Skip to main content

Adeno-associated Virus 2-Mediated Transduction and Erythroid Lineage-Specific Expression in Human Hematopoietic Progenitor Cells

  • Chapter
Adeno-Associated Virus (AAV) Vectors in Gene Therapy

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 218))

Abstract

Parvoviruses are among the smallest of the DNA-containing viruses that infect a wide variety of vertebrates (Siegl et al. 1985). Two parvoviruses of human origin, the nonpathogenic adeno-associated virus 2 (AAV) and the parvovirus B19, a common human pathogen, have been studied extensively (Berns and Bohenzky 1987; Brown et al. 1994). AAV requires coinfection with a helper virus, such as adenovirus or herpesvirus, for its optimal replication (Berns 1990), but in the absence of a helper virus, the AAV genome establishes a latent infection in a site-specific manner (Kotin and Berns 1989; Kotin et al. 1990, 1991, 1992; Samulski et al. 1991). B19, by contrast, is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells (Ozawa et al. 1986, 1987; Yaegashi et al. 1989; Srivastava and Lu 1988; Takahashi et al. 1990). We have described the construction of a recombinant AAV-B19 hybrid genome, in which we combined the remarkable features of these two parvoviruses, and speculated that such a hybrid vector may prove useful for high efficiency transduction of primary human hematopoietic progenitor cells (Srivastava et al. 1989). Indeed, it has become increasingly clear that the AAV-based vector system may prove to be a useful alternative to the more commonly used retroviral and adenoviral vectors for its potential use in human gene therapy (Muzyczka 1992; Carter 1993; Srivastava 1994). Despite these advances, a number of fundamental questions related to AAV remain unanswered. For example, the molecular details of viral assembly and the mechanism of viral entry into the host cell have not been rigorously analyzed. Furthermore, the feasibility of obtaining tissue-specific expression of an AAV-transduced gene has not been adequately addressed. Here, we provide experimental evidence to suggest that the vector assembly requires a precise signaling mechanism and that AAV infection of human cells is receptor-mediated. We also document erythroid lineage restricted expression following AAV-B19 hybrid vector-mediated transduction of primary human hematopoietic progenitor cells. Elucidation of the molecular details of these aspects of AAV biology will have important implications in the potential use of AAV as a vector in human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashktorab H, Srivastava A (1989) Identification of nuclear proteins that specifically interact with adeno-associated virus type 2 inverted terminal repeat hairpin DNA. J Virol 63: 3034–3039

    PubMed  CAS  Google Scholar 

  • Berns Kl (1990) Parvovirus replication. Microbiol Rev 54: 316–329

    PubMed  CAS  Google Scholar 

  • Berns Kl, Bohenzky RA (1987) Adeno-associated viruses: an update. Adv Virus Res 32: 243–306

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262: 114–117

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Young NS, Liu JM (1994) Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit Rev Oncol Hematol 16: 1–31

    Article  PubMed  CAS  Google Scholar 

  • Carter BJ (1993) Adeno-associated virus vectors. Curr Opin Biotechnol 3: 533–538

    Article  Google Scholar 

  • Cotmore SF, Tattersall PJ (1984) Characterization and molecular cloning of a human parvovirus genome. Science 226: 1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Curiel DT, Wagner E, Cotten M, Birnstiel ML, Agarwal S, Li C-M, Hu P-C (1992) High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther 3: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb J, Muzyczka N (1988) In vitro excision of adeno-associated virus DNA from recombinant Plasmids: isolation of an enzyme fraction from HeLa cells that cleaves DNA at poly(G) sequences. Mol Cell Biol 8: 2513–2522

    CAS  Google Scholar 

  • Hermonat PL, Labow MA, Wright R, Berns Kl, Muzyczka N (1984) Genetics of adeno associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. J Virol 51: 329–339

    PubMed  CAS  Google Scholar 

  • Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cultures. J Mol Biol 26: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5: 282–304

    Article  Google Scholar 

  • Hong G, Ward P, Berns Kl (1992) In vitro replication of adeno-associated virus DNA. Proc Natl Acad Sci USA 89: 4673–4677

    Article  PubMed  CAS  Google Scholar 

  • Im D-S, Muzyczka N (1989) Factors that bind to adeno-associated virus terminal repeats. J Virol 63: 3095–3104

    PubMed  CAS  Google Scholar 

  • Im D-S, Muzyczka N (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Im D-S, Muzyczka N (1992) Partial purification of adeno-associated virus Rep78, Rep52, and Rep40 proteins and their biochemical characterization J Virol 66: 1119–1128

    PubMed  CAS  Google Scholar 

  • Kotin RM, Berns Kl (1989) Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virol 170: 460–67

    Article  CAS  Google Scholar 

  • Kotin RM, Siniscalco M, Samulski RJ, Zhu X, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns Kl (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87: 2211–2215

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Menninger JC, Ward DC, Berns Kl (1991) Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 10: 831–834

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Linden RM, Berns Kl (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11: 5071–5078

    PubMed  CAS  Google Scholar 

  • Labow MA, Berns Kl (1988) The adeno-associated virus rep gene inhibits replication of an adeno-associated virus/simian virus 40 hybrid genome in cos-7 cells. J Virol 62: 1705–1712

    PubMed  CAS  Google Scholar 

  • Liu JM, Fujii H, Green SW, Komatsu N, Young NS, Shimada T (1991) Indiscriminate activity from the B19 parvovirus p6 promoter in non-permissive cells. Virol 182: 361–364

    Article  CAS  Google Scholar 

  • Liu JM, Green SW, Shimada T, Young NS (1992) A block in full-length transcript maturation in cells non-permissive for B19 parvovirus. J Virol 66: 4686–4692

    PubMed  CAS  Google Scholar 

  • Lusby E, Fife KH, Berns Kl (1980) Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. J Virol 34: 402–409

    PubMed  CAS  Google Scholar 

  • Marcus DM, Kundu SK, Suzuki A (1981) The P blood group system: recent progress in immunochemistry and genetics. Semin Hematol 18: 63–71

    PubMed  CAS  Google Scholar 

  • Moritz T, Patel VK, Williams DA (1994) Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J Clin Invest 93: 1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Munshi NC, Zhou SZ, Woody MJ, Morgan DA, Srivastava A (1993) Successful replication of parvovirus B19 in the human megakaryocyte leukemia cell line MB-02. J Virol 67: 562–566

    PubMed  CAS  Google Scholar 

  • Muzyczka N (1992) Use of aderio-associated virus as a general transduction vector for mammalian cells. In: Muzyczka N (ed) Viral expression vectors. Springer, Berlin Heidelberg New York, pp 97–129 (Current topics in microbiology and immunology, vol 158)

    Chapter  Google Scholar 

  • Nahreini P, Srivastava A (1989) Rescue and replication of the adeno-associated virus 2 genome in mortal and immortal human cells. Intervirology 30: 74–85

    PubMed  CAS  Google Scholar 

  • Nahreini P, Srivastava A (1992) Rescue of the adeno-associated virus 2 genome correlates with alterations in DNA-modifying enzymes in human cells. Intervirology 33: 109–115

    PubMed  CAS  Google Scholar 

  • Nahreini P, Woody MJ, Zhou SZ, Srivastava A (1993) Versatile adeno-associated virus 2-based vectors for constructing recombinant virions. Gene 124: 257–262

    Article  PubMed  CAS  Google Scholar 

  • Ni T-H, Zhou X-H, McCarty DM, Zolotukhin I, Muzyczka N (1994) In vitro replication of adeno-associated virus DNA. J Virol 68: 1128–1138

    PubMed  CAS  Google Scholar 

  • Owens RA, Carter BJ (1992) In vitro resolution of adeno-associated virus DNA hairpin termini by wild-type Rep protein is inhibited by a dominant-negative mutant of Rep. J Virol 66: 1236–1240

    PubMed  CAS  Google Scholar 

  • Ozawa K, Kurtzman GJ, Young NS (1986) Replication of the B19 parvovirus in human bone marrow cultures. Science 233: 883–886

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Kurtzman GJ, Young NS (1987) Productive infection by B19 parvovirus of human erythroid bone marrow cells in vitro. Blood 70: 384–391

    PubMed  CAS  Google Scholar 

  • Ponnazhagan S, Nallari ML, Srivastava A (1994) Suppression of human α-globin gene expression mediated by the recombinant adeno-associated virus 2-based antisense vectors. J Exp Med 179: 733–738

    Article  PubMed  CAS  Google Scholar 

  • Ponnazhagan S, Wang XS, Woody MJ, Luo F, Kang LY, Nallari ML, Munshi NC, Zhou SZ, Srivastava A (1996) Differential expression in human cells from the p6 promoter of human parvovirus B19 following plasmid transfection and recombinant adeno-associated virus 2 (AAV) infection: human megakaryocytic leukemia cells are non-permissive for AAV infection. J Gen Virol (in press)

    Google Scholar 

  • Rouger P, Gane P, Salmon C (1987) Tissue distribution of H, Lewis and P antigens shown by a panel of 18 monoclonal antibodies. Rev Fr Trans Immunohematol 30: 699–708

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1.53–1.110

    Google Scholar 

  • Samulski RJ, Berns Kl, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 79: 2077–2081

    Article  PubMed  CAS  Google Scholar 

  • Samulski RJ, Srivastava A, Berns Kl, Muzyczka N (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33: 135–143

    Article  PubMed  CAS  Google Scholar 

  • Samulski RJ, Chang L-S, Shenk T (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61: 3096–3101

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Chang L-S, Shenk T (1989) Helper-free stocks of recombinant adeno-associated viruses: Normal integration does not require viral gene expression. J Virol 63: 3822–3828

    PubMed  CAS  Google Scholar 

  • Samulski RJ, Zhu X, Xiao X, Brook J, Houseman DE, Epstein N, Hunter LA (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10: 3941–3950

    PubMed  CAS  Google Scholar 

  • Schwarz TF, Serke S, Hottentrager B, von Brunn A, Baurmann H, Kirsch A, Stolz W, Hunn D, Deinhardt F, Roggendrof M (1992) Replication of parvovirus B19 in hematopoietic progenitor cells generated in vitro from normal human peripheral blood. J Virol 67: 562–566

    Google Scholar 

  • Senapathy P, Tratschin J-D, Carter BJ (1984) Replication of adeno-associated virus DNA. Complementation of naturally occurring rep mutants by a wild-type genome or an ori mutant and correction of terminal palindrome deletions. J Mol Biol 179: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Shade RO, Blundell MC, Cotmore SF, Tattersall PJ, Astell CR (1986) Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol 58: 921–936

    PubMed  CAS  Google Scholar 

  • Shimomura S, Komatsu N, Frickhofen N, Anderson S, Kajigaya S, Young NS (1992) First continuous propagation of B19 parvovirus in a cell line. Blood 79: 18–24

    PubMed  CAS  Google Scholar 

  • Siegl G, Bates RC, Berns Kl, Carter BJ, Kelly DC, Kurstak E, Tattersall P (1985) Characteristics and taxonomy of parvoviridae. Intervirology 23: 61–73

    Article  PubMed  CAS  Google Scholar 

  • Snyder RO, Samulski RJ, Muzyczka N (1990) In vitro resolution of covalently joined AAV chromosome ends. Cell 60: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Snyder RO, Im D-S, Ni T-H, Xiao X, Samulski RJ, Muzyczka N (1993) Features of the adeno-associated virus origin involved in substrate recognition by the viral Rep protein. J Virol 67: 6096–6104

    PubMed  CAS  Google Scholar 

  • Spalholz BA, Tattersall PJ (1983) Interaction of minute virus of mice with differentiated cells: strain dependent target-cell specificity is mediated by the intracellular factors. J Virol 46: 937–943

    PubMed  CAS  Google Scholar 

  • Srivastava A (1987) Replication of the adeno-associated virus DNA termini in vitro. Intervirology 27: 138–147

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A (1994) Parvovirus-based vectors for human gene therapy. Blood Cells 20: 531–538

    PubMed  CAS  Google Scholar 

  • Srivastava A, Lu L (1988) Replication of B19 parvovirus in highly enriched hematopoietic progenitor cells from normal human bone marrow. J Virol 62: 3059–3063

    PubMed  CAS  Google Scholar 

  • Srivastava A, Lusby EW, Berns KL (1983) Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 45: 555–564

    PubMed  CAS  Google Scholar 

  • Srivastava A, Bruno E, Briddell R, Cooper R, Srivastava CH, van Besien K, Hoffman R (1990) Parvovirus B19-induced perturbation of human megakaryocytopoiesis in vitro. Blood 76: 1997–2004

    PubMed  CAS  Google Scholar 

  • Srivastava CH, Samulski RJ, Lu L, Larsen SH, Srivastava A (1989) Construction of a recombinant human parvovirus B19: Adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in an AAV-B19 hybrid virus. Proc Natl Acad Sci USA 86: 8078–8082

    Article  PubMed  CAS  Google Scholar 

  • Srivastava CH, Zhou SZ, Munshi NC, Srivastava A (1992) Parvovirus B19 replication in human umbilical cord blood cells. Virology 189: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Ozawa K, Takahashi K, Asano S, Takaku F (1990) Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation. Blood 75: 603–610

    PubMed  CAS  Google Scholar 

  • Tratschin J-D, Miller IL, Carter BJ (1984) Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J Virol 51: 611–619

    PubMed  CAS  Google Scholar 

  • Tuan DYH, Solomon WB, London IM, Lee DP (1989) An erythroid specific development stage-independent enhancer far upstream of the human “β-Iike globin” genes. Proc Natl Acad Sci USA 86: 2554–2559

    Article  PubMed  CAS  Google Scholar 

  • von dem Borne AEGK, Bos MJE, Joustra-Maas N, Tromp JF, van Wijngaarden-du Bois R, Tetteroo PAT (1986) A murine monoclonal IgM antibody specific blood group P antigen (globoside). Br J Haematol 63: 35–46

    Article  Google Scholar 

  • Walsh CE, Liu JM, Xiao X, Young NS, Nienhuis AW, Samulski RJ (1992) Regulated high level expression of a human y globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc Natl Acad Sci USA 89: 7257–7261

    Article  PubMed  CAS  Google Scholar 

  • Wang X-S, Ponnazhagan S, Srivastava A (1995a) Rescue and replication signals of the adeno-associated virus 2. J Mol Biol 250: 573–580

    Article  PubMed  CAS  Google Scholar 

  • Wang X-S, Ponnazhagan S, Srivastava A (1995b) Rescue and replication of adeno-associated virus type 2 genome as well as vector DNA sequences from recombinant plasmids containing deletions in viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions. J Virol 70: 1668–1677

    Google Scholar 

  • Wang X-S, Yoder MC, Zhou SZ, Srivastava A (1995c) Parvovirus B19 promoter at map unit 6 confers replication-competence and erythroid-specificity to adeno-associated virus 2 in primary human hematopoietic progenitor cells. Proc Natl Acad Sci USA 92: 12416–12420

    Article  PubMed  CAS  Google Scholar 

  • Ward P, Berns Kl (1991) In vitro rescue of an integrated hybrid adeno-associated virus/simian virus 40 genome. J Mol Biol 218: 791–804

    Article  PubMed  CAS  Google Scholar 

  • Yaegashi N, Shiraishi Y, Takeshita T, Nakamura M, Yajima A, Sugamura K (1989) Propagation of human parvovirus B19 in primary culture of erythroid lineage cells derived from fetal liver. J Virol 63: 2422–2426

    PubMed  CAS  Google Scholar 

  • Zhou SZ, Broxmeyer HE, Cooper S, Harrington MA, Srivastava A (1993) Adeno-associated virus 2-mediated gene transfer in murine hematopoietic progenitor cells. Exp Hematol 21: 928–933

    PubMed  CAS  Google Scholar 

  • Zhou SZ, Cooper S, Kang LY, Ruggieri L, Heimfeld S, Srivastava A, Broxmeyer HE (1994) Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. J Exp Med 179: 1867–1875

    Article  PubMed  CAS  Google Scholar 

  • Zhou SZ, Li Q, Stamatoyannopoulos G, Srivastava A (1996) Adeno-associated virus 2-mediated transduction and erythroid cell-specific expression of a human β-globin gene. Gene Therapy 3: 223–229

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srivastava, A., Wang, XS., Ponnazhagan, S., Zhou, S.Z., Yoder, M.C. (1996). Adeno-associated Virus 2-Mediated Transduction and Erythroid Lineage-Specific Expression in Human Hematopoietic Progenitor Cells. In: Berns, K.I., Giraud, C. (eds) Adeno-Associated Virus (AAV) Vectors in Gene Therapy. Current Topics in Microbiology and Immunology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80207-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80207-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80209-6

  • Online ISBN: 978-3-642-80207-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics