Skip to main content

Mechanisms Regulating the Expression and Function of Acetylcholine Receptor

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

Acetylcholine receptors (AChR) are distributed throughout the developing skeletal muscle cell surface, but become highly concentrated at the neuromuscular junction in the innervated adult muscle. Concomitantly, AChRs become metabolically stable and their channel properties change (Edwards 1979; Schuetze and Role 1987). The synthesis of the AChR complex could be regulated on the level of transcription, translation or post-translation, affecting assembly, transport and insertion into the membrane. Regulation at these different levels during development may give rise to the expression of different AChR molecules in embryonic and adult muscle. In addition to AChR-associated changes, epigenetic factors may be involved in regulating or modulating AChR properties. Such factors could reside within the local environment and specific interactions may occur with lipids, proteins or enzymes. AChRs could furthermore communicate with components of the cytoplasmic phase as well as with components and factors originating from the presynaptic nerve terminal. With the introduction of recombinant DNA techniques it became evident that changing levels of the various AChR-subunit specific mRNAs could regulate the expression of different types of AChR (Mishina et al 1986; Evans et al 1987 and references therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brenner, H.R. and Sakmann, B. (1983). Neurotrophic control of channel properties at neuromuscular synapses of rat muscle. J. Physiol. London, 337, 159–171

    PubMed  CAS  Google Scholar 

  • Edwards, C. (1979). The effects of innervation on the properties of acetylcholine receptors in muscle. Neuroscience 4, 565–584

    Google Scholar 

  • Evans, S., Goldmann, D., Heinemann, S. and Patrick, J. (1987) Muscle acetylcholine receptor biosynthesis. J. Biol. Chem. 262, 4911–4916

    PubMed  CAS  Google Scholar 

  • Fallon, J.R., Nitkin, R.M., Reist, N.E., Wallace, B.G. and McMahan, U.J. (1985). Acetylcholine receptor-aggregating factor is similar to molecules concentrated at neuromuscular junctions. Nature 315, 571–574

    Article  PubMed  CAS  Google Scholar 

  • Froehner, S.C. (1984). Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies. J. Cell. Biol. 99, 88–96

    Google Scholar 

  • Froehner, S.C. (1986). The role of the postsynaptic cytoskeleton in acetylcholine receptor organization. Trends Neurosci. 9, 37–41

    Article  CAS  Google Scholar 

  • Merlie, J.P., Isenberg, K.E., Russel, S.D. and Sanes, J.R. (1984). Denervation supersensitivity in Skeletal muscle. Analysis with a cloned cDNA probe. J. Cell Biol. 99, 332–335.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J.P. and Sanes, J.R. (1985). Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibre. Nature 317, 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C. and Sakmann, B. (1986). Molecular distinctions between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411

    Article  PubMed  CAS  Google Scholar 

  • Raftery, M.A., Hunkapiller, M.W., Strader, C.D., Hood, L.E. (1980). Acetylcholine receptor: Complex of homologous subunits. Science 208, 1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Schuetze, S.M. and Role, L.W. (1987). Developmental regulation of nicotinic acetylcholine receptors. Ann. Rev. Neurosci. 10, 403–457

    Article  PubMed  CAS  Google Scholar 

  • Shibahara, S., Kubo, T., Perski, H.J., Takahashi, H., Noda, M. and Numa, S. (1985). Cloning and sequence analysis of human genomic DNA encoding 7-subunit precursor of muscle acetylcholine receptor. Eur. J. Biochem. 146, 15–22

    Article  PubMed  CAS  Google Scholar 

  • Stadler, H. and Kiene, M.-L. (1987). Synaptic vesicles in electromotor neurons. II. Heterogeneity of population is expressed in uptake properties. Exocytosis and insertion of a core proteoglycan into the extracellular matrix. Embo J. 6, 2217–2221

    PubMed  CAS  Google Scholar 

  • Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T. Inayama, S. and Numa, S. (1984). Primary structure of 7-subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequence. Eur. J. Biochem. 143, 109–115

    Article  PubMed  CAS  Google Scholar 

  • Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Takahashi, H., Takahashi, T., Kuno, M. and Numa, S. (1985). Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 316, 761–764

    Article  Google Scholar 

  • Wallace, B.G., Nitkin, R.M., Reist, N.E., Fallon, J.R., Moayeri, N.N. and McMahan, U.J. (1985). Aggregates of acetylcholinesterase induced by acetylcholine receptor aggregating factor. Nature 315, 574–577

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, V.P. (1977). The electromotor system of Torpedo a model cholinergic system. Naturwissenschaften 64, 606–611

    Article  PubMed  CAS  Google Scholar 

  • Witzemann, V., Richardson, G. and Boustead, C. (1983a). Characterization and distributation of acetylcholine receptors and acetylcholinesterase during electric organ development in Torpedo marmorata. Neuroscience 8, 333–349

    Article  PubMed  CAS  Google Scholar 

  • Witzemann, V., Schmid, D. and Boustead, C. (1983b). Differentiation-dependent changes of nicotinic synapse-associated proteins. Eur. J. Biochem. 131, 235–245

    Article  CAS  Google Scholar 

  • Witzemann, V., Barg, B. Nishikawa, Y., Sakmann, B. and Numa, S. (1987). Differential regulation of muscle acetylcholine receptor 7- and e-subunit mRNAs. FEBS-Lett. in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Witzemann, V., Sakmann, B. (1988). Mechanisms Regulating the Expression and Function of Acetylcholine Receptor. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics