Skip to main content

Coherent Structures in a Turbulent Mixing Layer: A Comparison Between Direct Numerical Simulations and Experiments

  • Conference paper

Abstract

An eduction scheme has been developed in an attempt to determine the characteristics of large-scale vortical structures in a turbulent mixing layer. This analysis scheme has been applied to a set of experimental data taken in a new, large mixing layer facility designed to minimize boundary and resonance effects. The scheme is based on detection of large-scale vorticity concentrations from smoothed vorticity maps, accepting structures of certain size and strength and aligning the realizations through correlation of vorticity. A similar scheme has been developed to apply to the results of a direct numerical simulation of a temporally growing mixing layer. A comparison of the two approaches shows important similarities in details of the coherent structures educed both ways. The numerical simulations indicate that low levels of coherent forcing can dramatically change the evolution of the mixing layer. In the absence of such forcing, the numerical simulations and experiments show a lack of regularity in the transverse position, spacing, amplitude, shape and spanwise coherence of the large-scale vortical structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Reλ):

Reynolds number based on Taylor microscale

RE x ):

Reynolds number = xU e /v

M):

Peak mean shear rate =\({\left. {\frac{{\partial U}} {{\partial y}}} \right|_{\max }}\)

T̄):

= t U c /θ

T̄):

= t S̄ Mo

U):

Mean velocity difference (simulations)

Uc):

Streamwise advection velocity of coherent structures (experiments) = 0.5 U e

Ue):

Mean exit velocity (experiment)

Ū(y)):

Mean velocity

u′ v′ w′):

rms perturbation velocities

uc, vc):

Coherent velocity fields

ur, vr):

Incoherent velocity fields

x, y, z):

Streamwise, transverse and spanwise coordinates

Y):

= y/θ

δω):

Mean vorticity thickness = U e /S M

θ):

Local momentum thickness

θe):

Exit boundary layer momentum thickness (experiment)

λ):

Wavelength of fundamental (most unstable) mode

ω):

Vorticity

References

  • Bernal, L. P. (1981): “The Coherent Structure of Turbulent Mixing Layers. I. Similarity of the Primary Vortex Structure. II. Secondary Streamwise Vortex Structure;” Ph. D. Thesis, California Institute of Technology

    Google Scholar 

  • Breidenthal, R. (1981): Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1–24

    Article  ADS  Google Scholar 

  • Brown, G. L., Roshko, A. (1974): On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816

    Article  ADS  Google Scholar 

  • Gottlieb, D., Orszag, S. (1977): Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics

    Book  MATH  Google Scholar 

  • Ho, C. M., Huerre, P. (1984): Perturbed free shear layers. Ann. Rev. Fluid Mech. 16, 365–424

    Article  ADS  Google Scholar 

  • Hussain, A. K. M. F. (1983): “Coherent Structures and Incoherent Turbulence,” in Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (North Holland, Amsterdam) pp. 245–249

    Google Scholar 

  • Hussain, A. K. M. F. (1985): “Measurements of Large Scale Organized Motions in Turbulent Flows,” in Forum on Unsteady Flows in Biological Systems, ed. by M. H. Friedman, D. C. Wiggert, ASME, 8–12

    Google Scholar 

  • Hussain, A. K. M. F., Zaman, K. B. M. Q. (1981 a): The ‘Preferred Mode’ of the axisymmetric jet. J. Fluid Mech. 110, 39–71

    Article  ADS  Google Scholar 

  • Hussain, A. K. M. F., Zaman, K. B. M. Q. (1981 b): The natural large-scale coherent structure in an initially turbulent mixing layer. Bull. Am. Phys. Soc. 26, 1273

    Google Scholar 

  • Hussain, A. K. M. F., Zaman, K. B. M. Q. (1985): An experimental study of organized motions in the turbulent plane mixing layer. J. Fluid Mech. 159, 85–104

    Article  ADS  Google Scholar 

  • Kleis, S., Hussain, A. K. M. F. (1979): The asymptotic state of the plane mixing layer. Bull. Am. Phys. Soc. 24, 1132

    Google Scholar 

  • Lin, S. J., Corcos, G. M. (1984): The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech. 141, 139–178

    Article  ADS  MATH  Google Scholar 

  • Michalke, A. (1964): On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19, 543–556

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pierrehumbert, R. T., Widnall, S. E. (1982): The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 59–82

    Article  ADS  MATH  Google Scholar 

  • Riley, J. J., Metcalfe, R. W. (1979): “Direct Numerical Simulations of the Turbulent Wake of an Axisymmetric Body,” in Turbulent Shear Flows 2, ed. by L. J. S. Bradbury et al. (Springer, Berlin, Heidelberg) pp. 78–93

    Google Scholar 

  • Riley, J. J., Metcalfe, R. W. (1980): Direct numerical simulation of a perturbed turbulent mixing layer. AIAA Paper 80–0274

    Google Scholar 

  • Wygnanski, I., Fiedler, H. E. (1970): The two-dimensional mixing region. J. Fluid Mech. 41, 327–361

    Article  ADS  Google Scholar 

  • Wygnanski, I., Oster, D., Fiedler, H. (1979): “A Forced, Plane, Turbulent Mixing-Layer; A Challenge for the Predictor,” in Turbulent Shear Flows 2, ed. by L. J. S. Bradbury et al. (Springer, Berlin, Heidelberg) pp. 314–326

    Google Scholar 

  • Zaman, K. B. M. Q., Hussain, A. K. M. F. (1977): “Vortex Pairing and Organized Structures in Circular Jets Under Controlled Excitation,” Turbulent Shear Flows I, Penn. State Univ., pp. 11.23–11.31

    Google Scholar 

  • Zaman, K. B. M. Q., Hussain, A. K. M. F. (1980): Vortex pairing and organized structures in circular jets under controlled excitation. J. Fluid Mech. 101, 449–492

    Article  ADS  Google Scholar 

  • Zaman, K. B. M. Q., Hussain, A. K. M. F. (1984): “Natural large-scale structures in the axisymmetric mixing layer. J. Fluid Mech. 138, 325–351

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Metcalfe, R.W., Hussain, A.K.M.F., Menon, S., Hayakawa, M. (1987). Coherent Structures in a Turbulent Mixing Layer: A Comparison Between Direct Numerical Simulations and Experiments. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics