Skip to main content

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Protoplast isolation and regeneration of protoplasts is known from many plants Binding et al. 1981). In spite of great success in producing and handling protoplasts, there are still many plant species which are very resistant against protoplast isolation, or against regeneration. Regengeration of plant protoplasts is more or less a field of testing and trying than understood by known parameters. Therefore great difficulties often accompany the installation of an efficient protoplast regeneration system, even if the isolation provides a high yield of viable protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackman RG (1969) Gas-liquid chromatography of fatty acids and esters. In: Lowenstein JM (ed) Methods of enzymology, Vol 14 Lipids, Academic Press, London, pp 329–381

    Google Scholar 

  • Ashbumer M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17:241–254

    Article  Google Scholar 

  • Ben Abdelkader A (1969) Influence de la survie sur la biosynthese des phospholipids dans les microsomes de tubercules de pomme de terre. C R Acad Sci Paris 268:2406–2409

    Google Scholar 

  • Ben Abdelkader A, Auderset G (1972) Formation de polyribosomes dans des tranches de tubercules de pomme de terre maintenues en survie. C R Acad Sci Paris 274:1311–1314

    Google Scholar 

  • Binding H, Nehls H, Kock R, Finger J, Mordhorst G (1981) Comparative studies on protoplast regeneration in herbaceous species of the dicotyledoneae class. Z Pflanzenphysiol 101:119–130

    Google Scholar 

  • Breidenbach RW, Warring AJ (1977) Response to chilling of tomato seedlings and cells in suspension cultures. Plant Physiol 60:190–192

    Article  PubMed  CAS  Google Scholar 

  • Burg S (1962) The physiology of ethylene formation. Ann Rev Plant Physiol 13:265–303

    Article  CAS  Google Scholar 

  • Burgess J, Linstead PJ (1981) Studies on the growth and development of protoplasts of the moss, Physcomitrella patens, and its control by light. Planta (Berl) 151:331–338

    Article  Google Scholar 

  • Douglas TJ, Paleg LG (1981) Lipid composition of Zea mays seedlings and water stress-induced changes. J Exp Bot 32:499–508

    Article  CAS  Google Scholar 

  • Durand J, Potrykus I, Donn G (1973) Plantes issues de protoplastes de Petunia. Z Pflanzenphysiol 69:26–34

    CAS  Google Scholar 

  • Euler R (1983) Untersuchungen zum Lipid Stoffwechsel eines Laubmoosprotonemas unter ververschiedenen Kulturbedingungen. Thesis, Mainz

    Google Scholar 

  • Fleck J, Durr A, Fritsch C, Lett MC, Hirth L (1980) Comparison of proteins synthesized in vivo and in vitro by mRNA from isolated protoplasts. Planta 148:453–454

    CAS  Google Scholar 

  • Fleck J, Durr A, Fritsch C, Vernet T, Hirth L (1982) Osmotic shock “stress proteins” in protoplasts of Nicotiana silvestris. Plant Sci Lett 26:159–165

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Szanley HS (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Gawer M, Sansonetti A, Mazliak P (1983) Lipid composition of tobacco cells cultivated at various temperatures. Phytochemistry 22:855–859

    Article  CAS  Google Scholar 

  • Gellerman JL, Anderson WH, Richardson DG, Schlenk H (1975) Distribution of arachidonic and eicosapentaenoic acid in the lipids of mosses. Biochim Biophys Acta 388:277–290

    PubMed  CAS  Google Scholar 

  • Grimsley NH, Ashton NW, Cove DJ (1977) The production of somatic hybrids by protoplast fusion in the moss Physcomitrella patens. Molec gen Genet 154:97–100

    Article  CAS  Google Scholar 

  • Hackett DP, Haas DW, Griffiths SK, Niederpruem DJ (1960) Studies on the development of cyanide resistant respiration in potato tuber slices. Plant Physiol 37:8–19

    Article  Google Scholar 

  • Hock K (1984) Untersuchungen zur Kompartimentierung der Enzyme des pflanzlichen Acetylcholin-Metabolismus mit Hilfe pflanzlicher Protoplasten. PhD Thesis, Mainz

    Google Scholar 

  • Hock K, Hartmann E (1981) Localization of phosphatidylcholine synthesizing enzymes in etiolated bean seedlings (Phaseolus vulgaris L.). Plant Sci Lett 21:389–396

    Article  CAS  Google Scholar 

  • Jackman ME, Van Steveninck RFM (1967) Changes in the neoplasmic reticulum of beetroot slices during aging. Austr J Biol Sci 20:1063–1068

    Google Scholar 

  • Jahnen W, Hartmann E (1983) Microfluorometric determination of early regeneration of moss protoplasts of Ceratodon purpureus (Hedw.). In: Potrykus I, Harms CT, Hinnen A, Hütter R, King PJ, Shillito RD (eds) Protoplasts 1983, 6th INternational Protoplast Symposium, Basel, Birkhäuser Verlag, pp 182–184

    Google Scholar 

  • Kahl G (1982) Molecular biology of wound healing: The conditioning phenomenon. In: Kahl G, Schell JS (eds) Molecular Biology of plant tumors, Academic Press, London New York, pp 211–267

    Google Scholar 

  • Key JL, Lin CY, Chen YM (1981) Heat schock proteins in higher plants. Proc Natl Acad Sci USA 78:3526–3530

    Article  PubMed  CAS  Google Scholar 

  • Laties GG (1976) Membrane destruction and resynthesis in salt absorbing tissue. In: Proceedings of the workshop on salt effects on plant structures and processes, Riverside Cal, Agricultural Res Service US

    Google Scholar 

  • Lilijenberg C, Kates M (1982) Effect of waterstress on lipidcomposition of oat seedling root cell membranes. In: Wintermans FJGM, Kuiper PJC (eds), Biochemistry and metabolism of plant lipids, Elsevier Biomedical Press, Amsterdam, pp 441–444

    Google Scholar 

  • Mazliak P (1981) Regulation acourt terme et a long terme de l’activite des enzymes membranaires par la temperature. Physiol Veg 19:543–563

    CAS  Google Scholar 

  • Moore TS, Lord JM, Kagawa T, Beevers H (1973) Enzymes of phospholipid metabolism in the endoplasmic reticulum of castor bean endosperm. Plant Physiol 52:50–53

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, Maliga P (1976) Callus induction and plantlet regenration from mesophyll protoplasts of Nicotiana sylvestris. Z Pflanzenphysiol 78:453–455

    Google Scholar 

  • Nakano M, Asahi T (1970) Biochemical studies on mitochondrial formed during aging of sliced potato tissue. Plant & Cell Physiol 11:499–502

    CAS  Google Scholar 

  • Radwan SS, Grosse-Detinghaus S, Mangold HK (1978) Lipids in plant tissue cultures. VI. Effect of temperature on the lipids of Bmssica napus and Tropaeolum majus cultures. Chem Phys Lipids 22:177–184

    Article  CAS  Google Scholar 

  • Rauch V (1984) Beeinflussung des Lipidmusters durch Isolierung und Regeneration von Protoplasten aus Moosprotonemen. Thesis, Mainz

    Google Scholar 

  • Saxena PK, Rashid A (1981) High frequency regeneration of Funana hygrometrica protoplasts isolated from low calcium protonemal suspension. Plant Sci Lett 23, 117–122

    Article  CAS  Google Scholar 

  • Swanson ES, Anderson WH, Gellerman JL, Schlenk H (1976) Ultrastructure and lipid composition of mosses. Bryologist 79, 337–349

    Article  Google Scholar 

  • Theologis A, Laties GG (1981) Wound-induced membrane lipid breakdown in potato tuber. Plant Physiol 68:53–58

    Article  PubMed  CAS  Google Scholar 

  • Thu PTA, Flood C, Dasilva JV (1982) Effects of water stress on lipid and fatty acid compositions of cotton leaves. In: Wintermans FJGM, Kuiper PJC (eds), Biochemistry and metabolism of plant lipids, Elsevier Biomedical Press, Amsterdam, pp 451–454

    Google Scholar 

  • Webster PL (1980) “Stress” protein synthesis in pea root meristem cells? Plant Sci Lett 20:141–145

    Article  CAS  Google Scholar 

  • Willemot C (1983) Rapid degradation of polar lipids in forst damaged winter wheat crown and root tissue. Phytochemistry 22:861–863

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmann, E., Hock, K. (1985). Fatty Acids in Protoplasts. In: Pilet, PE. (eds) The Physiological Properties of Plant Protoplasts. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70144-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70144-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70146-7

  • Online ISBN: 978-3-642-70144-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics