloo, Waterloo, Ont., Canada, 1979 ).

    Google Scholar 

  54. T. Yamanouchi, Proc. Phys.- Math. Soc. Japan 19, 436 (1937)

    Google Scholar 

  55. M. Kotani, A. Amemiya, E. Ishiguro and T. Kimura, Tables of Molecular Integrals (Maruzen Co. Ltd., 2nd Edition, Tokyo, 1963 ).

    Google Scholar 

  56. J. Paldus, B. G. Adams and J. Nnzek, Intern. J. Quantum Chem. 11, 813 (1977).

    Article  CAS  Google Scholar 

  57. J. Paldus, B. G. Adams and J. Nn’zek, Intern. J. Quantum Chem. 11, 813 (1977).

    Article  CAS  Google Scholar 

  58. G.W.F. Drake and M. Schlesinger, Phys. Rev. A15, 1990 (1977).

    Google Scholar 

  59. G.W.F. Drake and M. Schlesinger, this issue.

    Google Scholar 

  60. J.-F. Gouyet, R. Schranner and T.H. Seligman, J. Phys. A8, 285 (1975).

    Google Scholar 

  61. J. Paldus and P.E.S. Wormer, Intern. J. Quantum Chem. 16, 1321 (1979).

    Article  CAS  Google Scholar 

  62. J. Paldus, J. Chem. Phys. 67, 303 (1977)

    Article  CAS  Google Scholar 

  63. B. G. Adams and J. Paldus, Phys. Rev. A 20, 1 (1979).

    Article  CAS  Google Scholar 

  64. J. Paldus and P.E.S. Wormer, Phys. Rev. A 18, 827 (1978)

    Article  CAS  Google Scholar 

  65. S. Wilson, J. Chem. Phys. 67, 5088 (1977).

    Article  CAS  Google Scholar 

  66. P.E.S. Wormer and J. Paldus, Intern. J. Quantum Chem. (in press).

    Google Scholar 

  67. Cf., e.g., I. Shavitt, in Methods of Electronic Structure Theory, edited by H. F. Schaefer III ( Plenum Press, New York, 1977 ), p. 189.

    Google Scholar 

  68. B.O. Roos and P.E.M. Siegbahn, in Methods of Electronic Structure Theory, edited by H.F. Schaefer III (Plenum Press, New York, 1977), p. 277 and references therein.

    Google Scholar 

  69. T. Sebe and J. Nachamkin, Ann. Phys. (N.Y.) 51, 100 (1969)

    Article  CAS  Google Scholar 

  70. R. R. Whitehead, A. Watt, B. J. Cole and I. Morrison, Advan. Nucl. Phys. 9, 123 (1977), and references therein.

    Google Scholar 

  71. R.F. Hausman, S. D. Bloom and C.F. Bender, Chem. Phys. Letters 32, 483 (1975).

    Article  CAS  Google Scholar 

  72. V.N. Faddeeva, Computational Methods of Linear Algebra ( Dover, New York, 1959 ).

    Google Scholar 

  73. P.E.M. Siegbahn, J. Chem. Phys. 70, 5391 (1979)

    Article  CAS  Google Scholar 

  74. P.E.M. Siegbahn, J. Chem. Phys. 70, 5391 (1979)

    Article  CAS  Google Scholar 

  75. M.A. Robb and D. Hegarty, in Correlated Wavefunctions: Proceedings of the Daresbury Study Weekend, 10–11 December 1977; edited by V. R. Saunders ( Science Research Council, Daresbury Laboratory, Warrington, England, 1978 ), p. 15

    Google Scholar 

  76. D. Hegarty and M.A. Robb, Mol. Phys. 38, 1795 (1979), and references therein.

    Google Scholar 

  77. P.E.M. Siegbahn, this issue.

    Google Scholar 

  78. M.A. Robb, this issue.

    Google Scholar 

  79. J. Schwinger, in Quantum Theory of Angular Momentum, edited by L.C. Biedenharn and H. Van Dam ( Academic Press, New York, 1965 ), p. 229.

    Google Scholar 

  80. This boson calculus is essentially the second quantization formalism we also used in our derivations. However, in order to obtain a general formalism (i.e. not restricted to only two-or single-columned irreps), one has to consider hypothetical particles with an arbitrarily large spin. It must also be noted that both boson and fermion operators yield generators [cf., Eqs. (4,8,9)] with the same Lie algebraic properties [i.e., Eqs. (5,7,10,11)]. Thus, for general considerations, bosons are to be preferred, since an arbitrary number of them can occupy any of the one-particle state (boson condensation), in contrast to the Pauli principle restriction for fermions.

    Google Scholar 

  81. G.E. Baird and L.C. Biedenharn, J. Math. Phys. 4, 1449 (1963)

    Article  Google Scholar 

  82. In fact, the technique based on our ABC tableaux can be generalized to more than two-columned irreps (say, four-columned ones needed in the nuclear many body problem), so that an efficient formalism for state labeling and matrix element evaluation, as shown at this meeting by Sarma and Retrupp, 68 may be obtained.

    Google Scholar 

  83. C.R. Sarma and S. Rettrup, this issue.

    Google Scholar 

  84. F. Sasaki, in Progress Report XI, Research Group on Atoms and Molecules (Department of Physics, Ochanomizu University, Tokyo, Japan, 1978), p. 1.

    Google Scholar 

  85. F. Sasaki, Intern. J. Quantum Chem. 8, 605 (1974).

    Article  Google Scholar 

  86. F. Sasaki, Intern. J. Quantum Chem. 8, 605 (1974).

    Article  Google Scholar 

  87. J. Paldus and M.J. Boyle, to be published, M. J. Boyle and J. Paldus, to be published.

    Google Scholar 

  88. I. Shavitt and J. Paldus, to be published.

    Google Scholar 

  89. F. A. Matsen, this issue.

    Google Scholar 

  90. B. 0. Roos, this issue.

    Google Scholar 

  91. M. Bénard, this issue.

    Google Scholar 

  92. F. W. Bobrowitz, this issue.

    Google Scholar 

  93. W. G. Harter and C. W. Patterson, this issue.

    Google Scholar 

  94. J. Hinze, this issue.

    Google Scholar 

  95. J.-F. Gouyet, this issue.

    Google Scholar 

  96. J. Karwovski, this issue.

    Google Scholar 

  97. P. Kramer, this issue.

    Google Scholar 

  98. P. Tavan, this issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Paldus, J. (1981). Unitary Group Approach to Many-Electron Correlation Problem. In: Hinze, J. (eds) The Unitary Group for the Evaluation of Electronic Energy Matrix Elements. Lecture Notes in Chemistry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93163-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93163-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10287-8

  • Online ISBN: 978-3-642-93163-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics