Skip to main content

Molecular studies on azole sensitivity in fungi

  • Conference paper
Molecular Biology and its Application to Medical Mycology

Part of the book series: NATO ASI Series ((ASIH,volume 69))

Abstract

Azole inhibitors of fungal sterol 14α-demethylase have provided a rich source of drugs and pesticides and new compounds are continuing to be evaluated for efficacy. The inhibition of the cytochrome P450 enzyme mediating this reaction was indicated by the effect on ergosterol biosynthesis, with the accumulation of C 14-methylated sterols (figure 1; for review; Vanden Bossche, 1985). Despite their importance many of the molecular details of azole tolerance and resistance are only now beginning to be addressed and revealed. Compounds found to be active as inhibitors of sterol 14α-demethylase include pyrimidines, piparazines, pyridines, imidazoles and triazoles (Kato, 1986). The imidazoles and particularly the triazoles have been successfully developed as orally active drugs (figure 1). Molecular genetic techniques and molecular modelling may assist the design of further drugs. Increased importance for the development of new anti-fungals has resulted from the susceptibility to fungal infections of increasing numbers of immuno-compromised patients. Fungal resistance has also been reported and a molecular understanding is desirable here also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballard SA, Ellis SW, Kelly SL and Troke PF (1990) Ergosterol biosynthesis by a cell-free preparation of Aspergillus fumigatus and its inhibition by azole antifungal agents. J. Med. Vet. Mycol. 28:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Brevskar KK, Cresnar B and Hudnik-Plevnik T (1987) Resolution and reconstitution of cytochrome P450 containing steroid hydroxylation system of Rhizopus nigricans. J. Steroid Biochem. 26:499–501.

    Article  Google Scholar 

  • Cooper RA and Strauss JF (1984) Regulation of cell membrane cholesterol, In: Shinitzky M. (Ed) Physiology of Membrane Fluidity. Vol 1 CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ebert E, Gaudin J, Muecke W, Ramsteiner K and Vogel C (1983) Inhibition of ergosterol biosynthesis by etaconazole in Ustilago maydis. Z. Naturforsch. 38e:28–34.

    Google Scholar 

  • Henry SA (1982) Membrane lipids of yeast: Biochemical and genetic studies. In: Strathern J., Jones E., Broach J. (Eds) The molecular biology of the yeast Saccharomyces cerevisiae, Vol2, Cold Spring Harbor Press pp 101-158.

    Google Scholar 

  • Hitchcock CA, Dickenson K, Brown SB, Evans EGV and Adams DJ (1989a) Purification and properties of cytochrome P450 dependant 14α-demethylase from Candida albicans. Biochem. J. 263:573–579.

    PubMed  CAS  Google Scholar 

  • Hata S, Nishino T, Katsuki A, Aoyama Y and Yoshida Y (1987) Characterisation of Δ22 desaturation in ergosterol biosynthesis of yeast. Agric. Biol. Chem. 51:1349–1354.

    Article  CAS  Google Scholar 

  • Hitchcock CA, Brown SB, Evans EGV and Adams DJ (1989b) Cytochrome P450 dependant 14α-demethylation of lanosterol in Candida albicans. Biochem. J. 260:549–556.

    PubMed  CAS  Google Scholar 

  • Kalb VF, Woods CW, Tun TG, Dey CR, Sutter TR and Loper JC (1987) Primary structure of P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537.

    Article  PubMed  CAS  Google Scholar 

  • Kato T (1986) Sterol biosynthesis in fungi, a target for broad spectrum fungicides. In: Haug G., Hoffman H. (Eds) Chemistry of Plant Protection, Vol 1. Springer-Verlag pp 1-24.

    Google Scholar 

  • Kelly SL, Watson PF, Kenna S, Ellis SW, Rose ME and Kelly DE (1990) Molecular genetic studies on yeast cytochrome P450 in relation to azole inhibition. In: Lyr H. (Ed) Systemic Fungicides and Antifungal Compounds. Tagungsbericht, Akademie der Landwirtschaftswis-senschaften, DDR, Berlin. 291:71–76.

    Google Scholar 

  • Kenna S, Bligh HFJ, Watson PF and Kelly SL (1989) Genetic and physiological analysis of azole sensitivity in Saccharomyces cerevisiae. J. Med. Vet. Mycol. 27:397–406.

    Article  PubMed  CAS  Google Scholar 

  • King DJ, Azari MR and Wiseman A (1984) Studies on the properties of highly purified cytochrome P448 and its dependant activity in benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Xenobiotica 14:187–206.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch DR, Lai MH and O’Sullivan J (1988) Isolation of the cytochrome P450 LIA1 (lanosterol 14α-demethylase) from Candida albicans. Gene 68:229–237.

    Article  PubMed  CAS  Google Scholar 

  • Mellor J, Dobson MJ, Roberts NA, Tuite MF, Emtage JS, White S, Lowe PA, Patel T, Kingsman AJ and Kingsman SM (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Mercer EI (1984) The biosynthesis of ergosterol. Pestic. Sci. 15:133–155.

    Article  CAS  Google Scholar 

  • Morris GM and Richards WG (1991) Molecular modelling of the sterol C-14 demethylase of Saccharomyces cerevisiae. Biochem. Soc. Trans. 769:793–795.

    Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fuji-Kuriyama Y, Gonzalez FJ, Guenguerich FP, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR and Waxman DJ (1991) The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA and Cell Biology 10:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Pierce AM, Mueller RB, Unrau AM and Oehlschlager AC (1978) Metabolism of Δ24 sterols by yeast mutants blocked in the removal of the C-14 methyl group. Can. J. Biochem. 56:794–800.

    PubMed  CAS  Google Scholar 

  • Quail MA, Arnoldi A, Moore DJ, Goosey MW and Kelly SL (1992) Ketoconazole mediated growth inhibition in Botrytis cinerea and Saccharomyces cerevisiae. Phytochemistry (in press).

    Google Scholar 

  • Shimokawa O, Kato Y, Kawano K and Nakayama H (1989) Accumulation of 14α-methylergosta-8,(24)-dien-3B,6α-diol in 14α-demethylation mutants of Candida albicans: genetic evidence for the involvement of 5-desaturase. Biochem. Biophys. Acta 1003:15–19.

    PubMed  CAS  Google Scholar 

  • Stansfield IS (1990) Purification and regulation of P450 in yeast. PhD thesis. University of Sheffield.

    Google Scholar 

  • Taylor FR, Rodriguez RJ and Parks LW (1983a) Requirement for a second sterol biosynthetic mutation for viability of a sterol C-14 demethylation defect in Saccharomyces cerevisiae. J. Bacteriol. 155:64–68.

    PubMed  CAS  Google Scholar 

  • Trocha PJ, Rodriguez RJ and Sprinson DB (1977) Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Seperation of sterol by high pressure liquid chromatography. Biochemistry 16:4721–4726.

    Article  PubMed  CAS  Google Scholar 

  • Vanden Bossche H (1985) Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. In: M.R. McGinnis (Ed) Curr. Topics Med. Mycol., Voll. Springer-Verlag, pp 313-350.

    Google Scholar 

  • Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Coene M, Lauwers W, Jeune LL, Moereels H and Janssen PAJ (1990) Mode of action of antifungals of use in immunocompromised patients. Focus on Candida glabrata and Histoplasma capsulatum. In: Vanden Bossche H., Mackenzie D.W.R., Cauenberg G., Van Cutsum J., Drouhet E. and Dupont B. (Eds.) Mycoses in AIDS Patients. Plenum pp223-243.

    Google Scholar 

  • Watson PF, Rose ME and Kelly SL (1988) Isolation and characterisation of ketoconazole resistant mutants of Saccharomyces cerevisiae. J. Med. Vet. Mycol. 26:153–162.

    Article  PubMed  CAS  Google Scholar 

  • Watson PF, Rose ME, Ellis SW, England HE and Kelly SL (1989) Defective sterol C5-6 desaturation and azole resistance: A new hypothesis on the mode of action of azole antifungals. Biochem. Biophys. Res. Commun. 164:1170–1175.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y and Aoyama Y (1984) Yeast cytochrome P450 catalysing lanosterol 14α-demethylation. I. Purification and spectral properties. J. Biol. Chem. 259:1655–1660.

    PubMed  CAS  Google Scholar 

  • Yoshida Y and Aoyama Y (1990) Stereoselective interaction of an antifungal agent with its target, lanosterol 14α-demethylase. Chirality 2: 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Kumaoka H and Sato R (1974) Studies on the microsomal electron transport system of anaerobically grown yeast. J. Biochem. 78: 1201–1210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelly, S.L., Kelly, D.E. (1993). Molecular studies on azole sensitivity in fungi. In: Maresca, B., Kobayashi, G.S., Yamaguchi, H. (eds) Molecular Biology and its Application to Medical Mycology. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84625-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84625-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84627-4

  • Online ISBN: 978-3-642-84625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics