Skip to main content

Fossilization Processes

  • Chapter
Organic Geochemistry

Abstract

Fossils have been simply defined as traces of ancient life. Paleontology, the study of these remnants, can thus well be thought of as four-dimensional biology [1]. To adapt one description of biology,” the aim of paleontology is to understand the structure, functioning and history of ancient organisms and of populations of such organisms” [2]. Because of the nature of their material, however, paleontologists have often needed information on aspects of modern life that have scarcely interested neontologists. Examples that might be cited are the whole field of actuopaleontology (with close links to forensic medicine — see below), the study of population structures not only of living communities but also of dead assemblages [3], and the detailed morphological study of preservable tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olson, E. C., and R. L. Miller: Morphological integration. Chicago: Chicago University Press 1958.

    Google Scholar 

  2. Simpson, G. G.: The status of the study of organisms. Am. Scientist 50, 36–45 (34).

    Google Scholar 

  3. Craig, G. Y., and G. Oertel: Deterministic models of living and fossil populations of animals. Quart. J. Geol. Soc. Lond. 122, 315–355 (34).

    Article  Google Scholar 

  4. Cook, S. F., S. T. Brooks, and E. Ezra-Cohn: The process of fossilization. Southw. J. Anthrop. 17, 355–364 (34).

    Google Scholar 

  5. Thomas, G.: Processes of fossilization. New Biology 8, 75–97 (34).

    Google Scholar 

  6. Craig, G. Y., and A. Hallam: Size-frequency and growth-ring analyses of Mytilus edulis and Cardium edule, and their palaeoecological significance. Palaeontology 6, 731–750 (34).

    Google Scholar 

  7. Eglinton, G., and M. Calvin: Chemical fossils. Sci. Am. 216, 32–43 (34).

    Google Scholar 

  8. Brouwer, A.: General palaeontology. Edinburgh: Oliver & Boyd 1967.

    Google Scholar 

  9. Rhodes, F. H. T.: The course of evolution. Proc. Geologists Ass. (Engl.) 77, 1–53 (34).

    Article  Google Scholar 

  10. Harland, W.B., et al. (eds.): The fossil record. Geological Society of London 1967.

    Google Scholar 

  11. Krumbein, W. C., and L. L., G. Sloss: Stratigraphy and sedimentation, 2nd ed. San Francisco: W. H. Freeman & Co. 1963.

    Google Scholar 

  12. Shaw, A. B.: Time in stratigraphy. New York: McGraw-Hill Book Co., Inc. 1964.

    Google Scholar 

  13. Ager, D. V.: Principles of paleoecology. New York: McGraw-Hill Book Co., Inc. 1963.

    Google Scholar 

  14. Hecker, R. F.: Introduction to paleoecology. New York: American Elsevier Publ. Co., Inc. 1965.

    Google Scholar 

  15. Imbrie, J., and N. Newell (eds.): Approaches to paleoecology. New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  16. Cloud, P. E.: Paleobiogeography of the marine realm. In: Oceanography (M. Sears, ed.). Publ. Am. Ass. Advan. Sci. 67, Washington.

    Google Scholar 

  17. Durham, J.W.: The biogeographic basis of paleoecology. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  18. Vinogradov, A.P.: Biogeochemical provinces and their role in organic evolution. Geochemistry (USSR) 1963, 214–228 (34).

    Google Scholar 

  19. Whittington, H. B.: Taxonomic basis of paleoecology. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  20. Barghoorn, E.S., W.G. Meinschein, and J.W. Schopf: Paleobiology of a Precambrian shale. Science 148, 461–472(1965).

    Google Scholar 

  21. Kummel, B., and D.M. Raup (eds.): Handbook of paleontological techniques. San Francisco: W.H. Freeman & Co. 1965.

    Google Scholar 

  22. Weller, J. M.: The status of paleontology. J. Paleontol. 39, 741–749 (34).

    Google Scholar 

  23. Edinger, T.: Fossil brains reflect specialized behaviour. World Neurol. 2, 934–941 (34).

    Google Scholar 

  24. Beringer, C. C.: Gedanken über eine Psychologie fossiler Tiere (Paläopsychologie). Neues Jahrb. GeoL Palaeont. Abhandl. 97, 1–19 (34).

    Google Scholar 

  25. Tasnadi Kubacska, A.: Paläopathologie. 1965.

    Google Scholar 

  26. Degens, E. T., u. H. Schmidt: Die Paläobiochemie, ein neues Arbeitsgebiet der Evolutions forschung. Pal. Z. 40, 218–229 (34).

    Google Scholar 

  27. Pauling, L., and E. Zuckerkandl: Chemical paleogenetics. Molecular “restoration studies” of extinct forms of life. Acta Chem. Scand. 17 (Suppl. 1), 9–16 (1963).

    Article  Google Scholar 

  28. Efremov, J. A.: Taphonomy; a new branch of geology. Pan-Am. Geol. 74, 81–93 (34).

    Google Scholar 

  29. Efremov, J. A.:Taphonomie et annales géologiques (première partie). Ann. Centre Étud. Doc. Paléont. 4 (1953).

    Google Scholar 

  30. Müller, A. H.: Lehrbuch der Paläozoologie, 2. Aufl., Bd. 1. Jena: G.Fischer 1963.

    Google Scholar 

  31. Simpson, G. G.: The history of life. In: The evolution of life (S. Tax, ed.). Chicago: Chicago University Press 1960.

    Google Scholar 

  32. Newell, N. D.: The nature of the fossil record. Proc. Am. Phil. Soc. 103, 264–285 (34).

    Google Scholar 

  33. Vallentyne, J. R.: On fish remains in lacustrine sediments. Am. J. Sci. 258-A, 344–349 (1960).

    Google Scholar 

  34. Hartzell, J. C.: Conditions of fossilization. J. Geol. 14, 269–289 (34).

    Article  Google Scholar 

  35. Ladd, H. S.: Introduction. In: Treatise on marine ecology and paleoecology, vol.2, Paleoecology. Mem. Geol. Soc. Am. 67 (1957).

    Google Scholar 

  36. Willard, B., and P. L. Killeen: Fossils and fossilization. Proc. Penn. Acad. Sci. 5, 62–66 (34).

    Google Scholar 

  37. Weigelt, J.: Die Biostratonomie der 1932 auf der Grube Cecilie im mittleren Geiseltal ausge grabenen Leichenfelder. Nova Acta Leopoldina, N.F. 1, 157–175 (34).

    Google Scholar 

  38. Weigelt, J.: Some remarks on the excavations in the Geisel Valley. Res. Progr. 1, 155–159 (34).

    Google Scholar 

  39. Schafer, W.: Aktuo-Paläontologie nach Studien in der Nordsee. Frankfurt: W.Kramer 1962.

    Google Scholar 

  40. Dalquist, W. W., and S. H. Mamay: A remarkable concentration of Permian amphibian remains in Haskell County, Texas. J. Geol. 71, 641–644 (34).

    Article  Google Scholar 

  41. Craig, G.Y., and N.S. Jones: Marine benthos, substrate and paleoecology. Palaeontology 9, 30–38 (34).

    Google Scholar 

  42. Vinogradov, A. P.: The elementary chemical composition of marine organisms. Mem. Sears Found. Mar. Res. 2 (1953).

    Google Scholar 

  43. Lowenstam, H.: Biologic problems relating to the composition and diagenesis of sediments. In: The earth sciences, problems and progress in current research (T.W. Donnelly, ed.). Chicago: Chicago University Press 1963.

    Google Scholar 

  44. Moss, M. L. (ed.): Comparative biology of calcified tissue. Ann. N.Y. Acad. Sci. 109, 1–410 (34).

    Google Scholar 

  45. Sognnaes, R. F. (ed.): Calcification of biological systems.-A symposium. Publ. Am. Assoc. Advan. Sci. 64 (1960).

    Google Scholar 

  46. Sognnaes, R. F. (ed.): Mechanisms of hard tissue destruction. Publ. Am. Assoc. Advan. Sci. 75 (1963).

    Google Scholar 

  47. Kessel, E.: Über Erhaltungsfähigkeit mariner Molluskenschalen in Abhängigkeit von der Struktur. Arch. Molluskenk. 70, 248–254 (34).

    Google Scholar 

  48. Frey-Wyssling, A., and U. Mühlethaler: Ultrastructural plant cytology. Amsterdam: Elsevier 1965.

    Google Scholar 

  49. Roelofsen, P. A.: The plant cell wall. In: Encyclopedia of plant anatomy, vol. 3/4. Berlin: Borntraeger 1959.

    Google Scholar 

  50. Siegel, S. M.: The plant cell wall. Oxford: Pergamon Press 1962.

    Google Scholar 

  51. Barghoorn, E. S.: Paleobotanical studies of the Fishweir and associated deposits. Pap. Peabody Fndn. Archeol. 4, 49–83 (34).

    Google Scholar 

  52. Barghoorn, E. S.: Degradation of plant remains in organic sediments. Botan. Museum Leaflets, Harvard Univ. 14, 1–20(1949).

    Google Scholar 

  53. Barghoorn, E. S.: Degradation of plant tissues in organic sediments. J. Sediment. Petrol. 22, 34–41 (34).

    Google Scholar 

  54. Barghoorn, E. S.: Degradation of plant materials and its relation to the origin of coal. In: 2nd Conference on the origin and constitution of coal. Crystal Cliffs, Nova Scotia 1952.

    Google Scholar 

  55. Barghoorn,and R.A. Scott: Degradation of the plant cell wall and its relation to certain tracheary features of the Lepidodendrales. Am. J. Botany 45, 222–227 (34).

    Article  Google Scholar 

  56. Varner, J. E.: Biochemistry of senescence. Ann. Rev. Plant Physiol. 12, 245–264 (34).

    Article  Google Scholar 

  57. Richards, A. G.: The integument of arthropods. Minneapolis: Minnesota University Press 1951.

    Google Scholar 

  58. Schäfer, W.: Fossilisationsbedingungen brachyurer Krebse. Abhandl. Senckenberg. Naturforsch. Ges. 485, 221–238 (34).

    Google Scholar 

  59. Barton, L. V.: Seed preservation and longevity. Leonard Hill Books 1961.

    Google Scholar 

  60. — Longevity in seeds and the propagules of fungi. Encyclopedia of plant physiology, vol. 15/2. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  61. Libby, W. F.: Radiocarbon dates II. Science 114, 291–296 (34).

    Article  Google Scholar 

  62. Libby, W. F.:Chicago radiocarbon dates IV. Science 119, 135–140 (34).

    Article  Google Scholar 

  63. Libby, W. F.:12th Intern, seed testing convention, Oslo 1959. Proc. Intern. Seed Testing Assoc. 449–497 (1960).

    Google Scholar 

  64. Breder, C. M.: A note on preliminary stages in the fossilization of fishes. Copeia 1957, 132–135 (34).

    Article  Google Scholar 

  65. Pierce, W. D.: Fossil arthropods of California, 17, The silphid burying beetles in the asphalt deposits. Bull. S. Calif. Acad. Sci. 48, 54–70 (34).

    Google Scholar 

  66. Krause, H. R.: Biochemische Untersuchungen über den postmortalen Abbau von totem Plankton unter aeroben und anaeroben Bedingungen. Arch. Hydrobiol. Suppl. 24, 297–337 (34).

    Google Scholar 

  67. Hecht, F.: Der Verbleib der organischen Substanz der Tiere bei meerischer Einbettung. Sencken-bergiana 15, 165–249 (34).

    Google Scholar 

  68. Mörner, C. T., and C. Wiman: Über einen in Leichen wachs umgewandelten Schweinekadaver aus der Nähe von Göteborg. Göteborgs Kgl. Vetenskaps-Vitterhets Samhäll. Handl. (5) B 6 (9) (1939).

    Google Scholar 

  69. Müller, A.: Postmortale Dekomposition und Fettwachsbildung. Zürich 1913.

    Google Scholar 

  70. Sondheimer, E., W. A. Dence, L. R. Mattick, and S. R. Silverman: Composition of combustible concretions of the alewife, Alosa pseudoharengus. Science 152, 221–223 (34).

    Article  Google Scholar 

  71. Wiman, C.: Über ältere und neuere Funde von Leichenwachs. Senckenbergiana 25, 1–19 (34).

    Google Scholar 

  72. Bergmann, W.: Geochemistry of lipids. In: Organic geochemistry (I. A. Breger, ed.). Oxford: Pergamon Press 1963.

    Google Scholar 

  73. Zangerl, R., and E.S. Richardson: The paleoecological history of two Pennsylvanian blackshales. Fieldiana, Geol. Mem. 4, 1 -352 (1963).

    Google Scholar 

  74. Stopes, M. C., and D. M. S. Watson: On the present distribution and origin of the calcareous concretions in coal seams, known as “coal balls”. Phil. Trans. Roy. Soc. London, Ser. B, 200, 167–218 (34).

    Article  Google Scholar 

  75. Taylor, E. M.: The decomposition of vegetable matter under soils containing calcium and sodium as replaceable bases. Fuel 6, 359–367 (34).

    Google Scholar 

  76. Weigelt, J.: Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. Leipzig: Max Weg 1927.

    Google Scholar 

  77. Toots, H.: Sequence of disarticulation in mammalian skeletons. Contrib. Geol. Wyoming Univ. 37–39 (1965).

    Google Scholar 

  78. Guthrie, R. D.: Differential preservation and recovery of Pleistocene large mammal remains in Alaska. J. Paleontol. 41, 243–246 (34).

    Google Scholar 

  79. Hofmann, J.: Einbettung und Zerfall der Ichthyosaurier im Lias von Holzmaden. Meyniana 6, 10–55 (34).

    Google Scholar 

  80. Heller, W.: Organisch-chemische Untersuchungen im Posidonienschiefer Schwabens. In: Advances in organic geochemistry, 1964 (G. D. Hobson and M.C. Louis, eds.). Oxford: Pergamon Press 1966.

    Google Scholar 

  81. Moore, L. R.: The microbiology, mineralogy and genesis of a tonstein. Proc. Yorkshire Geol. Soc. 34, 235–308 (34).

    Article  Google Scholar 

  82. Boekschoten, G. J.: Shell borings of sessile epibiontic organisms as palaeoecological guides (with examples from the Dutch coast). Palaeogeog., Palaeoclimatol., Palaeoecol. 2, 333 -379 (1966).

    Article  Google Scholar 

  83. Ginsburg, R. N.: Early diagenesis and lithification of shallow-water carbonate sediments in Florida. In: Regional aspects of carbonate deposition (R. J. Le Blanc and J. G. Breeding, eds.). Spec. Publ. Soc. Econ. Paleont. Mineral. 5, 80–100 (34).

    Google Scholar 

  84. Wetzel, W.: Die Schalenzerstörung durch Mikroorganismen. Kiel. Meeresforsch. 2, 255–266 (34).

    Google Scholar 

  85. Bystrov, A. P.: Orazryshenii skeletnykh elementov iskopaemykh zhivotnykh gribami. (On the destruction of skeletal elements of fossil animals by fungi.) Vestn. Leningr. Univ., Ser. Geol. i Geogr. 6, 30–46 (1956) [Russ.].

    Google Scholar 

  86. Rolfe, W. D. I.: The cuticle of some Middle Silurian ceratiocaridid Crustacea from Scotland. Palaeontology 5, 30–51 (34).

    Google Scholar 

  87. Schindewolf, O. H.: Parasitäre Thallophyten in Ammoniten-Schalen. Paläontol. Z., Festband H.Schmidt, 206–215.

    Google Scholar 

  88. Bathurst, R. G. C.: Boring algae, micrite envelopes and lithification of molluscan biosparites. J. Geol. 5, 15–32 (34).

    Google Scholar 

  89. Wolf, K. H.: “Grain diminution” of algal colonies to micrite. J. Sediment. Petrol. 35, 420–427 (34).

    Article  Google Scholar 

  90. Shearman, D. J., and P. A. D. E. Skipwith: Organic matter in recent and ancient limestones and its role in their diagenesis. Nature 208, 1310–1311 (34).

    Article  Google Scholar 

  91. Craig, G. Y.: Concepts in palaeoecology. Earth-Sci. Rev. 2, 127–155 (34).

    Article  Google Scholar 

  92. Degens, E. T.: Geochemistry of sediments. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1965.

    Google Scholar 

  93. Pettijohn, F. J.: Sedimentary rocks, 2nd ed. New York: Harper & Bros. 1957.

    Google Scholar 

  94. Hallam, A.: The interpretation of size-frequency distributions in molluscan death assemblages. Palaeontology 10, 25–42 (34).

    Google Scholar 

  95. Fagerstrom, J. A.: Fossil communities in paleoecology: their recognition and significance. Bull. Geol. Soc. Am. 75, 1197–1216 (34).

    Article  Google Scholar 

  96. Chave, K. E.: Carbonate skeletons to limestones: problems. Trans. N.Y. Acad. Sci. (2) 23, 14–24(1960).

    Google Scholar 

  97. Chave, K. E.:Factors influencing the mineralogy of carbonate sediments. Limnol. Oceanog. 7, 218–223 (34).

    Google Scholar 

  98. Chave, K. E.: Skeletal durability and preservation. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  99. Klähn, H.: Der quantitative Verlauf der Aufarbeitung von Sanden, Gerollen und Schalen in wässerigem Medium. Neues Jahrb. Geol. Palaeontol. Beil.-Bd. 67B, 313–412 (1932).

    Google Scholar 

  100. Tauber, A.F.: Postmortale Veränderungen an Molluskenschalen und ihre Auswertbarkeit für die Erforschung vorzeitlicher Lebensräume. Palaeobiologica 7, 448–495 (34).

    Google Scholar 

  101. Weyl, P. K.: The solution alteration of carbonate sediments and skeletons. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  102. Baas Becking, L. G. M., I.R. Kaplan, and D. Moore: Limits of the natural environment in terms of pH and Eh potentials. J. Geol. 68, 243–284 (34).

    Article  Google Scholar 

  103. Stevenson, F. J.: Some aspects of the distribution of biochemicals in geologic environments. Geochim. Cosmochim. Acta 19, 261–271 (34).

    Article  Google Scholar 

  104. Barghoorn, E. S., and W. Spackman: Geological and botanical study of the Brandon lignite and its significance in coal petrology. Econ. Geol. 45, 344–357 (34).

    Article  Google Scholar 

  105. Sen, J.: The organization of structural units in fossil wood. Riv. Ital. Paleontol. 62, 221–222 (34).

    Google Scholar 

  106. Sen, J.: The chemistry of ancient buried wood. Geol. Foren. Stockholm Forh. 79, 737–758 (34).

    Google Scholar 

  107. Sen, J.: Fine structure in degraded ancient and buried wood, and in other fossilized plant derivatives II. Botan. Rev. 29, 230–242 (34).

    Google Scholar 

  108. Varossieau, W. W., and I. Breger: Chemical studies on ancient buried wood and the origin of humus. Compte Rendu 3 Congr. Avance. Étud. Strat. Géol. Carbonifère 2, 637–646 (34).

    Google Scholar 

  109. Varossieau, W. W., and I. Breger:Geochim. Cosmochim. Acta 28 (10) (1964).

    Google Scholar 

  110. Emery, K. O.: The sea off Southern California. New York: John Wiley & Sons, Inc. 1960.

    Google Scholar 

  111. Berner, R. A.: Distribution and diagenesis of sulfur in some sediments from the Gulf of California. Mar. Geol. 1, 117–140 (34).

    Article  Google Scholar 

  112. Love, L. G., and G. C. Amstutz: Review of microscopic pyrite. Fortschr. Mineral. 43, 273–309 (34).

    Google Scholar 

  113. Brown, P. R.: Pyritization in some molluscan shells. J. Sediment. Petrol. 36, 1149–1152 (34).

    Article  Google Scholar 

  114. Ehlers, E.G., D.V. Stiles, and J. D. Birle: Fossil bacteria in pyrite. Science 148, 1719–1721 (34).

    Article  Google Scholar 

  115. Imreh, J., u. N. Suraru: Baryt-Kristalle in Eozän-Versteinerungen. Neues Jahrb. Geol. Palaeontol. Monatsschr. 8, 441–447 (34).

    Google Scholar 

  116. Love, L. G., and J.W. Murray: Biogenic pyrite in recent sediments of Christchurch Harbour, England. Am. J. Sci. 261, 433–448 (34).

    Article  Google Scholar 

  117. Mosebach, R.: Mineralbildungsvorgänge als Ursache des Erhaltungszustandes der Fossilien des Hunsrück-Schiefers. Palaeontol. Z. 25, 127–137 (34).

    Google Scholar 

  118. Oppenheimer, C. H.: Bacterial activity in sediments of shallow marine bays. Geochim. Cosmochim. Acta 19, 244–260 (34).

    Article  Google Scholar 

  119. Stocks, H. B.: On the origin of certain concretions in the Lower Coal-Measures. Quart. J. Geol. Soc. Lond. 58, 46–58 (34).

    Article  Google Scholar 

  120. Edwards, A. B., and G. Baker: Some occurrences of supergene iron sulphides in relation to their environments of deposition. J. Sediment. Petrol. 21, 34–46 (34).

    Google Scholar 

  121. Love, L. G.: Micro-organic material with diagenetic pyrite from the Lower Proterozoic Mount Isa Shale and a Coal Measures shale. Proc. Yorkshire Geol. Soc. 35, 187–202 (34).

    Article  Google Scholar 

  122. Goldberg, E. D., and R.H. Parker: Phosphatized wood from the sea-floor. Bull. Geol. Soc. Am. 71, 631–632 (34).

    Article  Google Scholar 

  123. Arrhenius, G. O. S.: Sedimentation on the ocean floor. In: Researches in geochemistry (P. H. Abelson, ed.). New York: John Wiley & Sons, Inc. 1959.

    Google Scholar 

  124. Krinsley, D., and R. Bieri: Changes in the chemical composition of pteropod shells after deposition on the sea floor. J. Paleontol. 33, 682–684 (34).

    Google Scholar 

  125. Blokh, A. M.: Rare earths in the remains of Paleozoic fishes of the Russian platform. Geokhimiya 1961, 404–415 (34).

    Google Scholar 

  126. Dodd, J. R.: Environmentally controlled variation in the shell structure of a pelecypod species. J. Paleontol. 38, 1065–1071 (34).

    Google Scholar 

  127. Bowen, R.: Paleotemperature analysis. Amsterdam: Elsevier 1966.

    Google Scholar 

  128. Jefferies, R. P. S.: The palaeoecology of the Actinocamax plenus Subzone (lowest Turonian) in the Anglo-Paris Basin. Palaeontology 4, 609–647 (34).

    Google Scholar 

  129. Huelsenbeck, P., and J. Beerbower: Paleoecology of Upper Cretaceous (Navesink) beds at Poricy Brook, Monmouth County, New Jersey. Proc. Penn. Acad. Sci. 37, 175–178 (34).

    Google Scholar 

  130. Einsele, G., and R. Mosebach: Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura. Neues Jahrb. Geol. Palaeont., Abhandl. 101, 319–430 (34).

    Google Scholar 

  131. Klähn, H.: Die Anlösungsgeschwindigkeit kalkiger anorganischer und organischer Körper innerhalb eines wässerigen Mediums. Zentr. Mineral. Geol., Abt. A 1936, 328–348, 369–384 (34).

    Google Scholar 

  132. Krejci-Graf, K.: Über Schneckendeckel-Ablagerungen und die Erhaltung von Chitinsubstanz. Senckenbergiana 15, 22–25 (34).

    Google Scholar 

  133. Matern, H.: Oberdevonische Anaptychen in situ und über die Erhaltung von Chitinsubstanzen. Senckenbergiana 13, 160–167 (34).

    Google Scholar 

  134. Pfannenstiel, M.: Über Lösungserscheinungen an Gryphäen des Lias. Zentr. Mineral. Geol. 1928 B, 51–61 (1928).

    Google Scholar 

  135. Quenstedt, W.: Über Erhaltungszustände von Muscheln und ihre Entstehung. Palaeontographica 71, 1–66 (34).

    Google Scholar 

  136. Chave, K.E., K.S. Deffeyes, P.K. Weyl, R.M. Garrels, and M.E. Thompson: Observations on the solubility of skeletal carbonates in aqueous solutions. Science 137, 33–34 (34).

    Article  Google Scholar 

  137. Schindewolf, O. H.: Über Aptychen (Ammonoidea). Palaeontographica A 111, 1–46 (34).

    Google Scholar 

  138. Cloud, P.E.: Environment of calcium carbonate deposition west of Andros Island, Bahamas. U.S. Geol. Surv., Profess. Papers 350 (1962).

    Google Scholar 

  139. Williams, M., and E. S. Barghoorn: Biogeochemical aspects of the formation of marine carbonates. In: Organic geochemistry (I. A. Breger, ed.). Oxford: Pergamon Press 1963.

    Google Scholar 

  140. Kennett, J. P.: Foraminiferal evidence of a shallow calcium carbonate solution boundary, Ross Sea, Antarctica. Science 153,191–193 (1966).

    Article  Google Scholar 

  141. Riedel, W. R.: Siliceous organic remains in pelagic sediments. In: Silica in sediments (H.A. Ireland, ed.). Spec. Publ. Econ. Paleont. Mineral. 7 (1959).

    Google Scholar 

  142. Jarke, J.: Beobachtungen über Kalkauflösung an Schalen von Mikrofossilien in Sedimenten der westlichen Ostsee. Deut. Hydrograph. Z. 14, 6–11 (34).

    Article  Google Scholar 

  143. Heim, A.: Oceanic sedimentation and submarine discontinuities. Eclogae Geol. Helv. 51,642–649 (1958).

    Google Scholar 

  144. Hollmann, R.: Subsolutions-Fragmente (Zur Biostratinomie der Ammonoidea im Malm des Monte Baldo/Norditalien). Neues Jahrb. Geol. Palaeontol., Abhandl., 119, 22–82 (34).

    Google Scholar 

  145. Mosebach, R.: Wässerige H2S-Losungen und das Verschwinden kalkiger tierischer Hartteile aus werdenden Sedimenten. Senckenbergiana 33, 13–22 (34).

    Google Scholar 

  146. Richter, R.: Tierwelt und Umwelt im Hunsrückschiefer. Senckenbergiana 13, 299–342 (34).

    Google Scholar 

  147. Lazar, E.: Ein ungewöhnlicher Erhaltungszustand bei interglazialen Mollusken. Geologie 9, 308–315(1960).

    Google Scholar 

  148. Sohn, I. G.: Chemical constituents of ostracodes; some applications to paleontology and paleoecology. J. Paleontol., 32, 730–736 (34).

    Google Scholar 

  149. Taylor, J. H.: Some aspects of diagenesis. Advan. Sci. 20, 417–436 (34).

    Google Scholar 

  150. Larsen, G., and G. V. Chilingar (eds.): Diagenesis in sediments. Amsterdam: Elsevier 1967.

    Google Scholar 

  151. Coombs, D. S.: Some recent work on the lower grades of metamorphism. Australian J. Sci. 24, 203–215 (34).

    Google Scholar 

  152. Winkler, H. G. F.: Petrogenesis of metamorphic rocks. Berlin-Heidelberg-New York: Springer 1965.

    Book  Google Scholar 

  153. Sujkowski, Z. L.: Diagenesis. Bull. Am. Assoc. Petrol. Geologists 42, 2692–2717 (34).

    Google Scholar 

  154. Bucher, W. H.: Fossils in metamorphic rocks. Bull. Geol. Soc. Am. 64, 275–300, 997- 999 (1953).

    Article  Google Scholar 

  155. Abelson, P. H.: Geochemistry of organic substances. In: Researches in geochemistry (P. H. Abelson, ed.). New York: John Wiley & Sons, Inc. 1959.

    Google Scholar 

  156. Hudson, J. D.: Pseudo-pleochroic calcite in recrystallized shell-limestones. Geol. Mag. 99, 492–500 (34).

    Article  Google Scholar 

  157. Fairbridge, R. W.: Diagenetic phases. Bull. Am. Assoc. Petrol. Geologists 50, 612–613 (34).

    Google Scholar 

  158. Degens, E. T.: Über biogeochemische Umsetzungen im Frühstadium der Diagenese. In: Deltaic and shallow marine sediments (L. M. J. van Straaten, ed.). Amsterdam: Elsevier 1964.

    Google Scholar 

  159. Siever, R., and R.A. Scott: Organic geochemistry of silica. In: Organic geochemistry (I.A. Breger, ed.). Oxford: Pergamon Press 1963.

    Google Scholar 

  160. Degens, E. T., G. V. Chilingar, and W. D. Pierce: On the origin of petroleum inside freshwater carbonate concretions of Miocene age. In: Advances in organic geochemistry (U. Colombo and G. D. Hodson, eds.). Oxford: Pergamon Press 1964.

    Google Scholar 

  161. Chappell, W. M., J.W. Durham, and D.E. Savage: Mold of a rhinoceros in basalt, Lower Grand Coulee, Washington. Bull. Geol. Soc. Am. 62, 907–918 (34).

    Article  Google Scholar 

  162. Krumbiegel, G.: Die tertiäre Pflanzen- und Tierwelt der Braunkohle des Geiseltales. Wittenberg: A. Ziemsen 1959.

    Google Scholar 

  163. Voigt, E.: Fossil red blood corpuscles found in a lizard from the Middle Eocene lignite of the Geiseltal near Halle. Res. Progr. 5, 53–56 (34).

    Google Scholar 

  164. Voigt, E.:Mikroskopische Untersuchungen an fossilen tierischen Weichteilen und ihre Bedeutung für Systematik und Paläobiologie. Z. Deut. Geol. Ges. 101,99–104 (1950).

    Google Scholar 

  165. Glob, P. V.: Lifelike man preserved 2,000 years in peat. Nat. Geogr. Mag. 105, 419–430 (34).

    Google Scholar 

  166. Bradley, W. H.: Chloroplast in Spirogyra from the Green River Formation of Wyoming. Am. J. Sci. 260, 455–459(1962).

    Article  Google Scholar 

  167. Darrah, W. C.: Changing views of petrifaction. Pan-Am. Geol. 76, 13–26(1941).

    Google Scholar 

  168. Bathurst, R. G. C.: Diagenesis and paleoecology — a survey. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  169. Teodorovich, G. I.: Authigenic minerals in sedimentary rocks. New York: Consultants Bureau 1961.

    Book  Google Scholar 

  170. Folk, R. L.: Some aspects of recrystallization. J. Sediment. Petrol. 35,14–46 (1965).

    Article  Google Scholar 

  171. Turekian, K. K., and R.L. Armstrong: Chemical and mineralogical composition of fossilmolluscan shells from the Fox Hills Formation, South Dakota. Bull. Geol. Soc. Am. 72, 1817–1828 (34).

    Article  Google Scholar 

  172. Lowenstam, H. A.: Systematic paleoecologic and evolutionary aspects of skeletal building materials. Bull. Museum Comp. Zool. Harvard Coll. 112, 287–317 (34).

    Google Scholar 

  173. Curtis, C. D., and D.H. Krinsley: The detection of minor diagenetic alteration in shell material. Geochim. Cosmochim. Acta 29, 71–84 (34).

    Article  Google Scholar 

  174. Garrels, R. M., and C. L. Christ: Solutions, minerals and equilibria. New York: Harper & Row 1965.

    Google Scholar 

  175. Schmalz, R. F.: Kinetics and diagenesis of carbonate sediments. J. Sediment. Petrol. 37, 60–67 (34).

    Google Scholar 

  176. Seilacher, A.: Biogenic sedimentary structures. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  177. Barghoorn, E. S., and S.A. Tyler: Micro-organisms from the Gunflint Chert. Science 147, 563–577 (34).

    Article  Google Scholar 

  178. Tasch, P.: Flora and fauna of the Rhynie Chert. Bull. Univ. Wichita 32,1–24 (1957).

    Google Scholar 

  179. Eicke, R.: Elektronenmikroskopische Untersuchungen an verkieselten Coniferen. Palaeontographica 97 B, 36–44 (1954).

    Google Scholar 

  180. Nagy, B., and J. P. Wourms: Experimental study of chromatographic-type accumulation of organic compounds in sediments: an introductory statement. Bull. Geol. Soc. Am. 70, 655- 659 (1959).

    Article  Google Scholar 

  181. Stürmer, W.: Achat-Bildungen in Kieselschiefer-Fossilien. Senckenbergiana Lethaea 43, 335–342 (34).

    Google Scholar 

  182. Stürmer, W.:Das Wachstum silurischer Sphaerellarien und ihre späteren chemischen Umwandlungen. Palaeont. Z. 40, 257–261 (34).

    Google Scholar 

  183. Saint-Laurent, J. de: Au sujet du mimétisme de Ia matière minérale fossilisante. Bull. Soc. Hist. Nat. Afrique Nord 31, 178–179 (34).

    Google Scholar 

  184. Bathurst, R. G. C.: The replacement of aragonite by calcite in the molluscan shell wall. In:Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  185. Sorby, H. C.: The anniversary address of the president. Proc. Geol. Soc. Lond. 35, 56–95 (34).

    Google Scholar 

  186. Dodd, J. R.: Processes of conversion of aragonite to calcite with examples from the Cretaceous of Texas. J. Sediment. Petrol. 36, 733–741 (34).

    Google Scholar 

  187. Fyfe, W. S., and J.L. Bischoff: The calcite-aragonite problem, p. 3- 13. In: Dolomitization and limestone diagenesis (L. C. Pray and R. C. Murray, eds.). Spec. Publ. Soc. Econ. Paleont. Miner. 13 (1965).

    Google Scholar 

  188. Stehli, F. G.: Shell mineralogy in Paleozoic invertebrates. Science 123, 1031–1032 (34).

    Article  Google Scholar 

  189. Niggli, P.: Rocks and mineral deposits. San Francisco: W. H. Freeman & Co. 1954.

    Google Scholar 

  190. Ames, L. L.: Volume relationships during replacement reactions. Econ. Geol. 56, 1438- 1445 (1961).

    Article  Google Scholar 

  191. Garrels, R. M., R. M. Dreyer, and A. L. Howland: Diffusion of ions through intergranularspaces in water-saturated rocks. Bull. Geol. Soc. Am. 60, 1809–1828 (1949).

    Article  Google Scholar 

  192. Holser, W. T.: Metasomatic processes. Econ. Geol. 42, 384–395 (34).

    Article  Google Scholar 

  193. Murray, R. C., and L. C. Pray (eds.): Dolomitization and limestone diagenesis. Spec. Publ. Econ. Paleont. Mineral. 13 (1965).

    Google Scholar 

  194. Holdsworth, B. K.: Dolomitization of siliceous microfossils in Namurian concretionary limestones. Geol. Mag. 104, 148–154 (34).

    Article  Google Scholar 

  195. Murray, R. C.: Preservation of primary structures and fabrics in dolomite. In: Approaches to paleoecology (J. Imbrie and N. Newell, eds.). New York: John Wiley & Sons, Inc. 1964.

    Google Scholar 

  196. Westoll, T. S.: Mineralization of the Permian rocks of South Durham. Geol. Mag. 80, 119- 120(1943).

    Article  Google Scholar 

  197. Davidson, C. F.: The origin of some strata-bound sulfide ore deposits. Econ. Geol. 57, 265–274, 1134–1137(1962).

    Article  Google Scholar 

  198. Ferguson, L.: Distortion of Crurithyris… by compaction of the containing sediment. J. Paleont. 36, 115–119 (34).

    Google Scholar 

  199. Rutsch, R. F.: Die Bedeutung der Fossil-Deformation. Bull. Ver. Schweiz. Petrol.-Geol.-Ingr. 15(49),5–18 (1949).

    Google Scholar 

  200. Klähn, H.: Sedimentdruck und seine Beziehung zum Fossil. Jahres.-Ver. Vaterl. Naturk. Wurtt. 88, 52–80(1932).

    Google Scholar 

  201. Thenius, E.: Versteinerte Urkunden. Berlin-Göttingen-Heidelberg: Springer 1963.

    Book  Google Scholar 

  202. Johnson, R. G.: Models and methods for analysis of the mode of formation of fossil assemblages. Bull. Geol. Soc. Am. 71, 1075–1085 (34).

    Article  Google Scholar 

  203. Krumbein, W. C., and R. M. Garrels: Origin and classification of chemical sediments in terms of pH and oxidation reduction potentials. J. Geol. 60, 1–33 (34).

    Article  Google Scholar 

  204. Durham, J. W.: The incompleteness of our knowledge of the fossil record. J. PaleontoL 41, 559–565 (34).

    Google Scholar 

  205. Kennedy, W. J., and A. Hall: The influence of organic matter on the preservation of aragonite in fossils. Proc. geol. Soc. Lond. 1643, 253–255 (34).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rolfe, W.D.I., Brett, D.W. (1969). Fossilization Processes. In: Eglinton, G., Murphy, M.T.J. (eds) Organic Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87734-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87734-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87736-0

  • Online ISBN: 978-3-642-87734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics