Skip to main content

Carbon Cycle and Carbon Isotope Record: Geochemical Impact of Life over 3.8 Ga of Earth History

  • Chapter
Early Organic Evolution

Abstract

With sedimentary organic carbon (in the form of kerogen and its graphitic derivatives) dating back to 3.8 Ga ago, and the isotopic signature of autotrophic carbon fixation persisting over the same time span if allowance is made for a metamorphic overprint of the oldest (> 3.5 Ga) record, we may state with fair confidence that biological modulation of the terrestrial carbon cycle had commenced very early in geological history. Ever since then, carbon transformations in the Earth’s exogenic system have proceeded in the form of a biogeochemical cycle comprising an organic (reduced) and an inorganic (oxidized) carbon branch. Since the partitioning of the element between the reduced (kerogen) and oxidized (carbonate) moiety is coupled with the isotopic compositions of both carbon species by an isotope mass balance, fluctuations in the 13C/12C record, notably of marine carbonates, reflect changing ratios Corg/Ccarb in the total carbon flux from the surficial exchange reservoir to the sedimentary shell that has subsequently come to store the far bulk (≈6× 1022 g) of carbon residing in and above the crust. Relying on the sensor function of δ 13Ccarb, it is possible to identify numerous imbalances in the past operation of the carbon cycle which, however, appear to be demonstrably tethered to a time-invariant average state. On time scales approaching the length of currently documented Earth history, these oscillations are largely smoothed out, with the sedimentary carbon isotope record as a whole constituting a long-term index line of autotrophic carbon fixation that primarily reflects the isotopediscriminating properties of ribulose-l,5-bisphos-phate (RuBP) carboxylase, the principal CO2-fixing enzyme of the Calvin cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon P (1982) 13C/12C isotope ratio variations over the last 105 a in a New Guinea coral reef environment: implications for the fertility shifts of the tropical ocean. In: Galbally IE, Freney JR (eds) The cycling of carbon, nitrogen, sulfur and phosphorus in terrestrial and aquatic ecosystems. Aust Acad Sci. Canberra, pp119–132

    Google Scholar 

  • Aharon P (1983) 140000 year isotope climatic record from raised coral reefs in New Guinea. Nature (London) 304: 720–723

    Google Scholar 

  • Aharon P (1985) Carbon isotope record of late Quaternary coral reefs: possible index of sea surface paleoproductivity. Geophys Monogr 32: 343–355

    Google Scholar 

  • Aharon P (1991) Records of reef environment histories: stable isotopes in corals, giant clams and calcareous algae. Coral Reefs 10:71–90

    Google Scholar 

  • Aharon P, Chappell J (1986) Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 yr. Paleogeogr Paleoclimatol Paleoecol 56: 337–379

    Google Scholar 

  • Aharon P, Schidlowski M, Singh IB (1987) Chronostratigraphic markers in the end-Precambrian carbon isotope record of the Lesser Himalaya. Nature (London) 327:699–702

    Google Scholar 

  • Allaart JH (1976) The pre-3760-Myr-old supracrustal rocks of the Isua area, central West Greenland, and the associated occurrence of quartz-banded ironstone. In: Windley BF (ed) The early history of the earth. John Wiley & Sons, New York London, pp 177–189

    Google Scholar 

  • Alvarez W (1986) Toward a theory of impact crises. EOS Am Geophys Un 67:649–658

    Google Scholar 

  • Arneth JD, Schidlowski M, Sarbas B, Goerg U, Amstutz GC (1985) Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya. Geochim Cosmochim Acta 49: 1553–1560

    Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. Geophys Monogr 32:504–529

    Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. In: Nagy B, Weber R, Guerrero JC, Schidlowski M (eds) Developments and interactions of the Precambrian atmosphere, lithosphere and biosphere. Developments in Precambrian Geology 1. Elsevier, Amsterdam, pp 249–266

    Google Scholar 

  • Baker AJ, Fallick AE (1989a) Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature (London) 337: 352–354

    Google Scholar 

  • Baker AJ, Fallick AE (1989b) Heavy carbon in two-billion-year-old marbles from Lofoten-Vesteralen, Norway: implications for the Precambrian carbon cycle. Geochim Cosmochim Acta 53:1111–1115

    Google Scholar 

  • Barnola JM, Raynaud D. Korotkevich YS, Lorius C (1987) Vostok ice core provides 160000-year record of atmospheric CO2. Nature (London) 329:408–414

    Google Scholar 

  • Bender ML, Keigwin LD (1979) Speculation about the upper Miocene change in abyssal Pacific dissolved bicarbonate δ 13C. Earth Planet Sci Lett 45:383–393

    Google Scholar 

  • Benedict CR, WongWWL, WongJHH (1980) Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol 65:512–517

    Google Scholar 

  • Berger WH (1968) Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep Sea Res 15:31–43

    Google Scholar 

  • Berger WH, Vincent E (1986) Deep sea carbonates: reading the carbon isotope signal. Geol Rundsch 75:249–269

    Google Scholar 

  • Berner W, Stauffer B, Oeschger H (1978) Past atmospheric composition and climate: gas parameters measured on ice cores. Nature (London) 276:53–55

    Google Scholar 

  • Bolin B, Degens ET, Kempe S, Ketner R (eds) (1979) The global carbon cycle. John Wiley & Sons, New York, xxxv + 491 pp

    Google Scholar 

  • Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system cal-cite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim Cosmochim Acta 33: 49–64

    Google Scholar 

  • Boyle EA, Keigwin LD (1982) Deep circulation of the North Atlantic over the last 200 000 years: geochemical evidence. Science 218:784–787

    Google Scholar 

  • Broecker WS (1970) A boundary condition on the evolution of atmospheric oxygen. J Geophys Res 75: 3553– 3557

    Google Scholar 

  • Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New York. 214 pp

    Google Scholar 

  • BroeckerWS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46: 1689–1705

    Google Scholar 

  • Broecker WS (1983) The ocean. Sci Am 249:146–160

    Google Scholar 

  • Broecker WS, Van Donk J (1970) Insolation changes, ice volumes and the 18O record in deep sea cores. Rev Geophys Space Phys 8: 169–198

    Google Scholar 

  • BroeckerWS, Takahashi T. Simpson HJ, Peng TH (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418

    Google Scholar 

  • Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archean stromatolites? Precambrian Res 24: 157–172

    Google Scholar 

  • Cameron EM, Garrels RM (1980) Geochemical compositions of some Precambrian shales from the Canadian Shield. Chem Geol 28: 181–197

    Google Scholar 

  • Chung HM, Sackett WM (1979) Use of stable carbon isotope compositions of pyrolytically derived methane as maturity indices for carbonaceous materials. Geochim Cosmochim Acta 43: 1979–1988

    Google Scholar 

  • Cloud PE (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2: 351–387

    Google Scholar 

  • Cohen Y, Aizenshtat Z, Stoler A, Jørgensen BB (1980) The microbial geochemistry of Solar Lake, Sinai. In: Ralph JB, TrudingerPA, Walter MR (eds) Biogeochemistry of ancient and modern environments. Springer, Berlin Heidelberg New York, pp 167–172

    Google Scholar 

  • Craig H (1953) The geochemistry of stable carbon isotopes. Geochim Cosmochim Acta 3: 53–92

    Google Scholar 

  • Crowley TJ (1983) Calcium carbonate preservation patterns in the central North Atlantic during the last 150000 years. Mar Geol 51: 1–14

    Google Scholar 

  • Crowley TJ, Matthews RK (1983) Isotope-plankton comparisons in a late Quaternary core with a stable temperature history. Geology 11:275–278

    Google Scholar 

  • Curry WB. Lohmann GP (1982) Carbon isotope changes in benthic foraminifera from the western South Atlantic: reconstruction of glacial abyssal circulation patterns. Quat Res 18:218–235

    Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry 1. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • Deines P, Gold DP (1969) The change in carbon and oxygen isotopic composition during contact metamorphism of Trenton limestone by the Mt. Royal pluton. Geochim Cosmochim Acta 33:421–424

    Google Scholar 

  • Delmas RJ, Ascencio JM, Legrand M (1980) Polar ice evidence that atmospheric CO2 20000 year BP was 50% of present. Nature (London) 284: 155–157

    Google Scholar 

  • DeuserWG, Degens ET (1967) Carbon isotope fractionation in the system CO2 (gas) -CO2 (aqueous) -HCO3 (aqueous). Nature (London) 215: 1033–1035

    Google Scholar 

  • Druffel ERM, Benavides LM (1986) Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge. Nature (London) 321: 58–61

    Google Scholar 

  • Durand B (ed) (1980) Kerogen -insoluble organic matter from sedimentary rocks. Technip, Paris, 519 pp

    Google Scholar 

  • Eichmann R, Schidlowski M (1975) Isotopic fractionation between coexisting organic carbon-carbonate pairs in Precambrian sediments. Geochim Cosmochim Acta 39:585–595

    Google Scholar 

  • Ericson DB, Ewing M, Wollin G (1964) The Pleistocene epoch in deep sea sediments. Science 146:723–732

    Google Scholar 

  • Fearnside PM (1985) Brazil’s Amazon forest and the global carbon problem. Interciencia 10: 179–186

    Google Scholar 

  • Francey RJ (1981) Tasmanian tree rings belie suggested anthropogenic 13C/12C trends. Nature (London) 290: 232–235

    Google Scholar 

  • Freyer HD, Belacy N (1983) 13C/12C records in northern hemispheric trees during the past 500 years: anthropogenic impact and climatic superpositions. J Geophys Res 88:6844–6852

    Google Scholar 

  • Galimov EM (ed) (1985) The biological fractionation of isotopes. Academic Press, Orlando, Fla, 261 pp

    Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York, 397 pp

    Google Scholar 

  • Garrels RM, Perry EA (1974) Cycling of carbon, sulfur, and oxygen through geologic time. In: Goldberg ED (ed) Marine chemistry 5. John Wiley & Sons, New York, pp 303–336

    Google Scholar 

  • Gavelin S (1957) Variations in isotopic composition of carbon from metamorphic rocks in northern Sweden and their geological significance. Geochim Cosmochim Acta 12:297–314

    Google Scholar 

  • Goodfellow WD (1986) Anoxic oceans and short-term isotope trends. Nature (London) 322: 116–117

    Google Scholar 

  • Goodfellow WD, Jonasson IR (1984) Ocean stagnation and ventilation defined by δ 34S secular trends in pyrite and barite, Selwyn Basin, Yukon. Geology 12: 583–586

    Google Scholar 

  • Greenberg JM (1984) The structure and evolution of interstellar grains. Sci Am 250: 124–135

    Google Scholar 

  • Grossman L, Larimer JW (1974) Early chemical history of the solar system. Rev Geophys Space Phys 12: 71–101

    Google Scholar 

  • Gruszczynski M, Halas S, Hoffman A, Malkowski K (1989) A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition. Nature (London) 337:64–68

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry: preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton NJ, pp 93–134

    Google Scholar 

  • Hester K, Boyle E (1982) Water chemistry control of cadmium content in recent benthic foraminifera. Nature (London) 298:260–262

    Google Scholar 

  • Hoefs J, Frey M (1976) Isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochim Cosmochim Acta 40:945–951

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. John Wiley & Sons, New York, 351 pp

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. University Press, Princeton NJ, 582 pp

    Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature (London) 267:403–408

    Google Scholar 

  • Holser WT, and 14 authors (1989) A unique geochemical record at the Permian/Triassic boundary. Nature (London) 337:39–44

    Google Scholar 

  • Hsu KJ, McKenzie JA (1985) A “Strangelove” ocean in the earliest Tertiary. Geophys Monogr 32:487–492

    Google Scholar 

  • Hut P, Alvarez W, Elder WP, Hansen T, Kauffman EG, Keller G, Shoemaker M, Weissman PR (1987) Comet showers as a cause of mass extinctions. Nature (London) 329:118–126

    Google Scholar 

  • Irvine WM, Knacke RF (1989) The chemistry of interstellar gas and grains. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution of planetary and satellite atmospheres. Univ Arizona Press, Tucson, pp 3–34

    Google Scholar 

  • Jenkyns HC (1988) The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. Am J Sci 288: 101–151

    Google Scholar 

  • Jenkyns HC, Clayton CJ (1986) Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33: 87–106

    Google Scholar 

  • Junge CE, Schidlowski M, Eichmann R, Pietrek H (1975) Model calculations for the terrestrial carbon cycle: carbon isotope geochemistry and evolution of photosynthetic oxygen. J Geophys Res 80:4542–4552

    Google Scholar 

  • Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24: 277–298

    Google Scholar 

  • Keeling CD, Bacastow RB (1977) Impact of industrial gases on climate. In: Energy and Climate. National Academy of Sciences, Washington DC, 88:72–95

    Google Scholar 

  • Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA, Guenther PR, Waterman LS, Chin JFS (1976) Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28:538–551

    Google Scholar 

  • Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature (London) 277:121–122

    Google Scholar 

  • Keith ML, Weber JM (1964) Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim Cosmochim Acta 28: 1787–1816

    Google Scholar 

  • Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature (London) 321:832–838

    Google Scholar 

  • Kreulen R, Van Beek PCJM (1983) The calcite-graphite isotope thermometer; data on graphite bearing marbles from Naxos, Greece. Geochim Cosmochim Acta 47:1527–1530

    Google Scholar 

  • Kroopnick PM, Margolis SV, Wong CS (1977) δ 13C variations in marine carbonate sediments as indicators of the CO2 balance between the atmosphere and oceans. In: Andersen NR, Malahoff A (eds) The fate of fossil CO2 in the oceans. Plenum, New York, pp 295–321

    Google Scholar 

  • Krumbein WE, Cohen Y (1977) Primary production, mat formation and lithification chances of oxygenic and facultative anoxygenic cyanophytes (cyanobacteria). In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 37–56

    Google Scholar 

  • Lohmann KC, Walker JCG (1989) The δ 18O record of Phanerozoic abiotic marine calcite cements. Geophys Res Lett 16:319–322

    Google Scholar 

  • Maclntyre F (1980) The absorption of fossil fuel CO2 by the ocean. Oceanol Acta 3: 505–516

    Google Scholar 

  • Magaritz M (1989) 13C minima follow extinction events: a clue to faunal radiation. Geology 17: 337–340

    Google Scholar 

  • Magaritz M, Bar R, Baud A, Holser WT (1988) The carbon isotope shift at the Permian/Triassic boundary in the southern Alps is gradual. Nature (London) 331: 337–339

    Google Scholar 

  • McGhee GR, Orth CJ, Quintana LR, Gilmore JS, Olsen EJ (1986) Late Devonian “Kellwasser Event” mass extinction horizon in Germany: no geochemical evidence for a large body impact. Geology 14: 776–779

    Google Scholar 

  • McKirdy DM, Hahn J (1982) The composition of kerogen and hydrocarbons in Precambrian rocks. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin Heidelberg New York, pp 123–154

    Google Scholar 

  • McKirdy DM, Powell TG (1974) Metamorphic alteration of carbon isotopie composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geology 2:591–595

    Google Scholar 

  • Miller KG,. Fairbanks RG (1985) Oligocene to Miocene carbon isotope cycles and abyssal circulation changes. Geophys Monogr 32:469–486

    Google Scholar 

  • Mook WG (1986) 13C in atmospheric CO2. Neth J Sea Res 14:211–223

    Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Google Scholar 

  • Mook WG, KoopmansM, Carter AF, Keeling CD (1983) Seasonal, latitudinal, and secular variations in the abundance and isotopie ratios of atmospheric carbon dioxide. J Geophys Res 88: 10915–10933

    Google Scholar 

  • Murphey BF, Nier AO (1941) Variations in the relative abundance of the carbon isotopes. Phys Rev 59:771 -772

    Google Scholar 

  • Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R (1982) Ice core sample measurements give atmospheric CO2 content during the past 40000 year. Nature (London) 295: 220–223

    Google Scholar 

  • NierAO, Gulbransen EA (1939) Variations in the relative abundance of the carbon isotopes. J Am Chem Soc 61:697–698

    Google Scholar 

  • Nozaki Y, Rye DM, Turekian KK, Dodge RE (1978) A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophys Res Lett 5:825–828

    Google Scholar 

  • Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A (1975) A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–192

    Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 553–567

    Google Scholar 

  • Oppo DW, Fairbanks RG (1989) Carbon isotope composition of tropical surface water during the past 22000 years. Paleooceanography 4: 333–351

    Google Scholar 

  • Orth CJ. Gilmore JS. Quintana LR. Sheehan PM (1986) Terminal Ordovician extinction: geochemical analysis of the Ordovician-Silurian boundary, Anticosti Island, Quebec. Geology 14:433–436

    Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21: 110–126

    Google Scholar 

  • Peters KE, Rohrback BG, Kaplan IR (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. Am Assoc Petrol Geol Bull 65:501–508

    Google Scholar 

  • Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3800-Myr-old microfossils. Nature (London) 280:483–486

    Google Scholar 

  • Playford PE, McLaren DJ, Orth CJ, Gilmore JS, Goodfellow WD (1984) Iridium anomaly in the upper Devonian of the Canning basin, Western Australia. Science 226:437–439

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopie compositions in some Paleozoic limestones. Geol Soc Am Bull 97:1262–1269

    Google Scholar 

  • Rankama K (1948) New evidence of the origin of Precambrian carbon. Geol Soc Am Bull 59:389–416

    Google Scholar 

  • Reimer TO, Barghoorn ES, Margulis L (1979) Primary productivity in an Early Archean microbial ecosystem. Precambrian Res 9: 93 104

    Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the questions of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Google Scholar 

  • Ronov AB (1958) Organic carbon in sedimentary rocks (in relation to the presence of petroleum). Geochemistry 1958:510–536

    Google Scholar 

  • Ronov AB (1968) Probable change in the composition of sea water during the course of geological time. Sedimentology 10:25–43

    Google Scholar 

  • Ronov AB (1980) Osadochnaya Obolochka Zemli (Earth’s sedimentary shell). 20th Vernadsky Lect. Nauka, Moscow, 97 pp (in Russian)

    Google Scholar 

  • Rycroft MJ (1982) Analysing atmospheric carbon dioxide levels. Nature (London) 295: 190–191

    Google Scholar 

  • Sawyer JS (1972) Man-made carbon dioxide and the “greenhouse” effect. Nature (London) 239:23–26

    Google Scholar 

  • Schidlowski M (1982) Content and isotopie composition of reduced carbon in sediments. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin Heidelberg New York, pp103–122

    Google Scholar 

  • Schidlowski M (1983) Biologically mediated isotope fractionations: biochemistry, geochemical significance, and preservation in the Earth’s oldest sediments. In: Ponnamperuma C (ed) Cosmochemistry and the origin of life. Reidel, Dordrecht, pp 277–322

    Google Scholar 

  • Schidlowski M (1987) Application of stable carbon isotopes to early biochemical evolution on Earth. Annu Rev Earth Planet Sci 15:47–72

    Google Scholar 

  • Schidlowski M (1988) A 3800-million-year isotopie record of life from carbon in sedimentary rocks. Nature (London) 333:313–318

    Google Scholar 

  • Schidlowski M (1990) Life on the early Earth: Bridgehead from Cosmos or autochthonous phenomenon? In: Gopalan K. Gaur VK, Somayajulu BLK. Macdougall JD (eds) From mantle to meteorites (Festschrift for Devendra Lal). Indian Acad Sci, Bangalore. pp 189–199

    Google Scholar 

  • Schidlowski M. Eichmann R, Junge CE (1975) Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res 2:1–69

    Google Scholar 

  • Schidlowski M, Eichmann R, Junge CE (1976) Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia. Geochim Cosmochim Acta 40:449–455

    Google Scholar 

  • Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199

    Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. University Press, Princeton NJ, pp 149–186

    Google Scholar 

  • Schidlowski M, Matzigkeit U, Krumbein WE (1984) Superheavy organic carbon from hypersaline microbial mats: assimilatory pathway and geochemical implications. Naturwissenschaften 71:303–308

    Google Scholar 

  • Schoell M, Wellmer FW (1981) Anomalous 13C depletion in Early Precambrian graphites from Superior Province, Canada. Nature (London) 290:696–699

    Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Am Assoc Petrol Geol Bull 64:67–87

    Google Scholar 

  • Schopf JW (ed) (1983) Earth’s earliest biosphere: its origin and evolution. Univ Press, Princeton NJ, xxv + 543 pp

    Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archaean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237: 70–73

    Google Scholar 

  • Shackleton NJ (1987) The carbon isotope record of the Cenozoic: history of organic carbon burial and of dissolution cycles. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum, New York, pp 401–427

    Google Scholar 

  • Shackleton NJ (1986) Paleogene stable isotope events. Palaeogeogr Palaeoclim Palaeoecol 57:91–102

    Google Scholar 

  • Shackleton NJ (1987) The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and atmosphere. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Spec Publ 26:423–434

    Google Scholar 

  • Shackleton NJ, Imbrie J, Hall MA (1983a) Oxygen and carbon isotope record of East Pacific core VI9-30: implications for the formation of deep water in the late Pleistocene North Atlantic. Earth Planet Sci Lett 65: 233–244

    Google Scholar 

  • Shackleton NJ, Hall MA, Line J, Shuxi C (1983 b) Carbon isotope data in core VI9-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature (London) 306: 319–322

    Google Scholar 

  • Sheppard SMF, Schwarcz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib Mineral Petrol 26:161–198

    Google Scholar 

  • Shieh YH, Taylor HP (1969) Oxygen and carbon isotope studies of contact metamorphism of carbonate rocks. J Petrol 10:307–331

    Google Scholar 

  • Stanley SM (1981) The new evolutionary timetable. Basic Books, New York, 222 pp

    Google Scholar 

  • Trask PD, Patnode HW (1942) Source beds of petroleum. Am Assoc Petrol Geol, Washington, 566 pp

    Google Scholar 

  • Valley JW, O’Neil JR (1981) 13C/12C exchange between calcite and graphite: a possible thermometer in Grenville marbles. Geochim Cosmochim Acta 45:411–419

    Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of 18O/l6O and 13C/ 12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Google Scholar 

  • Veizer J, Hoefs J, Lowe DR, Thurston PC (1989) Geochemistry of Precambrian carbonates. II. Archean greenstone belts and Archean sea water. Geochim Cosmochim Acta 53:859–871

    Google Scholar 

  • Vogel JC (1961) Isotope separation factors of carbon in the equilibrium system CO2 -HCO3 -CO23-. In: Houtermans FG, Picciotto EE, Tongiori E (eds) Summer course on nuclear geology, Varenna 1960, Lischi, Pisa, pp 216–221

    Google Scholar 

  • Vogel JC (1980) Fractionation of the carbon isotopes during photosynthesis. Sitzungsber Heidelberger Akad Wiss Math-Nat Kl 3: 111–135

    Google Scholar 

  • Wada H, Suzuki K (1983) Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures. Geochim Cosmochim Acta 47: 697–706

    Google Scholar 

  • Walker D (1979) Energy, plants and man. Packard, Chichester, 31 pp

    Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York, 318 pp

    Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archean-Early Proterozoic Earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Univ Press, Princeton NJ, pp 260–290

    Google Scholar 

  • Weber F, Schidlowski M, Arneth JD, Gauthier-Lafaye F (1983) Carbon isotope geochemistry of the Lower Proterozoic Francevillian Series of Gabon (Africa). Terra Cognita 3:220

    Google Scholar 

  • Wendt I (1968) Fractionation of carbon isotopes and its temperature dependence in the system CO2 (gas) -CO2 (in solution) and HCO3 -CO2 in solution. Earth Planet Sci Lett 4:64–68

    Google Scholar 

  • Weyl PK (1970) Oceanography -an introduction to the marine environment. John Wiley & Sons, New York, 535 pp

    Google Scholar 

  • Winkler FJ, Kexel H, Kranz C, Schmidt HL (1982) Parameters affecting the 13CO2/12CO2 isotope discrimination of the ribulose-l,5-bisphosphate carboxylase reaction. In: Schmidt HL, Förstel H, Heinzinger K (eds) Stable isotopes. Anal Chem Symp Ser 11. Elsevier, Amsterdam, pp 83–89

    Google Scholar 

  • Woodwell GM (1978) The carbon dioxide question. Sci Am 238:34–43

    Google Scholar 

  • Woodwell GM, Whittaker RH, ReinersWA, Likens GE, Delwiche CC, Botkin DD (1978) The biota and the world carbon budget. Science 199:141–146

    Google Scholar 

  • Xu DY, Yan Z, Zahng QW, Shen ZD, Sun YY, Ye LF (1986) Significance of a δ13C anomaly near the Devonian/Carboniferous boundary at the Muhua section, South China. Nature (London) 321:854–855

    Google Scholar 

  • Yudovich YE, Makarikhin VV, Medvediev PV, Sukhanov NV (1990) Izotopnye anomalii ugleroda v karbonatakh Karel’skogo Kompleksa. Geokhimiya 1990(7):972–978

    Google Scholar 

  • ZachosJC, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature (London) 337:61–64

    Google Scholar 

  • Zahn R, Winn K, Sarnthein M (1986) Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvi gerina peregrina group and Cibicidoides wuellerstorfi. Paleoceanography 1:27–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schidlowski, M., Aharon, P. (1992). Carbon Cycle and Carbon Isotope Record: Geochemical Impact of Life over 3.8 Ga of Earth History. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics