Skip to main content

Respiratory Gas Tensions in the Environment

  • Chapter
Vertebrate Gas Exchange

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 6))

Abstract

The aim of this chapter is to provide a brief introduction to the wide range of environmental oxygen and carbon dioxide partial pressures (PO2, PCO2) that certain vertebrates experience as a part of their natural life history. Various biological and physical features of the environment, particularly of aquatic systems, can lead to marked oscillations in the ambient gas tensions both daily and seasonally, and these in turn can have profound effects on the regulation of gas exchange in a number of these animals. In some instances, unfavourable gas concentrations in the environment (e.g. low O2 levels) can place restrictions on the activity range of an animal or limit the overall success of a species. On the other hand, animals that can tolerate the less than optimal gas composition of certain secluded habitats are often freed from risks of predation. Whereas some animals choose to live in confined, sometimes hypoxic areas (e.g. fossorial mammals), others are subject to periodic extremes of the medium in which they live (e.g. overwintering fish).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackerman RA (1977) The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Respir Physiol 31: 19–38

    Article  PubMed  CAS  Google Scholar 

  • Arieli R (1979) The atmospheric environment of the fossorial mole rat (Spalax ehrenbergi): effects of season, soil texture, rain, temperature and activity. Comp Biochem Physiol 63 A: 569–575

    Article  Google Scholar 

  • Arieli R, Ar A (1979) Ventilation of a fossorial mammal (Spalax ehrenbergi) in hypoxic and hypercapnic conditions. J Appl Physiol 47: 1011–1017

    PubMed  CAS  Google Scholar 

  • Arieli R, Ar A (1981) Blood capillary density in heart and skeletal muscles of the fossorial mole rat. Physiol Zool 54: 22–27

    Google Scholar 

  • Atkinson RJA (1976) Some preliminary field observations of the burrows of the Red Band fish, Cepola rubescens L. J Fish Biol 9: 181–183

    Article  Google Scholar 

  • Atkinson RJA, Pullin RSV, Dipper FA (1977) Studies on the Red Band fish, Cepola rubescens. J Zool (Lond) 182: 369–384

    Article  Google Scholar 

  • Babin J, Prepas EE (1985) Modelling winter oxygen depletion rates in icecovered temperate zone lakes in Canada. Can J Fish Aquat Sci 42: 239–249

    Article  CAS  Google Scholar 

  • Baird DJ, Gates TE, Davies RW (1987) Oxygen conditions in two prairie pothole lakes during winter ice cover. Can J Fish Aquat Sci 44: 1092–1095

    Article  CAS  Google Scholar 

  • Barica J, Mathias JA (1979) Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. J Fish Res Board Can 36: 980–986

    Article  Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Biology of the Reptilia, vol 5. Physiology. Academic Press, New York, pp 127–233

    Google Scholar 

  • Bentley PJ, Herreid CF, Schmidt-Nielsen K (1967) Respiration of a monotreme, the echidna, Tachyglossus aculeatus. Am J Physiol 212: 957–961

    PubMed  CAS  Google Scholar 

  • Birchard GF, Kilgore DL (1980) Conductance of water vapor in eggs of burrowing and non-burrowing birds: Implications for embryonic gas exchange. Physiol Zool 53: 284–292

    Google Scholar 

  • Black CP, Tenny SM (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir Physiol 39: 217–239

    Article  PubMed  CAS  Google Scholar 

  • Boggs DF, Kilgore DL Jr (1983) Ventilatory responses of the burrowing owl and bobwhite to hypercarbia and hypoxia. J Comp Physiol B 149: 527–533

    Article  Google Scholar 

  • Boggs DF, Kilgore DL Jr, Birchard GF (1984) Respiratory physiology of burrowing mammals and birds. Comp Biochem Physiol 77A: 1–7

    Article  Google Scholar 

  • Boutilier RG, Randall DJ, Shelton G, Toews DP (1979) Acid-base relationships in the blood of the toad Bufo marinus. III. The effects of burrowing. J Exp Biol 82: 357–365

    PubMed  CAS  Google Scholar 

  • Bridges CR, Taylor AC, Atkinson RJA (1982) Respiratory properties of the blood of the burrowing red band fish Cepola rubescens L. J Exp Mar Biol Ecol 59: 51–60

    Article  Google Scholar 

  • Burggren W (1985) Gas exchange, metabolism, and “ventilation” in gelatinous frog egg masses. Physiol Zool 58: 503–514

    Google Scholar 

  • Carr AF (1967) So excellent a fishe. Natural History Press, New York, 248 pp

    Google Scholar 

  • Darden TR (1972) Respiratory adaptations of a fossorial mammal, the pocket gopher (Thomomys bottae). J Comp Physiol 78: 121–137

    Article  CAS  Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology, 2nd edn. North Holland/Elsevier, Amsterdam New York, 265 pp

    Google Scholar 

  • Dejours P (1982) Mount Everest and beyond: breathing air. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge University Press, Cambridge, pp 17–30

    Google Scholar 

  • Dethlefsen V, von Westernhagen H (1983) Oxygen deficiency and effects on bottom fauna in the eastern German Bight 1982. Meeresforschung 30: 42–53

    CAS  Google Scholar 

  • Felger RS, Cliffton K, Regal PJ (1976) Winter dormancy in sea turtles: independent discovery and exploitation in the Gulf of California by two local cultures. Science 191: 283–285

    Article  PubMed  CAS  Google Scholar 

  • Furilla RA (1980) Ecological and physiological correlates of tunnel nesting in the bank swallow, Riparia riparia, with reference to the cliff swallow, Petrochelidon pyrrhonata. M Sc Thesis, University of Alaska, Fairbanks, 54 pp

    Google Scholar 

  • Gans C (1969) Amphisbaenians - reptiles specialized for a burrowing existence. Endeavour 28 (105): 146–151

    Google Scholar 

  • Garey WF, Rahn H (1970) Gas tensions in the tissues of trout and carp exposed to diurnal changes in oxygen tension of the water. J Exp Biol 52: 575–582

    PubMed  CAS  Google Scholar 

  • Gatten RE Jr (1981) Anaerobic metabolism in freely diving painted turtles (Chrysemys picta). J Exp Zool 216: 377–385

    Article  Google Scholar 

  • Gnaiger E (1983) In situ measurement of oxygen profiles in lakes: microstratifications, oscillations, and the limits of comparison with chemical methods. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer, Berlin Heidelberg New York Tokyo, pp 245–264

    Google Scholar 

  • Grasshoff K (1975) The hydrochemistry of landlocked basins and fjords. In: Riley JP, Skirrow G (eds) Chemical Oceanography, Vol 2, 2nd edn. Academic Press, New York, pp 456–598

    Google Scholar 

  • Harper DE Jr, McKinney LD, Salzer RR, Case RJ (1981) The occurrence of hypoxic bottom water off the upper Texas coast and its effects on the benthic biota. Contrib Mar Sci 24: 53–79

    Google Scholar 

  • Harvey HW (1957) The chemistry and fertility of sea waters. Cambridge University Press, London, 240 pp

    Google Scholar 

  • Hayward J (1966) Abnormal concentrations of respiratory gases in rabbit burrows. J Mammal 47: 723–724

    Article  Google Scholar 

  • Heisler N, Forcht G, Ultsch GR, Anderson JF (1982) Acid-base regulation in response to environmental hypercapnia in two aquatic salamanders, Siren lacertina and Amphiuma means. Respir Physiol 49: 141–158

    Article  PubMed  CAS  Google Scholar 

  • Hill RW, Wyse GA (1989) Animal physiology, 2nd edn. Harper and Row, New York, 656 pp

    Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, Princeton, 537 pp

    Google Scholar 

  • Howe S, Kilgore DL Jr (1987) Convective and diffuse gas exchange in nest cavities of the northern flicker ( Colaptes auratus ). Physiol Zool 60: 707–712

    Google Scholar 

  • Jackson DC (1986) Acid-base regulation of reptiles. In: Heisler N (ed) Acid-base regulation in animals. Elsevier Scientific, Amsterdam, pp 235–263

    Google Scholar 

  • Johansen K, Lykkeboe G, Weber RE, Maloiy GMO (1976) Respiratory properties of blood in awake and estivating lungfish, Protopterus amphibius. Respir Physiol 27: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Kendeigh SC (1961) Energy of birds conserved by roosting in cavities. Wilson Bull 73: 140–147

    Google Scholar 

  • Kennerley TE (1964) Microenvironmental conditions of the pocket gopher burrow. Texas J Sci 16: 395–441

    Google Scholar 

  • Kramer DL, Lindsey CC, Moodie GEE, Stevens ED (1978) The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Can J Zool 56: 717–729

    Article  Google Scholar 

  • Lee AK, Mercer EH (1967) Cocoon surrounding desert-dwelling frogs. Science 157: 87–88

    Article  PubMed  CAS  Google Scholar 

  • Lüling KH (1975) Ichthyologische und gewässerkundliche Beobachtungen und Untersuchungen an der Yarina Cocha, in der Umgebung von Pucallpa und am Rio Pacaya (mittlerer und unterer Ucayali, Ostperu). Zool Beitr 21: 29–96

    Google Scholar 

  • Maclean GS (1978) Respiratory physiology of a semi-fossorial mammal, Tamias striatus. Physiologist 21: 75

    Google Scholar 

  • Moodie GEE (1978) Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin. Can J Zool 56: 1005–1008

    Article  Google Scholar 

  • Officer CB, Biggs RB, Taft JL, Cronin LE, Tyler MA, Boynton WR (1984) Chesapeake Bay anoxia: origin, development, and significance. Science 223: 22–27

    Article  PubMed  CAS  Google Scholar 

  • Parer JT, Hodson WA (1974) Respiratory studies of monotremes. IV. Normal respiratory function of echidnas and ventilatory response to inspired oxygen and carbon dioxide. Respir Physiol 21: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Penny DG (1987) Frogs and turtles: Different ectotherm overwintering strategies. Comp Biochem Physiol 86A: 609–615

    Article  Google Scholar 

  • Pullin RSV, Morris DJ, Bridges CR, Atkinson RJA (1980) Aspects of the respiratory physiology of the burrowing fish Cepola rubescens L. Comp Biochem Physiol 66A: 35–42

    Article  Google Scholar 

  • Rahn H (1966) Aquatic gas exchange: theory. Respir Physiol 1: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Rawitcher FK (1944) Problemas de fitoecologia com consideracoes especiais sobre o Brazil meridional. Bol Fac Filos Cienc Univ Sāo Paulo 4: 1–153

    Google Scholar 

  • Reid GK (1961) Ecology of inland waters and estuaries, D. Van Nostrand, New York, 375 pp

    Google Scholar 

  • Reimers CE, Fischer KM, Merewether R, Smith KL, Jahnke RA (1986) Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320: 741–744

    Article  CAS  Google Scholar 

  • Revsbech NP (1983) In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer, Berlin Heidelberg New York Tokyo, pp 265–273

    Google Scholar 

  • Revsbech NP, Sorensen J, Blackburn TH, Lomholt JP (1980 a) Distribution of oxygen in marine sediments measured with microelectrodes. Limnol Oceanogr 25: 403–411

    Article  CAS  Google Scholar 

  • Revsbech NP, Jorgensen BB, Blackburn TH (1980 b) Oxygen in the seabottom measured with a microelectrode. Science 207: 1355–1356

    CAS  Google Scholar 

  • Seki H, Tsuji T, Hattori A (1974) Effects of Zooplankton grazing on the formation of the anoxic layer of Tokyo Bay. Estuarine Coastal Mar Sci 2: 145–151

    Article  CAS  Google Scholar 

  • Seliger HH, Boggs JA, Biggley WH (1985) Catastrophic anoxia in the Chesapeake Bay in 1984. Science 228: 70–73

    Article  PubMed  CAS  Google Scholar 

  • Smith HW (1961) From Fish to Philosopher. The Natural History Library, Anchor Books, Doubleday, Garden City NY, 293 pp

    Google Scholar 

  • Stephenson TA, Zoond A, Eyre J (1934) The liberation and utilization of oxygen by the popul0061tion of rock-pools. J Exp Biol 11: 162–172

    Google Scholar 

  • Studier EH, Baca TP (1968) Atmospheric conditions in artificial rodent burrows. Southwest Nat 13: 401–410

    Article  Google Scholar 

  • Toews DP, Macintyre DH (1978) Respiration and circulation in an apodan amphibian. Can J Zool 56: 998–1004

    Article  CAS  Google Scholar 

  • Truchot JP, Duhamel-Jouve A (1980) Oxygen and carbon dioxide in the marine intertidal envi-ronment: diurnal and tidal changes in rockpools. Respir Physiol 39: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Ultsch GR (1973) The effects of water hyacinths (Eichhornia crassipes) on the microenvironment of aquatic communities. Arch Hydrobiol 72: 460–473

    Google Scholar 

  • Ultsch GR (1976) Eco-physiological studies of some metabolic and respiratory adaptations of sirenid salamanders. In: Hughes GM (ed) Respiration of Amphibious Vertebrates. Academic Press, New York, pp 287–312

    Google Scholar 

  • Vogel S, Ellington CP, Kilgore DL (1973) Wind-induced ventilation of the burrow of the prairie- dog, Cyanomys ludovicianus. J Comp Physiol 85: 1–14

    Article  Google Scholar 

  • Weber RE, Johansen K, Abe AS (1981) Myoglobin from the burrowing reptile Amphisbaena alba. Concentrations and functional characteristics. Comp Biochem Physiol 68A: 159–165

    Article  CAS  Google Scholar 

  • White FN, Bartholomew GA, Kinney JL (1978) Physiological and ecological correlates of tunnel-nesting in the European bee-eater, Merops apiaster. Physiol Zool 51: 140–148

    Google Scholar 

  • White FN, Kinney J, Siegfried WR, Kemp AC (1984) Thermal and gaseous conditions of horn-bill nests. Natl Geogr Res Rep 17: 931–936

    Google Scholar 

  • Wickler SJ, Marsh RL (1981) Effects of nestling age and burrow depth on CO2 and O2 concentrations in the burrows of bank swallows (Riparia riparia). Physiol Zool 54: 132–136

    Google Scholar 

  • Williams DD, Rausch RL (1973) Seasonal carbon dioxide concentrations in the dens of hibernating mammals ( Sciuridae ). Comp Biochem Physiol 44: 1227–1235

    Article  CAS  Google Scholar 

  • Withers PC (1978) Models of diffusion-mediated gas exchange in animal burrows. Am Nat 112: 1101–1112

    Article  Google Scholar 

  • Wood CM, Boutilier RG (1985) Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: A field and laboratory study. Biol Bull 169: 267–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boutilier, R.G. (1990). Respiratory Gas Tensions in the Environment. In: Boutilier, R.G. (eds) Vertebrate Gas Exchange. Advances in Comparative and Environmental Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75380-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75380-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75382-4

  • Online ISBN: 978-3-642-75380-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics