Skip to main content

The Structure of Sheared Turbulence Near a Plane Boundary

  • Conference paper
Turbulent Shear Flows 7

Abstract

An analysis is presented of how a plane boundary affects the structure of turbulence in a sheared free stream. A uniform-shear boundary layer (USBL) is formulated with the slip velocity condition at the surface, and inhomogeneous rapid distortion theory is applied. The effects of ‘blocking’ by the surface on the turbulence structure in the USBL are compared with those in the shear-free boundary layer (SFBL).

Shear produces highly anisotropic eddies elongated in the flow direction. The distinctive peaks of the spanwise spectra of the streamwise velocity, Θ 11(κ 3; y), suggest the existence of the streaky structures in the flow. The mean streak spacing estimated from the energy spectra increases with the distance from the surface, in qualitative agreement with previous measurements and computations.

The vertical velocity variance, \( \overline {{v^2}} \), is reduced with shear at all heights, roughly in proportion to the reduction in the homogeneous value, but the shape of the profile remains unchanged only near the surface: \( \overline {{v^2}} /\overline {{v^{{2(H)}}}} \sim {y^{{2/3}}} \). The turbulent shear stress, - \( \overline {uv} \), increases with total shear at all distances from the boundary. Scaled with the homogeneous value, the profile of the shear stress does not vary with time. The universal profile near the surface is \( \overline {uv} /{\overline {uv}^{{(H)}}} \sim {y^{{2/3}}} \), similar to the vertical variance profile.

The streamwise integral length scales increase with shear, indicating elongation of the streamwise extent of eddies. At given total shear, the spanwise extent of the streaks determined from L zuu widens as the boundary is approached. The smallest of the integral scales, L (z)vv , is a measure of the dissipation scale, and decreases with shear in a self-similar way: L (z)vv ~ y.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bertoglio, J. P. (1986): Etude d’une turbulence anisotrope, modélisation de sous-maille et approche statistique. Thése de Doctorate d’Etat, Université Claude-Bernard Lyon: Lyon, France

    Google Scholar 

  • Bradshaw, P. (1967): ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30, 241–258

    Article  ADS  Google Scholar 

  • Durbin, P. A. (1979): Rapid distortion theory of turbulent flows. Ph.D. Thesis, University of Cambridge: Cambridge, England

    Google Scholar 

  • Gartshore, I. S., Durbin, P. A., Hunt, J. C. R. (1983): The production of turbulent stress in a shear flow by irrotational fluctuations. J. Fluid Mech. 137, 307–329

    Article  ADS  Google Scholar 

  • Hunt, J. C. R. (1973): A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61, 625–706

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hunt, J. C. R. (1984): Turbulence structure in thermal convection and shear-free boundary layers. J. Fluid Mech. 138, 161–184

    Article  ADS  MATH  Google Scholar 

  • Hunt, J. C. R., Graham, J. M. R. (1978): Free-stream turbulence near plane boundaries. J. Fluid Mech. 84, 209–235

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hunt, J. C. R., Moin, P., Moser, R. D., Spalart, P. R. (1987a): Self-similarity of two-point correlations in wall-bounded turbulent flows. Proc. of the 1987 Summer Program, Center for Turbulence Research, Stanford University and NASA-Ames Research Center, pp. 25–36

    Google Scholar 

  • Hunt, J. C. R., Spalart, P. R., Mansour, N. N. (1987b): A general form for the dissipation length scale in turbulent shear flows. Proc. of the 1987 Summer Program, Center for Turbulence Research, Stanford University and NASA-Ames Research Center, pp. 179–184

    Google Scholar 

  • Hunt, J. C. R., Stretch, D. D, Britter, R. E. (1988): Length scales in stably stratified turbulent flows and their use in turbulence models. Proc. IMA Conf. on Stably Stratified Flow and Dense Gas Dispersion (J. S. Puttock, ed.), Chester, England, April 1986, pp. 285–321, Clarendon Press: Oxford, England

    Google Scholar 

  • Kim, J., Moin, P., Moser, R. D. (1987): Turbulence statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166

    Article  ADS  MATH  Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A., Runstadler, P. W. (1967) The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773

    Article  ADS  Google Scholar 

  • Lee, M. J., Kim, J., Moin, P. (1987): Turbulence structure at high shear rate. Sixth Symp. on Turbulent Shear Flows, Toulouse, France, Sept. 7–9, 1987 (F. Durst et al., ed.), pp. 22.6.1–22.6.6

    Google Scholar 

  • Lumley, J. L. (1978): Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123–176

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Maxey, M. R. (1978): Aspects of unsteady turbulent shear flow, turbulent diffusion and tidal dispersion. Ph.D. Thesis, University of Cambridge: Cambridge, Engalnd

    Google Scholar 

  • Spalart, P. R. (1988): Direct simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187, 61–98

    Article  ADS  MATH  Google Scholar 

  • Thomas, N. H., Hancock, P. E. (1977): Grid turbulence near a moving wall. J. Fluid Mech. 82, 481–496

    Article  ADS  Google Scholar 

  • Townsend, A. A. (1961): Equilibrium layers and wall turbulence, J. Fluid Mech. 11, 97–126

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Townsend, A. A. (1976): The structure of turbulent shear flow. 2nd edn. Cambridge University Press: Cambridge, England

    MATH  Google Scholar 

  • Uzkan, T., Reynolds, W. C. (1967): A shear-free turbulent boundary layer. J. Fluid Mech. 28, 803–821

    Article  ADS  Google Scholar 

  • Wong, H. (1987): Turbulence near angled and curved surfaces. Ph.D. Dissertation, University of Cambridge: Cambridge, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, M.J., Hunt, J.C.R. (1991). The Structure of Sheared Turbulence Near a Plane Boundary. In: Durst, F., Launder, B.E., Reynolds, W.C., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76087-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76087-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76089-1

  • Online ISBN: 978-3-642-76087-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics