Skip to main content

Part of the book series: Basic and Clinical Aspects of Neuroscience ((BASIC,volume 5))

Abstract

The pathophysiologic process characteristic of Parkinson’s disease (PD) is a progressive degeneration of mesostriatal dopamine (DA) neurons that eventually causes motor symptoms, primarily tremor, rigidity, and hypokinesia. Despite the marked symptomatic relief initially provided by L-dopa treatment, there is in most patients with advanced PD a progressive loss of efficacy of the drug, associated with diurnal oscillations in motor performance (“on-off” phenomena) and dyskinesias. Even though patients often temporarily benefit from changes in medication, most of them become severely incapacitated. For this large group of patients new therapeutic approaches are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebischer P, Tresco PA, Winn SR, Greene LA, Jaeger CB (1991) Long-term cross-species brain transplantation of a polymer-encapsulated dopamine-secreting cell line. Exp Neurol 111: 269–275

    Article  PubMed  CAS  Google Scholar 

  2. Backhand E-O, Granberg P-O, Hamberger B, Knutsson E, Mårtensson A, Sedvall G, Seiger Å, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg 62: 169–173

    Article  Google Scholar 

  3. Bankiewicz KS, Plunkett RJ, Jacobowitz DM, Porrino L, Di Porzio U, London WT, Kopin IJ, Oldfield EH (1990) The effect of fetal mesencephalon implants on primate MPTP-induced parkinsonism. Histochemical and behavioural studies. J Neurosurg 72: 231–244

    Article  PubMed  CAS  Google Scholar 

  4. Björklund A, Stenevi U (1979) Reconstruction of the nigrostriatal pathway by intracerebral nigral transplants. Brain Res 177: 555–560

    Article  PubMed  Google Scholar 

  5. Bohn MC, Cupit L, Marciano F, Gash DM (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237: 913–916

    Article  PubMed  CAS  Google Scholar 

  6. Brown VJ, Dunnett SB (1989) Comparison of adrenal and foetal nigral grafts on drug-induced rotation in rats with 6-OHDA lesions. Exp Brain Res 78: 214–218

    Article  PubMed  CAS  Google Scholar 

  7. Brundin P, Nilsson OG, Strecker RE, Lindvall O, Åstedt B, Björklund A (1986) Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 65: 235–240

    Article  PubMed  CAS  Google Scholar 

  8. Brundin P, Strecker RE, Londos E, Björklund A (1987) Dopamine neurons grafted unilaterally to the nucleus accumbens affect drug- induced circling and locomotion. Exp Brain Res 69: 183–194

    Article  PubMed  CAS  Google Scholar 

  9. Brundin P, Strecker RE, Widner H, Clarke DJ, Nilsson OG, Åstedt B, Lindvall O, Björklund A (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp Brain Res 70: 192–208

    PubMed  CAS  Google Scholar 

  10. Clarke DJ, Brundin P, Strecker RE, Nilsson OG, Björklund A, Lindvall O (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp Brain Res 73: 115–126

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham LA, Hansen JT, Short MP, Bohn MC (1991) The use of genetically altered astrocytes to provide nerve growth factor to adrenal chromaffin cells grafted into the striatum. Brain Res 561: 192–202

    Article  PubMed  CAS  Google Scholar 

  12. Decombe R, Rivot JP, Aunis D, Abrous N, Peschanski M, Herman JP (1990) Importance of catecholamine release for the functional action of intrastriatal implants of adrenal medullary cells: pharmacological analysis and in vivo electrochemistry. Exp Neurol 107: 143–153

    Article  PubMed  CAS  Google Scholar 

  13. Doucet G, Brundin P, Descarries L, Björklund A (1990) Effect of prior dopamine denervation on survival and fiber outgrowth from intrastriatal fetal mesencephalic grafts. Eur J Neurosci 2: 279–290

    Article  PubMed  Google Scholar 

  14. Dubach M, German DC (1990) Extensive survival of chromaffin cells in adrenal medulla “ribbon” grafts in the monkey neostriatum. Exp Neurol 110: 167–180

    Article  PubMed  CAS  Google Scholar 

  15. Dunnett SB (1991) Transplantation of embryonic dopamine neurons: what we know from rats. J Neurol 238: 65–74

    Article  PubMed  CAS  Google Scholar 

  16. Dunnett SB, Annett LE (1991) Nigral transplants in primate models of parkinsonism. In: Lindvall O, Björklund A, Widner H (eds) Intracerebral transplantation in movement disorders. Elsevier, Amsterdam, pp 27–51

    Google Scholar 

  17. Dunnett SB, Björklund A, Stenevi U, Iversen SD (1981) Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway: II. Bilateral lesions. Brain Res 229: 457–470

    CAS  Google Scholar 

  18. Dunnett SB, Whishaw IQ, Rogers DC, Jones GH (1987) Dopamine rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxy- dopamine lesions. Brain Res 415: 63–78

    Article  PubMed  CAS  Google Scholar 

  19. Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Wells TH, Barrett JN, Grafton ST, Huang SC, Eidelberg D, Rottenberg DA (1990) Transplantation of human fetal dopamine cells for Parkinson’s disease: results at 1 year. Arch Neurol 47: 505–512

    Article  PubMed  CAS  Google Scholar 

  20. Freed WJ, Poltorak M, Becker JB (1990) Intracerebral adrenal medulla grafts: a review. Exp Neurol 110: 139–166

    Article  PubMed  CAS  Google Scholar 

  21. Goetz CG, Stebbins GT, Klawans HL, Koller WC, Grossman RG, Bakay RAE, Penn RD, United Parkinson Foundation Neural Transplantation Registry (1991) United Parkinson Foundation Neurotransplantation Registry on adrenal medullary transplants: presurgical, and 1- and 2-year follow-up. Neurology 41: 1719–1722

    PubMed  CAS  Google Scholar 

  22. Henderson BTH, Clough CG, Hughes RC, Hitchcock ER, Kenny BG (1991) Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson’s disease. Arch Neurol 48: 822–827

    Article  PubMed  CAS  Google Scholar 

  23. Hirsch EC, Duyckaerts C, Javoy-Agid F, Hauw J-J, Agid Y (1990) Does adrenal graft enhance recovery of dopaminergic neurons in Parkinson’s disease? Ann Neurol 27: 676–682

    Article  PubMed  CAS  Google Scholar 

  24. van Hörne CG, Mahalik T, Hoffer B, Bygdeman M, Almqvist P, Stieg P, Seiger Å, Olson L, Strömberg I (1990) Behavioural and electrophysiological correlates of human mesencephalic dopaminergic xenograft function in the rat striatum. Brain Res Bull 25: 325–334

    Article  PubMed  Google Scholar 

  25. Horellou P, Brundin P, Kalén P, Mallet J, Björklund A (1990) In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5: 393–402

    Article  PubMed  CAS  Google Scholar 

  26. Kordower JG, Cochran E, Penn RD, Goetz CG (1991) Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson’s disease. Ann Neurol 29: 405–412

    Article  PubMed  CAS  Google Scholar 

  27. Kordower JH, Fiandaca MS, Notter FD, Hansen JT, Gash DM (1990) NGF-like trophic support from peripheral nerve for grafted rhesus adrenal chromaffin cells. J Neurosurg 73: 418–428

    Article  PubMed  CAS  Google Scholar 

  28. Lindvall O, Backlund E-O, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to putamen. Ann Neurol 22: 457–468

    Article  PubMed  CAS  Google Scholar 

  29. Lindvall O, Rehncrona S, Brundin P, Gustavii B, Åstedt B, Widner H, Lindholm T, Björklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden CD, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger Å, Bygdeman M, Strömberg I, Olson L (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6 month followup. Arch Neurol 46: 615–631

    Article  PubMed  CAS  Google Scholar 

  30. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD, Björklund A (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247: 574–577

    Article  PubMed  CAS  Google Scholar 

  31. Lindvall O, Widner H, Rehncrona S, Brundin P, Odin P, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Björklund A, Marsden CD (1992) Transplantation of fetal dopamine neurons in Parkinson’s disease: 1-year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol 31: 155–165

    Article  PubMed  CAS  Google Scholar 

  32. López-Lozano JJ, Bravo G, Brera B, Uría J, Dargallo J, Salmean J, Insausti J, Cerrolaza J, CPH Neural Transplantation Group (1991) Can an analogy be drawn between the clinical evolution of Parkinson’s patients who undergo autoimplantation of adrenal medulla and those of fetal ventral mesencephalon transplant recipients? In: Lindvall O, Björklund A, Widner H (eds) Intracerebral transplan-tation in movement disorders. Elsevier, Amsterdam, pp 87–98

    Google Scholar 

  33. Madrazo I, Drucker-Colin R, Diaz V, Martinez-Marta J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in Parkinson’s disease: a report of two cases. N Engl J Med 316: 831–834

    Article  PubMed  CAS  Google Scholar 

  34. Madrazo I, Franco-Bourland R, Ostrosky-Solis F, Aguilera M, Cuevas C, Alvarez F, Magallon E, Zamorano C, Morelos A (1990) Neural transplantation (auto-adrenal, fetal nigral and fetal adrenal) in Parkinson’s disease: the Mexican experience. Progr Brain Res 82: 593–602

    Article  CAS  Google Scholar 

  35. Mandel RJ, Brundin P, Bjôrklund A (1990) The importance of graft placement and task complexity for transplant-induced recovery of simple and complex sensorimotor deficits in dopamine denervated rats. Eur J Neurosci 2: 888–894

    Article  PubMed  Google Scholar 

  36. Molina H, Quiñones R, Alvarez L, Galarraga J, Piedra J, Suárez C, Rachid M, Garcia JC, Perry TL, Santana A, Carmenate H, Macias R, Torres O, Rojas MJ, Cordova F, Muñoz JL (1991) Transplantation of human fetal mesencephalic tissue in caudate nucleus as treatment for Parkinson’s disease: the Cuban experience. In: Lindvall O, Björklund A, Widner H (eds) Intracerebral transplantation in movement disorders. Elsevier, Amsterdam, pp 99–110

    Google Scholar 

  37. Nakai M, Itakura T, Kamei I, Nakai K, Naka Y, Imai H, Komai N (1990) Autologous transplantation of the superior cervical ganglion into the brain of parkinsonian monkeys. J Neurosurg 72: 92–95

    Google Scholar 

  38. Olson L, Backlund E-O, Ebendal T, Freedman R, Hamberger B, Hansson P, Hoffer B, Lindblom U, Meyerson B, Strömberg I, Sydow O, Seiger Å (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease. One-year followup of first clinical trial. Arch Neurol 48: 373–381

    Article  PubMed  CAS  Google Scholar 

  39. Otto D, Unsicker K (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP treated mice. J Neurosci 10: 1912–1921

    PubMed  CAS  Google Scholar 

  40. Perlow MJ, Freed WJ, Hoffer BJ, Seiger Å, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204: 643–647

    Article  PubMed  CAS  Google Scholar 

  41. Plunkett RJ, Bankiewicz KS, Cummins AC, Miletich RS, Schwartz JP, Oldfield EH (1990) Long-term evaluation of hemiparkinsonian monkeys after adrenal autografting or cavitation alone. J Neurosurg 73: 918–926

    Article  PubMed  CAS  Google Scholar 

  42. Pezzoli G, Fahn S, Dwork A, Truong DD, de Yebenes JG, Jackson- Lewis V, Herbert J, Cadet JL (1988) Non-chromaffin tissue plus nerve growth factor reduces experimental parkinsonism in aged rats. Brain Res 459: 398–403

    Article  PubMed  CAS  Google Scholar 

  43. Sauer H, Brundin P (1991) Effects of cool storage on survival and function of intrastriatal ventral mesencephalic grafts. Restor Neurol Neurosci 2: 123–135

    PubMed  CAS  Google Scholar 

  44. Sawle GV, Bloomfield PM, Björklund A, Brooks DJ, Brundin P, Leenders KL, Lindvall O, Marsden CD, Rehncrona S, Widner H, Frackowiak RS J (1992) Transplantation of fetal dopamine neurons in Parkinson’s disease: positron emission tomography [18F]-6-L- fluorodopa studies in two patients with putaminal implants. Ann Neurol 31: 166–173

    Article  PubMed  CAS  Google Scholar 

  45. Schwarz SS, Freed WJ (1987) Brain tissue transplantation in neonatal rats prevents a lesion-induced syndrome of adipsia, aphagia and akinesia. Exp Brain Res 65: 449–454

    Article  PubMed  CAS  Google Scholar 

  46. Strömberg I, Almqvist P, Bygdeman M, Finger TE, Gerhardt G, Granholm A-C, Mahalik TJ, Seiger Å, Olson L, Hoffer B (1989) Human fetal mesencephalic tissue grafted to dopamine-denervated striatum of athymic rats: Light- and electron-microscopic histo-chemistry and in vivo chronoamperometric studies. J Neurosci 9: 614–624

    PubMed  Google Scholar 

  47. Strömberg I, Bygdeman M, Goldstein M, Seiger Ä, Olson L (1986) Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional re- innervation. Neurosci Lett 71: 271–276

    Article  PubMed  Google Scholar 

  48. Strömberg I, Herrera-Marschitz M, Ungerstedt U, Ebendal T, Olson L (1985) Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth and rotational behavior. Exp Brain Res 60: 335–349

    Article  PubMed  Google Scholar 

  49. Strömberg I, van Horne C, Bygdeman M, Weiner N, Gerhardt GA (1991) Function of intraventricular human mesencephalic xenografts in immunosuppressed rats: an electrophysiological and neurochemical analysis. Exp Neurol 112: 140–152

    Article  PubMed  Google Scholar 

  50. Wictorin K, Brundin P, Sauer H, Lindvall O, Björklund A (1992) Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J Comp Neurol 323: 475–494

    Article  PubMed  CAS  Google Scholar 

  51. Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavii B, Björklund A, Lindvall O, Langston JW (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine ( MPTP ). N Engl J Med 327: 1556–1563

    Article  PubMed  CAS  Google Scholar 

  52. Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O’Malley KL, Rosenberg MB, Shimohama S, Friedmann T, Gage FH (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci USA 86: 9011–9014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brundin, P., Lindvall, O. (1993). Transplantation in Parkinson’s Disease. In: Lindvall, O. (eds) Restoration of Brain Function by Tissue Transplantation. Basic and Clinical Aspects of Neuroscience, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77718-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77718-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55823-1

  • Online ISBN: 978-3-642-77718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics