Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 70 / 1))

Abstract

Water is the main constituent of the human body. The weight fraction in males varies between 59% at age 10–16 years and 52% above 60 years; in females the water content is a few percent lower (Edelman and Leibman 1959). Several basic data of water homeostasis in the human under normal conditions of body temperature regulation are compiled in Table 1. In comparison with other mammals such as dog, beef, elephant, rabbit, and rat the daily water intake of the human is low when expressed as a percentage of body weight (Fitzsimons 1979). Clearly, over extended periods of time, intestinal water absorption and the water recovered from the metabolism of nutrients have to be equal to the combined water loss via the kidneys, intestine, lung, and skin. Whereas renal mechanisms are known as regulatory systems which preserve the dynamic water equilibrium of the organism, for example the effect of antidiuretic hormone (ADH) on the distal nephron, little is known of feedback systems between water demand and intestinal water absorption. Up to enormously high amounts of daily oral water intake, for instance in the case of diabetes insipidus, practically all the water ingested is absorbed. Hence, the amount of intestinal water absorption appears to be primarily determined by the rate of oral water intake. Oral water intake, in turn, is controlled by our consciousness, specifically by thirst. Considerable progress has been made in elucidating the factors coupling water homeostasis and the sensation of thirst, as reviewed by Fitzsimons (1979) and Peters (1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamirano M, Martinoya C (1966) The permeability of gastric mucosa of dogs. J Physiol (Lond) 184:771–790

    CAS  Google Scholar 

  • Andreoli TE, Monahan M (1968) The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol 52:300–325

    PubMed  CAS  Google Scholar 

  • Andreoli TE, Schafer JA (1976) Mass transport across cell membranes: The effect of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol 38:451–500

    PubMed  CAS  Google Scholar 

  • Andreoli TE, Schafer JA (1979) External solution driving forces for isotonic fluid absorption in proximal tubules. Fed Proc 38:154–160

    PubMed  CAS  Google Scholar 

  • Andreoli TE, Troutman SC (1971) An analysis of unstirred layers in series with “tight” and “porous” lipid bilayer membranes. J Gen Physiol 57:464–478

    PubMed  CAS  Google Scholar 

  • Andreoli TE, Schafer JA, Troutman SL (1971) Coupling of solute and solvent flows in porous lipid bilayer membranes. J Gen Physiol 57:479–493

    PubMed  CAS  Google Scholar 

  • Andreoli TE, Schafer JA, Troutman SL, Watkins ML (1979) Solvent drag component of Cl- flux in superficial proximal straight tubules: evidence for a paracellular component of isotonic fluid absorption. Am J Physiol 237:F455–F462

    PubMed  CAS  Google Scholar 

  • Barry PH, Hope AB (1969 a) Electroosmosis in membranes: effects of unstirred layers and transport numbers. I. Theory. Biophys J 9:700–728

    PubMed  CAS  Google Scholar 

  • Barry PH, Hope AB (1969 b) Electroosmosis in membranes: effects of unstirred layers and transport numbers. II. Experimental. Biophys J 9:729–757

    PubMed  CAS  Google Scholar 

  • Barry RJC, Smyth DH, Wright EM (1965) Short-circuit current and solute transfer by rat jejunum. J Physiol (Lond) 181:410–431

    CAS  Google Scholar 

  • Barry PH, Diamond JM, Wright EM (1971) The mechanism of cation permeation in rabbit gallbladder. Dilution potentials and biionic potentials. J Membr Biol 4:358–394

    CAS  Google Scholar 

  • Barton TC, Brown DAJ (1964) Water permeability of the fetal erythrocyte. J Gen Physiol 47:839–849

    PubMed  CAS  Google Scholar 

  • Bentley PJ (1961) Directional differences in the permeability to water of the isolated urinary bladder of the toad, Bufo marinus. J Endocrinol 22:95–100

    CAS  Google Scholar 

  • Bentzel CJ, Davies M, Scott WN, Zatzman M, Solomon AK (1968) Osmotic volume flow in the proximal tubule of Necturus kidney. J Gen Physiol 51;517–533

    PubMed  CAS  Google Scholar 

  • Bentzel CJ, Parsa B, Hare DK (1969) Osmotic flow across proximal tubule of Necturus: correlation of physiological and anatomical studies. Am J Physiol 217:570–580

    PubMed  CAS  Google Scholar 

  • Berger EY, Pecikyan R, Kanzaki G (1970) Water flux across the rat jejunum and ileum. J Appl Physiol 29:130–132

    Google Scholar 

  • Berry CA, Boulpaep EL (1975) Nonelectrolyte permeability of the paracellular pathway in Necturus proximal tubule. Am J Physiol 228:581–595

    PubMed  CAS  Google Scholar 

  • Biber B, Lundgren O, Svanvik J (1973) Intramural blood flow and blood volume in the small intestine of the cat as analyzed by an indicator dilution technique. Acta Physiol Scand 87:391–403

    PubMed  CAS  Google Scholar 

  • Bihler I, Crane RK (1962) Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim Biophys Acta 59:78–93

    PubMed  CAS  Google Scholar 

  • Bindslev N, Skadhauge E (1971) Salt and water permeability of the epithelium of the coprodeum and large intestine in the normal and the dehydrated fowl (Gallus domesticus). In vivo perfusion studies. J Physiol (Lond) 216:735–751

    CAS  Google Scholar 

  • Bindslev N (1981) Water and NaCl transport in the hen lower intestine during dehydration. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Alfred Benzon symposium 15. Munksgaard, Copenhagen, pp 468–481

    Google Scholar 

  • Bindslev N, Tormey JMcD, Pietras RJ, Wright EM (1974) Electrically and osmotically induced changes in permeability and structure of toad urinary bladder. Biochim Biophys Acta 332:286–297

    CAS  Google Scholar 

  • Blom H, Heiander HF (1977) Quantitative electron microscopical studies on in vitro incubated rabbit gallbladder epithelium. J Membr Biol 37:45–61

    PubMed  CAS  Google Scholar 

  • Bowling DJF (1969) Evidence for the electroosmosic theory of transport in the phloem. Biochim Biophys Acta 183:230–232

    PubMed  CAS  Google Scholar 

  • Brahm J (1982) Diffusional water permeability of human erythrocytes and their ghosts. J Gen Physiol 79:791–819

    PubMed  CAS  Google Scholar 

  • Brodsky WA, Schilb TP (1965) Osmotic properties of isolated turtle bladder. Am J Physiol 208:46–57

    PubMed  CAS  Google Scholar 

  • Brücke E (1874) Vorlesungen über Physiologie. Braumüller, Wien

    Google Scholar 

  • Carpi-Medina P, Gonzales E, Whittembury G (1983) Cell osmotic water permeability of isolated rabbit convoluted tubules. Am J Physiol 244:F554–F563

    PubMed  CAS  Google Scholar 

  • Cass A, Finkelstein A (1967) Water permeability of thin lipid membranes. J Gen Physiol 50:1765–1784

    PubMed  CAS  Google Scholar 

  • Cass A, Finkelstein A, Krespi U (1970) The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:100–124

    PubMed  CAS  Google Scholar 

  • Chalfin D, Cooperstein IL, Hogben AM (1958) Fluid and electrolyte movement across intestinal wall of bullfrog. Proc Soc Exp Biol Med 99:746–748

    PubMed  CAS  Google Scholar 

  • Clarkson TW, Rothstein A (1960) Transport of monovalent ions by the isolated small intestine of the rat. Am J Physiol 199:898–906

    PubMed  CAS  Google Scholar 

  • Cohnheim O (1898) Über Dünndarmresorption. Z Biol 36:129–153

    Google Scholar 

  • Cohnheim O (1899) Über die Resorption im Dünndarm und der Bauchhöhle. Z Biol 37:443–482

    Google Scholar 

  • Collander R, Bärlund H (1933) Permeabilitätsstudien an Chara cerata phylla. II. Die Permeabilität für Nichtelektrolyte. Acta Bot Fenn 11:1–114

    Google Scholar 

  • Conlon T, Outhred R (1978) The temperature dependence of the erythrocyte water diffusion permeability. Biochim Biophys Acta 511:408–418

    PubMed  CAS  Google Scholar 

  • Conway BE (1952) Electrochemical data. Elsevier, Amsterdam

    Google Scholar 

  • Corbett CL, Isaacs PET, Riley AK, Turnberg LA (1977) Human intestinal ion transport in vitro. Gut 18:136–140

    PubMed  CAS  Google Scholar 

  • Curci S, Frömter E (1979) Micropuncture of lateral intercellular spaces of Necturus gallbladder to dertermine space fluid K+ concentration. Nature 278:355–357

    PubMed  CAS  Google Scholar 

  • Curran PF (1960) Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol 43:1137–1148

    PubMed  CAS  Google Scholar 

  • Curran PF, Macintosh JR (1962) A model system for biological water transport. Nature 193:347–348

    PubMed  CAS  Google Scholar 

  • Curran PF, Schwartz GF (1960) Na, Cl, and water transport by rat colon. J Gen Physiol 43:255–268

    Google Scholar 

  • Curran PF, Solomon AK (1957) Ion and water fluxes in the ileum of rats. J Gen Physiol 41:143–168

    PubMed  CAS  Google Scholar 

  • Dainty J (1963) Water relations of plant cells. Adv Bot Res 1:279–326

    CAS  Google Scholar 

  • Dainty J, House CR (1966 a) Unstirred layers in frog skin. J Physiol (Lond) 182:66–78

    CAS  Google Scholar 

  • Dainty J, House CR (1966 b) An examination of the evidence for membrane pores in frog skin. J Physiol (Lond) 185:172–184

    CAS  Google Scholar 

  • Debongnie JC, Phillips SF (1978) Capacity of the human colon to absorb fluid. Gastroenterology 74:694–703

    Google Scholar 

  • Degani H, Avron M (1982) The diffusional water permeability in the halotherant alga Dunaliella as measured by nuclear magnetic resonance. Biochim Biophys Acta 690:174–177

    PubMed  CAS  Google Scholar 

  • Denhardt R (1976) Effect of ADH on intestinal electrolyte and water absorption. In: Robinson JWL (ed) Intestinal ion transport. MTP Press, Lancaster, pp 183–186

    Google Scholar 

  • Diamond JM (1962 a) The reabsorptive function of the gallbladder. J Physiol (Lond) 161:442–473

    CAS  Google Scholar 

  • Diamond JM (1962 b) The mechanism of Solute transport by the gallbladder. J Physiol (Lond) 161:474–502

    CAS  Google Scholar 

  • Diamond JM (1962 c) The mechanism of water transport by the gallbladder. J Physiol (Lond) 161:503–527

    CAS  Google Scholar 

  • Diamond JM (1964 a) Transport of salt and water in rabbit and guinea pig gallbladder. J Gen Physiol 48:1–14

    PubMed  CAS  Google Scholar 

  • Diamond JM (1964 b) The mechanism of isotonic water transport. J Gen Physiol 48:15–42

    PubMed  CAS  Google Scholar 

  • Diamond JM (1966 a) Non-linear osmosis. J Physiol (Lond) 183:58–82

    CAS  Google Scholar 

  • Diamond JM (1966 b) A rapid method for determination voltage — concentration relations across membranes. J Physiol (Lond) 183:83–100

    CAS  Google Scholar 

  • Diamond JM (1978) Solute-linked water transport in epithelia. In: Hoffman JF (ed) Membrane transport processes. Raven, New York, pp 257–276

    Google Scholar 

  • Diamond JM (1979) Osmotic water flow in leaky epithelia. J Membr Biol 51:195–216

    PubMed  CAS  Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing — gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    PubMed  CAS  Google Scholar 

  • Diamond JM, Szabo G, Katz Y (1974) Theory of nonelectrolyte permeation in a generalized membrane. J Membr Biol 17:148–152

    Google Scholar 

  • Dibona DR, Civan MM (1973) Pathways for movement of ions and water across toad urinary bladder. I. Anatomical site of transepithelial shunt pathways. J Membr Biol 12:101–128

    PubMed  CAS  Google Scholar 

  • Dibona DR, Mills JM (1979) Distribution of Na+ pump sites in transporting epithelia. Fed Proc 38:134–143

    PubMed  CAS  Google Scholar 

  • Dibona DR, Civan MM, Leaf A (1969) The cellular specificity of the effect of vasopressin on toad urinary bladder. J Membr Biol 1:79–91

    CAS  Google Scholar 

  • Dick DA (1964) The permeability coefficient of water in the cell membrane and the diffusion coefficient in the cell interior. J Theor Biol 7:504–531

    PubMed  CAS  Google Scholar 

  • Dietschy JM (1964) Water and solute movement acros the wall of the everted rabbit gallbladder. Gastroenterology 47:395–408

    PubMed  CAS  Google Scholar 

  • Dobson A (1979) The choice of models relating tritiated water absorption to subepithelial blood flow in the rumen of the sheep. J Physiol (Lond) 297:111–121

    CAS  Google Scholar 

  • Dörge A, Rick R, Katz U, Thurau K (1981) Determination of intracellular electrolyte concentrations in amphibian epithelia with the use of electron microprobe analysis. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia, Alfred Benzon Symposium 15. Munksgaard, Copenhagen, pp 36–46

    Google Scholar 

  • Duffy PA, Granger DN, Taylor AE (1978) Intestinal secretion induced by volume expansion in the dog. Gastroenterology 75:413–418

    PubMed  CAS  Google Scholar 

  • Durand J, Durand-Arczynska W, Haab P (1981) Volume flow, hydraulic conductivity and electrical properties across bovine tracheal epithelium: effect of histamin. Pflügers Arch 392:40–45

    PubMed  CAS  Google Scholar 

  • Durbin RP (1960) Osmotic flow of water across permeable cellulose membranes. J Gen Physiol 44:315–326

    PubMed  CAS  Google Scholar 

  • Durbin RP, Heiander HF (1978) Distribution of osmotic flow in stomach and gallbladder. Biochim Biophys Acta 513:179–181

    PubMed  CAS  Google Scholar 

  • Durbin RP, Frank H, Solomon AK (1956) Water flow through frog skin mucosa. J Gen Physiol 39:535–551

    PubMed  CAS  Google Scholar 

  • Edelman IS, Leibman J (1959) Anatomy of body water and electrolytes. Am J Med 27:256–277

    PubMed  CAS  Google Scholar 

  • Erlij D, Martinez-Palomo A (1977) Opening of tight junctions in frog skin by hypertonic solutions. J Membr Biol 9:229–240

    Google Scholar 

  • Fabry ME, Eisenstadt M (1978) Water exchange across red cell membranes: II. Measurement by nuclear magnetic resonance Tl, T2, and T12 hybrid relaxation. The effects of osmolarity, cell volume, and medium. J Membr Biol 42:375–398

    PubMed  CAS  Google Scholar 

  • Fenichel IR, Horowitz SB (1963) The transport of non-electrolytes in muscle as a diffusional process in cytoplasm. Acta Physiol Scand 60 (Suppl 221): 1–63

    CAS  Google Scholar 

  • Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68:127–135

    PubMed  CAS  Google Scholar 

  • Finkelstein A, Cass A (1967) Effect of cholesterol on the water permeability of thin lipid membranes. Nature 216:717–718

    PubMed  CAS  Google Scholar 

  • Finkelstein A, Cass A (1968) Permeability and electrical properties of thin lipid membranes. J Gen Physiol 52:145s–171s

    CAS  Google Scholar 

  • Fischbarg J (1978) Pathways for water permeation across epithelia. In: Bourguet J, Chevalier J, Parisi M, Ripoche P (eds) Contrôle hormonal des transports epitheliaux, INSERM, vol 85. INSERM, Paris, pp 323–334

    Google Scholar 

  • Fischbarg J, Warshavsky CR, Lim JJ (1977) Pathways for hydraulically and osmotically — induced water flow across epithelia. Nature 266:71–74

    PubMed  CAS  Google Scholar 

  • Fisher RB (1954) The absorption of water and some non-electrolytes from the surviving small intestine of the rat. J Physiol (Lond) 124:21P–22P

    Google Scholar 

  • Fisher RB (1965) The absorption of water and some small solute molecules from the isolated small intestine of the rat. J Physiol (Lond) 130:655–664

    Google Scholar 

  • Fisher RB, Parsons DS (1950) The gradient of mucosal surface area in the small intestine of the rat. J Anat 84:272–282

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Cambridge University Press, Cambridge

    Google Scholar 

  • Fordtran JS, Levitan R, Bikerman V, Burrows BA, Ingelfinger FJ (1961) The kinetics of water absorption in the human intestine. Trans Assoc Am Physicians 74:195–205

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC Jr, Ewton MF, Soter N, Kinney J (1965) Permeability characteristics of the human small intestine. J Clin Invest 44:1935–1944

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC, Carter NW (1968) The mechanism of sodium absorption in the human small intestine. J Clin Invest 47:884–900

    PubMed  CAS  Google Scholar 

  • Frank HS, Wen WY (1957) Structural aspects of ion — solvent interaction in aqueous solutions; a suggested picture of water structure. Discuss Faraday Soc 24:133–140

    Google Scholar 

  • Franz TJ, Van Bruggen TJ (1967) Hyperosmolarity and net transport of non-electrolytes in frog skin. J Gen Physiol 50:933–949

    PubMed  CAS  Google Scholar 

  • Frederikson O, Møllgård K, Rostgaard J (1979) Lack of correlation between transepithelial transport capacity and paracellular pathway ultrastructure in Alcian blue-treated rabbit gallbladders. J Cell Biol 83:383–393

    Google Scholar 

  • Frizzell RA, Schultz SG (1972) Ionic conductance of the extracellular shunt pathway in rabbit ileum: Influence of the shunt on transmural sodium transport and electrical potential difference. J Gen Physiol 59:318–346

    PubMed  CAS  Google Scholar 

  • Frizzell RA, Schultz SG (1979) Models of electrolyte absorption and secretion by gastrointestinal epithelia. In: Crane RK (ed) International review of physiology, vol 19, gastrointestinal physiology III. University Park Press, Baltimore, pp 205–225

    Google Scholar 

  • Frizzell RA, Turnheim K (1978) Ion transport by rabbit colon. II. Unidirectional sodium influx and the effects of amphotericin B and amiloride. J Membr Biol 40:193–211

    PubMed  CAS  Google Scholar 

  • Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27:297–316

    PubMed  CAS  Google Scholar 

  • Frömter E (1972) The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol 8:259–301

    PubMed  Google Scholar 

  • Frömter E (1974) Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. In: Thurau K (ed) Kidney and urinary tract physiology. MTP International Review of Science, Physiology, Ser 1, vol 6. Butterworth, London; University Park Press, Baltimore, pp 1–36

    Google Scholar 

  • Frömter E, Diamond JM (1972) Route of passive ion permeation in epithelia. Nature, New Biology 235:9–11

    Google Scholar 

  • Frömter E, Lüer K (1969) Konzentration und isoelektrischer Punkt der Festladungen im proximalen Konvolut der Ratenniere. Pflügers Arch 307:R76

    PubMed  Google Scholar 

  • Garby L, Linderholm H (1953) The permeability of frog skin to heavy water and to ions, with special reference to the effect of some diuretics. Acta Physiol Scand 28:336–346

    PubMed  CAS  Google Scholar 

  • Ginzburg BZ, Katchalsky A (1963) The frictional coefficients of the flows of non-electrolytes through artificial membranes. J Gen Physiol 47:403–418

    PubMed  CAS  Google Scholar 

  • Glaser R (1976) Einführung in die Biophysik. Gustav Fischer, Jena

    Google Scholar 

  • Goldschmidt S (1921) On the mechanism of absorption from the intestine. Physiol Rev 1:421–453

    CAS  Google Scholar 

  • Goldstein A, Solomon AK (1961) Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J Gen Physiol 44:1–17

    Google Scholar 

  • Gonzales E, Carpi-Medina P, Whittembury G (1982) Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am J Physiol 242:F321–F330

    Google Scholar 

  • Granger DN, Kvietys PR (1981) The splanchnic circulation: intrinsic regulation. Annu Rev Physiol 43:409–418

    PubMed  CAS  Google Scholar 

  • Granger DN, Taylor AE (1978) Effects of solute-coupled transport on lymph flow and oncotic pressures in cat ileum. Am J Physiol 235:E429–E436

    PubMed  CAS  Google Scholar 

  • Granger DN, Taylor AE (1980) Permeability of intestinal capillaries to endogeneous macromolecules. Am J Physiol 238:H457–H464

    PubMed  CAS  Google Scholar 

  • Granger DN, Granger JP, Brace RA, Parker RE, Taylor AE (1979) Analysis of the permeability characteristics of cat intestinal capillaries. Circ Res 44:335–344

    PubMed  CAS  Google Scholar 

  • Granger DN, Kvietys PR, Mailman D, Richardson PDI (1980) Intrinsic regulation of functional blood flow and water absorption in canine colon. J Physiol (Lond) 307:443–451

    CAS  Google Scholar 

  • Granger DN, Mortillaro NA, Kvietys PR, Rutili G, Parker JC, Taylor AE (1980) Role of the interstitial matrix during intestinal volume absorption. Am J Physiol 238:G138–G189

    Google Scholar 

  • Grantham JJ, Ganote CE, Burg MB, Orloff J (1969) Path of transtubular water flow in isolated renal collecting tubules. J Cell Biol 41:562–576

    PubMed  CAS  Google Scholar 

  • Green K, Matty AJ (1966) Effects of vasopressin on ion transport across intestinal epithelia. Life Sci 5:205–209

    CAS  Google Scholar 

  • Grim E (1962) Water and electrolyte flux rates in the duodenum, jejunum, ileum, and colon, and effects of osmolarity. Am J Dig Dis 7:17–27

    PubMed  CAS  Google Scholar 

  • Gumilewski D (1886) Über Resorption im Dünndarm. Pflügers Arch 39:556–592

    Google Scholar 

  • Gupta BL, Hall TA (1979) Quantitative electrone probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments. Fed Proc 38:144–153

    PubMed  CAS  Google Scholar 

  • Gupta BL, Hall TA (1981) Microprobe analysis of fluid-transporting epithelia: evidence for local osmosis and solute recycling. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia, Alfred Benzon Symposium 15. Munksgaard, Copenhagen, pp 17–31

    Google Scholar 

  • Gupta B, Hall TA, Naftalin RJ (1978) Microprobe measurement of Na, K, and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum. Nature 272:70–73

    PubMed  CAS  Google Scholar 

  • Hakim AA, Lifson N (1969) Effects of pressure on water and solute transport by dog intestinal mucosa in vitro. Am J Physiol 216:276–284

    PubMed  CAS  Google Scholar 

  • Hakim AA, Papeleux CB, Jane JB, Lifson N, Yablonski ME (1977) Mechanism of production of intestinal secretion by negative luminal pressure. Am J Physiol 233:E416–E421

    PubMed  CAS  Google Scholar 

  • Haljamäe H, Jodal M, Lundgren O (1973) Countercurrent multiplication of sodium in intestinal villi during absorption of sodium chloride. Acta Physiol Scand 89:580–593

    PubMed  Google Scholar 

  • Hallbäck DA, Hultén L, Jodal M, Lindhagen J, Lundgren O (1978) Evidence for the existence of a countercurrent exchanger in the small intestine in man. Gastroenterology 74:683–690

    PubMed  Google Scholar 

  • Hallbäck DA, Jodal M, Lundgren O (1979 a) Importance of sodium and glucose for the establishment of a villus tissue hyperosmolality by the intestinal countercurrent multiplier. Acta Physiol Scand 107:89–96

    PubMed  Google Scholar 

  • Hallbäck DA, Jodal M, Sjöquist A, Lundgren O (1979 b) Villus tissue osmolality and intestinal transport of water and electrolytes. Acta Physiol Scand 107:115–126

    PubMed  Google Scholar 

  • Hallbäck DA, Jodal M, Lundgren O (1980) Villous tissue osmolality, water and electrolyte transport in the cat small intestine at varying luminal osmolalities. Acta Physiol Scand 110:95–100

    PubMed  Google Scholar 

  • Hammersen S (1971) Anatomie der terminalen Strombahn. Urban and Schwarzenberg, München

    Google Scholar 

  • Hanai T, Haydon DA (1966) The permeability of water of bimolecular lipid membranes. J Theor Biol 11:370–382

    PubMed  CAS  Google Scholar 

  • Hansson-Mild K, Carlson L, Løvtrup S (1974) The identity of filtration and diffusion permeability coefficients in frog egg membrane. J Membr Biol 19:221–228

    Google Scholar 

  • Hays RM, Franki N (1970) The role of water diffusion in the action of vasopressin. J Membr Biol 2:263–276

    Google Scholar 

  • Hays RM, Leaf A (1962) Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J Gen Physiol 45:905–919

    PubMed  CAS  Google Scholar 

  • Hayward AF (1962) Aspects of the fine structure of the gallbladder epithelium of the mouse. J Anat 96:227–236

    PubMed  CAS  Google Scholar 

  • Hebert SC, Andreoli TE (1982) Water permeability of biological membranes. Lessons from antidiuretic hormone-responsive epithelia. Biochim Biophys Acta 650:267–280

    PubMed  CAS  Google Scholar 

  • Heidenhain R (1888) Beiträge zur Histologie und Physiologie der Dünndarmschleimhaut. Pflügers Arch Ges Physiol 43 (Suppl) 1–103

    Google Scholar 

  • Heidenhain R (1894) Neue Versuche über die Aufsaugung im Dünndarm. Pflügers Arch Ges Physiol 56:579–631

    Google Scholar 

  • Heintze K, Petersen KU, Busch L (1978) Effects of hydrostatic pressure on fluid transfer by the isolated gallbladder. Pflügers Arch 373:9–13

    PubMed  CAS  Google Scholar 

  • Heinz E (1978) Mechanics and energetics of biological transport. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heller H, Smirk FH (1932) Studies concerning the alimentary absorption of water and tissue hydration in relation to diuresis. J Physiol (Lond) 76:283–292

    CAS  Google Scholar 

  • Hevesy GV, Hofer E, Krogh A (1935) The permeability of the skin of frogs to water as determined by D2O and H2O. Scand Arch Physiol 72:199–214

    Google Scholar 

  • Hill AE (1975 a) Solute — solvent coupling in epithelia: a critical examination of the standing gradient osmotic flow theory. Proc R Soc Lond [Biol] 190:99–114

    CAS  Google Scholar 

  • Hill AE (1975 b) Solute — solvent coupling in epithelia: an electroosmotic theory of fluid transfer. Proc R Soc Lond [Biol] 190:115–134

    CAS  Google Scholar 

  • Hill A (1980) Salt — water coupling in leaky epithelia. J Membr Biol 56:177–182

    PubMed  CAS  Google Scholar 

  • Hill BS, Hill AE (1978 a) Fluid transfer by Necturus gall bladder epithelium as a function of osmolarity. Proc R Soc Lond [Biol] 200:151–162

    CAS  Google Scholar 

  • Hill AE, Hill BS (1978 b) Sucrose fluxes and junctional water flow across Necturus gall bladder epithelium. Proc R Soc Lond [Biol] 200:163–174

    CAS  Google Scholar 

  • Höber R (1907) Die physikalische Chemie in der Physiologie der Resorption, der Lymphbildung und der Sekretion. In: Korányi A, Richter PF (Hrsg) Physikalische Chemie und Medizin, vol I. Thieme, Leipzig, pp 294–419

    Google Scholar 

  • Höber R, Höber J (1937) Experiments on the absorption of organic solutes in the small intestine of rats. J Cell Comp Physiol 10:401–422

    Google Scholar 

  • Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol (Lond) 128:61–88

    CAS  Google Scholar 

  • Hogben CAM, Tocco DJ, Brodie BB, Schanker LS (1959) On the mechanism of intestinal absorption of drugs. J Pharmacol Exp Ther 125:275–282

    PubMed  CAS  Google Scholar 

  • Holz R, Finkelstein A (1970) The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:125–145

    PubMed  CAS  Google Scholar 

  • House CR (1965) Rectification of water flow across frog skin. Biophys J 5:987–988

    PubMed  Google Scholar 

  • House CR (1974) Water transport in cells and tissues. Arnold, London

    Google Scholar 

  • Ingraham RC, Visscher MB (1938) Further studies on intestinal absorption with the performance of osmotic work. Am J Physiol 121:771–785

    CAS  Google Scholar 

  • Jard S, Bourquet J, Favard P (1971) The role of the intercellular channel in the transepithelial transfer of water and sodium in the frog urinary bladder. J Membr Biol 4:124–147

    CAS  Google Scholar 

  • Jodal M, Hallbäck DA, Lundgren O (1978) Tissue osmolality in intestinal villi during luminal perfusion with isotonic electrolyte solutions. Acta Physiol Scand 102:94–107

    PubMed  CAS  Google Scholar 

  • Johnson FR, McMinn RMH, Birchenough RF (1962) The ultrastructure of the gallbladder epithelium of the dog. J Anat 96:477–487

    PubMed  CAS  Google Scholar 

  • Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics, 1st edn. Harvard University Press, Cambridge

    Google Scholar 

  • Kaye GI, Wheeler HO, Whitlock RT, Lane N (1966) Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol 30:237–268

    PubMed  CAS  Google Scholar 

  • Kedem O, Caplan SR (1965) Degree of coupling and its relation to efficiency of energy conversion. Trans Farad Soc 61:1897–1911

    CAS  Google Scholar 

  • Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    PubMed  CAS  Google Scholar 

  • Kedem O, Katchalsky A (1961) A physical interpretation of the phenomenologic coefficients of membrane permeability. J Gen Physiol 45:143–179

    PubMed  CAS  Google Scholar 

  • Kedem O, Katchalsky A (1963) Permeability of composite membranes, part 1. Electric current, volume flows and flow of solute through membranes. Trans Farad Soc 59:1918–1930

    Google Scholar 

  • King-Hele JA, Paulson RW (1977) On the influence of a leaky tight junction on water and solute transport in epithelia. J Theor Biol 67:61–84

    PubMed  CAS  Google Scholar 

  • Klyce SD, Russel SR (1979) Numerical solution of coupled transport equations applied to corneal hydration dynamics. J Physiol (Lond) 292:107–134

    CAS  Google Scholar 

  • Klyce SD, Russel SR (1980) The viscious flow therory: an adjunct to the standing gradient hypothesis. Fed Proc 39:378

    Google Scholar 

  • Koefoed-Johnson V, Ussing HH (1953) The contribution of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand 20:60–76

    Google Scholar 

  • Kokko JP (1978) Countercurrent exchanger in the small intestine of man: is there evidence for its existence? Gastroenterology 74:791–792

    PubMed  CAS  Google Scholar 

  • Kokko JP, Burg MB, Orloff J (1971) Characteristics of NaCl and water transport in the renal proximal tubule. J Clin Invest 50:69–76

    PubMed  CAS  Google Scholar 

  • Kutchai H, Cooper RA, Forster RE (1980) Erythrocyte water permeability. The effects of anesthetic alcohols and alterations in the level of membrane cholesterol. Biochim Biophys Acta 600:542–552

    PubMed  CAS  Google Scholar 

  • Kyte J (1976) Immunoferritin determination of (Na+-K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J Cell Biol 68:304–318

    PubMed  CAS  Google Scholar 

  • Lakshminarayanaiah N (1969) Transport phenomena in membranes. Academic, New York

    Google Scholar 

  • Landis EN (1927) Microinjection studies of capillary permeability. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am J Physiol 82:217–238

    Google Scholar 

  • Lauterbach F (1977) Passive permeabilities of luminal and basolatral membranes in the isolated mucosal epithelium of guinea pig small intestine. Naunyn-Schmiedeberg’s Arch Pharmacol 297:201–212

    CAS  Google Scholar 

  • Leaf A (1959) The mechanism of the asymmetrical distribution of endogeneous lactate about the isolated toad bladder. J Cell Comp Physiol 54:103–108

    PubMed  CAS  Google Scholar 

  • Lee JS (1968) Isoosmotic absorption of fluid from rat jejunum in vitro. Gastroenterology 54:366–374

    PubMed  CAS  Google Scholar 

  • Lee LS (1969) A micropuncture study of water transport by dog jejunal villi in vitro. Am J Physiol 217:1528–1533

    PubMed  CAS  Google Scholar 

  • Lee JS (1973) Effects of pressures on water absorption and secretion in rat jejunum. Am J Physiol 224:1338–1344

    PubMed  CAS  Google Scholar 

  • Lee JS (1974) Glucose concentration and hydrostatic pressure in dog jejunal villus lymph. Am J Physiol 226:675–681

    PubMed  CAS  Google Scholar 

  • Lee JS (1981) Lymph flow during fluid absorption from rat jejunum. Am J Physiol 240:G312–G316

    PubMed  CAS  Google Scholar 

  • Lembeck F, Sewing KF, Winne D (1964) Der Einfluß von 5-Hydroxytryptamin auf die Resorption von Tritium-Wasser (HTO) aus dem Dünndarm der Ratte. Naunyn-Schmiedeberg’s Arch Pharmacol 247:100–109

    CAS  Google Scholar 

  • Lichtenstein NS, Leaf A (1965) Effect of amphotericin B on the permeability of the toad bladder. J Clin Invest 44:1328–1342

    PubMed  CAS  Google Scholar 

  • Lichtenstein NS, Leaf A (1966) Evidence for a double series permeability barrier at the mucosal surface of the toad bladder. Ann NY Acad Sci 137:556–565

    PubMed  CAS  Google Scholar 

  • Lifson N (1979) Fluid secretion and hydrostatic pressure relationships in the small intestine. In: Binder HJ (ed) Mechanisms of intestinal secretion. Riss, New York, pp 249–261

    Google Scholar 

  • Lindemann B, Solomon AK (1962) Permeability of the luminal surface of intestinal mucosal cells. J Gen Physiol 45:801–810

    PubMed  CAS  Google Scholar 

  • Lindley BD, Hoshiko T, Leb DE (1964) Effect of D2O and osmotic gradients on potential and resistance of the isolated frog skin. J Gen Physiol 47:774–793

    Google Scholar 

  • Lippe C, Bianchi A, Cremaschi D, Capraro V (1965) Different types of asymmetric distribution of hydrosoluble and liposoluble substances at the two sides of a mucosal intestinal preparation. Arch Int Physiol Biochem 73:43–54

    CAS  Google Scholar 

  • Lipschitz-Farber C, Degani H (1980) Kinetics of water diffusion across phospholipid membranes. 1H- and 17O-NMR relaxation studies. Biochim Biophys Acta 600:291–300

    PubMed  CAS  Google Scholar 

  • Loehry CA, Axon ATR, Hilton PJ, Hider RC, Creamer B (1970) Permeability of the small intestine to substances of different molecular weight. Gut 11:466–470

    PubMed  CAS  Google Scholar 

  • Loeschke K, Bentzel CJ, Csáky TZ (1970) Asymmetry of osmotic flow in frog intestine: functional and structural correlation. Am J Physiol 218:1723–1731

    PubMed  CAS  Google Scholar 

  • Love AHG, Mitchell TG, Phillips RA (1968) Water and sodium absorption in the human intestine. J Physiol (Lond) 195:133–140

    CAS  Google Scholar 

  • Lückhoff A, Horster M (1981) Hydraulic permeability coefficient and sodium steady-state luminal concentration of the in vivo perfused rat distal colon. Pflügers Arch 391:301–305

    PubMed  Google Scholar 

  • Lundgren O (1974) The circulation of the small bowel mucosa. Gut 15:1005–1013

    PubMed  CAS  Google Scholar 

  • Lundgren O, Svanvik J (1973) Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol Scand 88:551–563

    PubMed  CAS  Google Scholar 

  • Machen TE, Diamond JM (1969) An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport. J Membr Biol 1:194–213

    Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53:348–365

    PubMed  CAS  Google Scholar 

  • Mailman D (1980) Effects of morphine on canine intestinal absorption and blood flow. Br J Pharmacol 68:617–624

    PubMed  CAS  Google Scholar 

  • Makhlouf M (1972) Osmotic volume flow in isolated frog gastric mucosa. Fed Proc 31:827

    Google Scholar 

  • Maude DL, Shehadeh I, Solomon AK (1966) Sodium and water transport in single perfused distal tubules of Necturus kidney. Am J Physiol 211:1043–1049

    PubMed  CAS  Google Scholar 

  • Mauro A (1957) Nature of solvent transfer in osmosis. Science 126:252–253

    PubMed  CAS  Google Scholar 

  • McHardy GJR, Parsons DS (1957) The absorption of water and salt from the small intestine of the rat. Q J Exp Physiol 42:33–48

    CAS  Google Scholar 

  • Meschia G, Setnikar I (1958) Experimental study of osmosis through a collodion membrane. J Gen Physiol 42:429–444

    PubMed  CAS  Google Scholar 

  • Michel CC (1980) Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J Physiol (Lond) 309:341–355

    CAS  Google Scholar 

  • Miller DL, Hamburger SA, Schedl HP (1979) Effects of osmotic gradients on water and solute transport: in vivo studies in rat duodenum and ileum. Am J Physiol 237:E389–E396

    PubMed  CAS  Google Scholar 

  • Mills JW, Dibona DR (1978) Distribution of Na+ pump sites in the frog gallbladder. Nature 271:273–275

    PubMed  CAS  Google Scholar 

  • Mlekoday HJ, Moore R, Levitt D (1983) Osmotic water permeability of the human red cell. Dependence of direction of water flow and cell volume. J Gen Physiol 81:213–220

    PubMed  CAS  Google Scholar 

  • Møllgård K, Rostgaard J (1978) Morphological aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of endoplasmic reticulum. J Membrane Biol 40, special issue: 71–89

    Google Scholar 

  • Møllgård K, Rostgaard J (1980) The possible role of the endoplasmic reticulum in trans-epithelial ion transport. J Gen Physiol 76:7a–8a

    Google Scholar 

  • Møllgård K, Rostgaard J (1981) Morphological aspects of transepithelial transport with special reference to the endoplasmic reticulum. In: Schultz SG (ed) Ion transport by epithelia. Raven Press, New York, pp 209–231

    Google Scholar 

  • Moody FG, Durbin RP (1969) Water flow induced by osmotic nd hydrostatic pressure in the stomach. Am J Physiol 217:255–261

    PubMed  CAS  Google Scholar 

  • Moreno JH (1975) Routes of non-electrolyte permeability in gallbladders. Effects of 2,4,6-triaminopyrimidinium (TAP). J Gen Physiol 66:117–128

    PubMed  CAS  Google Scholar 

  • Mortillaro NA, Taylor AE (1976) Interaction of capillary and tissue forces in the cat small intestine. Circ Res 39:348–358

    PubMed  CAS  Google Scholar 

  • Munck BG, Rasmussen SN (1977) Paracellular permeability of extracellular space markers across rat jejunum in vitro. Indication of a transepithelial fluid circuit. J Physiol (Lond) 271:473–488

    CAS  Google Scholar 

  • Norman AW, Spielvogel AM, Wong RG (1976) Polyene antibiotic — sterol interaction. Adv Lipid Res 14:127–170

    PubMed  CAS  Google Scholar 

  • Norman DA, Atkins JM, Seelig LL Jr, Gomez-Sanchez C, Krejs GJ (1980) Water and electrolyte movement and mucosal morphology in the jejunum of patients with portal hypertension. Gastroenterology 79:707–715

    PubMed  CAS  Google Scholar 

  • Öbrink KJ (1956) Water permeability of the isolated stomach of the mouse. Acta Physiol Scand 36:229–244

    PubMed  Google Scholar 

  • Ochsenfahrt H, Winne D (1969) Der Einfluß der Durchblutung auf die Resorption von Arzneimittel aus dem Jejunum der Ratte. Naunyn-Schmiedeberg’s Arch Pharmacol 264:55–75

    CAS  Google Scholar 

  • Overton E (1902) Beiträge zur allgemeinen Muskel- und Nervenphysiologie. Pflügers Arch Ges Physiol 92:115–280

    Google Scholar 

  • Paganelli CV, Solomon AK (1957) The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol 41:259–277

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Soto-Rivera A (1948) Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol 152:471–491

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 167:13–46

    PubMed  CAS  Google Scholar 

  • Parisi M, Candia O, Alvarez L (1980) Water permeability of the toad corneal epithelium: The effect of pH and amphotericin B. Pflügers Arch 383:131–136

    PubMed  CAS  Google Scholar 

  • Parsons DS (1963) Quantitative aspects of pinocytosis in relation to intestinal absorption. Nature 199:1192–1193

    PubMed  CAS  Google Scholar 

  • Parsons DS (1968) Methods for the investigation of intestinal absorption. In: Handbook of Physiology, Sect 6, vol III. American Physiological Society, Washington DC, chap 64

    Google Scholar 

  • Parsons DS, Wingate DL (1961) The effect of osmotic gradients on fluid transfer across rat intestine in vitro. Biochim Biophys Acta 46:170–183

    PubMed  CAS  Google Scholar 

  • Patlak CS, Goldstein DA, Hoffman JF (1963) The flow of solute and solvent across a two-membrane system. J Theor Biol 5:426–442

    PubMed  CAS  Google Scholar 

  • Pedley TJ, Fischbarg J (1978) The development of osmotic flow through an unstirred layer. J Theor Biol 70:427–447

    PubMed  CAS  Google Scholar 

  • Pedley TJ, Fischbarg J (1980) Unstirred layer effects on osmotic water flow across gallbladder epithelium. J Membr Biol 54:89–102

    PubMed  CAS  Google Scholar 

  • Persson E (1970) Water permeability in rat distal tubules. Acta Physiol Scand 78:364–375

    PubMed  CAS  Google Scholar 

  • Persson E, Ulfendahl HR (1970) Water permeability in rat proximal tubules. Acta Physiol Scand 78:353–363

    PubMed  CAS  Google Scholar 

  • Persson B-O, Spring KR (1982) Gallbladder epithelial cell hydraulic water permeability and volume regulation. J Gen Physiol 79:481–505

    PubMed  CAS  Google Scholar 

  • Peters G (1980) Mécanismes de rélage de l’ingestion d’eau. J Physiol (Paris) 76:295–322

    CAS  Google Scholar 

  • Petersen DC (1980) Water permeability through the lipid bilayer membrane. Test of the liquid hydrocarbon model. Biochim Biophys Acta 600:666–677

    PubMed  CAS  Google Scholar 

  • Phelps CF (1965) The physical properties of inulin solutions. Biochem J 95:41–47

    PubMed  CAS  Google Scholar 

  • Pietras RJ, Wright EM (1975) The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. J Membr Biol 22:107–123

    PubMed  CAS  Google Scholar 

  • Polefka TG, Redwood WR, Garrick RA, Chinard FP (1981 a) Permeability of Novikoff hepatoma cells to water and monohydric alcohols. Biochim Biophys Acta 642:67–78

    PubMed  CAS  Google Scholar 

  • Polefka TG, Garrick RA, Redwood WR (1981 b) Osmotic permeability of Novikoff hepatoma cells. Biochim Biophys Acta 642:79–87

    PubMed  CAS  Google Scholar 

  • Powell DW, Malawer SJ (1968) Relation between water and solute transport from isoosmotic solutions by rat small intestine in vivo. Am J Physiol 215:49–55

    PubMed  CAS  Google Scholar 

  • Prescott DH, Zeuthen E (1953) Comparison of water diffusion and water filtration across cell surfaces. Acta Physiol Scand 28:77–94

    PubMed  CAS  Google Scholar 

  • Rabinovitch J (1927) Factors influencing the absorption of water and chloride from the intestine. Am J Physiol 82:279–289

    CAS  Google Scholar 

  • Rabon E, Takeguchi N, Sachs G (1980) Water and salt permeability of gastric vesicles. J Membr Biol 53:109–117

    PubMed  CAS  Google Scholar 

  • Redwood WR, Rall E, Perl W (1974) Red cell membrane permeability deduced from bulk diffusion coefficients. J Gen Physiol 64:706–729

    PubMed  CAS  Google Scholar 

  • Reid EW (1892) Preliminary report on experiments upon intestinal absorption without osmosis. Br Med J i: 1133–1134

    Google Scholar 

  • Reid EW (1900) On the intestinal absorption, especially on the absorption of serum, peptone, and glucose. Philos Trans R Soc Lond [Biol] 102:211–297

    Google Scholar 

  • Reid EW (1901) Transport of fluid by certain epithelia. J Physiol (Lond) 26:436–444

    CAS  Google Scholar 

  • Reid EW (1902) Intestinal absorption of solutions. J Physiol (Lond) 28:241–256

    CAS  Google Scholar 

  • Renkin EM, Pappenheimer JR (1957) Wasserdurchlässigkeit und Permeabilität der Capillarwände. Ergeb Physiol Biol Chem Exp Pharmakol 49:59–126

    CAS  Google Scholar 

  • Rich GT, Sha’afi RI, Barton TC, Solomon AK (1967) Permeability studies on red cell membranes of dog, cat, and beef. J Gen Physiol 50:2391–2405

    PubMed  CAS  Google Scholar 

  • Richardson PDI, Granger DN, Mailman D, Kvietys PR (1980) Permeability characteristics of colonic capillaries. Am J Physiol 239:G300–G305

    PubMed  CAS  Google Scholar 

  • Robbins E, Mauro A (1960) Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes. J Gen Physiol 43:523–532

    PubMed  CAS  Google Scholar 

  • Rose RC, Nahrwold DL (1976) Electrolyte transport by gallbladders of rabbit and guinea pig: Effect of amphotericin B and evidence of rheogenic Na transport. J Membr Biol 29:1–22

    PubMed  CAS  Google Scholar 

  • Rusznyak IM, Foldi M, Szabo G (1967) Lymphatics and lymph circulation, 2nd edn. Pergamon, Elmsford, p 971

    Google Scholar 

  • Sackin H, Boulpaep EL (1975) Models for coupling of salt and water transport. Proximal tubular reabsorption in Necturus kidney. J Gen Physiol 66:671–733

    PubMed  CAS  Google Scholar 

  • Sato K (1975) Reevaluation of micropuncture techniques: Some of the factors which affect the rate of fluid absorption by proximal tubule. In: Angielski S, Durbach UC (eds) Biochemical aspects of renal function. Curr Probl Clin Biochem 4:175–187

    Google Scholar 

  • Schafer JA, Andreoli TE (1972) Cellular constraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules. J Clin Invest 51:1264–1278

    PubMed  CAS  Google Scholar 

  • Schafer JA, Patlak CS, Andreoli TE (1974 a) Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomena. J Gen Physiol 64:201–227

    PubMed  CAS  Google Scholar 

  • Schafer JA, Troutman SL, Andreoli TE (1974 b) Osmosis in cortical tubules. ADH-independent osmotic flow rectification. J Gen Physiol 64:228–240

    PubMed  CAS  Google Scholar 

  • Schafer JA, Troutman SL, Andreoli TE (1974 c) Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol 64:582–607

    PubMed  CAS  Google Scholar 

  • Schafer JA, Patlak CS, Andreoli TE (1975) A component of fluid absorption linked to passive ion flows in the superficial pars recta. J Gen Physiol 66:445–471

    PubMed  CAS  Google Scholar 

  • Schifferdecker E, Frömter E (1978) The AC impedance of Necturus gallbladder epithelium. Pfluegers Arch 377:125–133

    CAS  Google Scholar 

  • Schneider M (1964) Einführung in die Physiologie des Menschen, 15. Aufl. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Schönert H (1980) Anomalous permeation of a reversibly associating substance: hydraulic conductivity and tracer water diffusion. J Membr Biol 52:161–164

    Google Scholar 

  • Schultz SG (1980) Basic principles of membrane transport. Cambridge University Press, Cambridge

    Google Scholar 

  • Schultz SG, Frizzell RA, Nellans HN (1974) Ion transport by mammalian small intestine. Ann Rev Physiol 36:51–91

    CAS  Google Scholar 

  • Schultz SG, Frizzel RA, Nellans HN (1977) Active sodium transport and the electrophysiology of the rabbit colon. J Membr Biol 33:351–384

    PubMed  CAS  Google Scholar 

  • Sharp RR, Sen R (1982) Water permeability of the chromaffin granule membrane. Biophys J 40:17–25

    PubMed  CAS  Google Scholar 

  • Shepherd AP (1980) Intestinal blood flow autoregulation during foodstuff absorption. Am J Physiol 239:H156–H162

    PubMed  CAS  Google Scholar 

  • Sidel VW, Solomon AK (1957) Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol 41:243–257

    PubMed  CAS  Google Scholar 

  • Siegelbauer F (1958) Lehrbuch der normalen Anatomie der Menschen, 8th edn. Urban and Schwarzenberg, München

    Google Scholar 

  • Siegenbeck van Heukelom J, Van den Harn MD, Albus M, Groot JA (1981) Microscopical determination of the filtration permeability of the mucosal surface of the goldfish intestinal epithelium. J Membr Biol 63:31–39

    Google Scholar 

  • Simmons NL, Naftalin RJ (1976) Factors affecting the compartmentalization of sodium ion within rabbit ileum in vitro. Biochim Biophys Acta 448:411–425

    PubMed  CAS  Google Scholar 

  • Simon M, Curci S, Gebier B, Frömter E (1981) Attempts to determine the ion concentrations in the lateral spaces between the cells of Necturus gallbladder epithelium with microelectrodes. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia, Alfred Benzon Symposium 15. Munksgaard, Copenhagen, pp 52–63

    Google Scholar 

  • Singer SJ (1974) The molecular organization of membranes. Annu Rev Biochem 43:805–833

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  • Skadhauge E (1967) In vivo perfusion studies on the cloacal water and electrolyte resorption in the fowl (Gallus domesticus). Comp Biochem Physiol 23:483–501

    PubMed  CAS  Google Scholar 

  • Skadhauge E (1969) The mechanism of salt and water absorption in the intestine of the eel (Anguilla anguilla) adapted to waters of various salinities. J Physiol (Lond) 204:135–158

    CAS  Google Scholar 

  • Skadhauge E (1974) Coupling of transmural flows of NaCl and water in the intestine of the eel (Anguilla anguilla). J Exp Biol 60:535–544

    PubMed  CAS  Google Scholar 

  • Smulders AP, Wright EM (1971) The magnitude of non-electrolyte selectivity in the gallbladder epithelium. J Membr Biol 5:297–318

    CAS  Google Scholar 

  • Smulders AP, Tormey JMcD, Wright EM (1972) The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder. J Membr Biol 7:164–197

    Google Scholar 

  • Smyth DH, Taylor CB (1957) Transfer of water and solutes by an in vitro intestinal preparation. J Physiol (Lond) 136:632–648

    CAS  Google Scholar 

  • Smyth DH, Wright EM (1966) Streaming potentials in the rat small intestine. J Physiol (Lond) 182:591–602

    CAS  Google Scholar 

  • Snell FN, Shulman S, Spencer RP, Moos C (1965) Biophysical principles of structure and function. Addison-Wesley, Reading

    Google Scholar 

  • Soergel KH, Whalen GE, Harris JA (1968) Passive movement of water and sodium across the human small intestinal mucosa. J Appl Physiol 24:40–48

    PubMed  CAS  Google Scholar 

  • Solomon AK (1968) Characterization of biological membranes by equivalent pores. J Gen Physiol 51:335s–364s

    PubMed  CAS  Google Scholar 

  • Solomon AK, Gary-Bobo CM (1972) Aqueous pores in lipid bilayers and red cell membranes. Biochim Biophys Acta 255:1019–1021

    PubMed  CAS  Google Scholar 

  • Spring KR, Hope A (1978) Size and shape of the lateral intercellular space in a living epithelium. Science 200:54–58

    PubMed  CAS  Google Scholar 

  • Spring KR, Hope A (1979) Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J Gen Physiol 73:287–305

    PubMed  CAS  Google Scholar 

  • Spring KR, Ericson A-C (1982) Epithelial cell volume modulation and regulation. J Membr Biol 69:167–176

    PubMed  CAS  Google Scholar 

  • Starling EH (1896) On the absorption of fluid from the connective tissue spaces. J Physiol (Lond) 19:312–326

    CAS  Google Scholar 

  • Staverman AJ (1952) Non-equilibrium thermodynamics of membrane processes. Trans Farad Soc 48:176–185

    CAS  Google Scholar 

  • Stein WD (1967) The movement of molecules across cell membranes. Academic, New York

    Google Scholar 

  • Stirling ES (1972) Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol 53:704–714

    PubMed  CAS  Google Scholar 

  • Swabb EA, Hynes RA, Donowitz M (1982) Elevated intraluminal pressure alteres rabbit small intestinal transport in vivo. Am J Physiol 242:G58–G64

    PubMed  CAS  Google Scholar 

  • Tormey JM, Diamond JM (1967) The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol 50:2031–2060

    PubMed  CAS  Google Scholar 

  • Turnheim K, Lauterbach F (1977) Absorption and secretion of monoquaternary ammonium compounds by the isolated intestinal mucosa. Biochem Pharmacol 26:99–108

    PubMed  CAS  Google Scholar 

  • Ussing HH (1949) Transport of ions across cellular membranes. Physiol Rev 29:127–155

    PubMed  CAS  Google Scholar 

  • Ussing HH (1966) Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann NY Acad Sci 137:543–555

    PubMed  CAS  Google Scholar 

  • Ussing HH, Erlij D, Lassen U (1974) Transport pathways in biological membranes. Annu Rev Physiol 36:17–49

    PubMed  CAS  Google Scholar 

  • Van Driessche W, Lindemann B (1979) Concentration dependence of currents through single sodium-selective pores in frog skin. Nature 282:519–520

    PubMed  Google Scholar 

  • Van Os CH, Siegers JFG (1973) Path of osmotic water flow through rabbit gallbladder epithelium. Biochim Biophys Acta 291:197–207

    PubMed  Google Scholar 

  • Van Os CH, De Jong MD, Siegers JFG (1974) Dimensions of the polar pathways through rabbit gallbladder epithelium. J Membr Biol 15:363–382

    PubMed  Google Scholar 

  • Van Os CH, Michels JA, Siegers JFG (1976) Effects of electrical gradients on volume flows across gallbladder epithelium. Biochim Biophys Acta 443:545–555

    PubMed  CAS  Google Scholar 

  • Van Os CH, Wiedner G, Wright EM (1979) Volume flows across gallbladder epithelium induced by small hydrostatic gradients. J Membr Biol 49:1–20

    PubMed  Google Scholar 

  • Vargas FF (1968) Water flux and electrokinetic phenomena in squid axon. J Gen Physiol 51:123s–130s

    PubMed  CAS  Google Scholar 

  • Vaughan BE (1960) Intestinal electrolyte absorption by parallel determination of unidirectional sodium and water transfers. Am J Physiol 198:1235–1244

    PubMed  CAS  Google Scholar 

  • Villegas L (1963) Action of histamine on the permeability of frog gastric mucosa to potassium and water. Biochim Biophys Acta 75:377–386

    PubMed  CAS  Google Scholar 

  • Villegas L (1978) Applied pressures and net water flux across in vitro frog gastric mucosa. Am J Physiol 235:E361–E373

    PubMed  CAS  Google Scholar 

  • Villegas R, Villegas GM (1960) Characterization of the membranes in the giant nerve fiber of the squid. J Gen Physiol 43 (Suppl 1):73–103

    PubMed  CAS  Google Scholar 

  • Visscher MB (1957) Transport of water and electrolytes across intestinal epithelia. In: Murphy QE (ed) Metabolic aspects of transport across cell membranes. University of Wisconsin Press, Madison, pp 57–71

    Google Scholar 

  • Visscher MB, Fetcher ES Jr, Carr CW, Gregor HP, Bushey MS, Barker DE (1944) Isotope tracer studies on the movement of water and ions between intestinal lumen and blood. Am J Physiol 142:550–575

    CAS  Google Scholar 

  • Wade JB, Revel JP, Discala AV (1973) Effect of osmotic gradients on intercellular junctions of the toad bladder. Am J Physiol 224:407–415

    PubMed  CAS  Google Scholar 

  • Wall BJ, Oschman JL, Schmidt-Nielsen B (1970) Fluid transport: Concentration of the intercellular compartment. Science 167:1497–1498

    PubMed  CAS  Google Scholar 

  • Wang JH, Robinson CV, Edelman IS (1953) Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3, and O18 as tracers. J Am Chem Soc 75:466–470

    Google Scholar 

  • Wanitschke R, Nell R, Rummel W (1977) Influence of hydrostatic pressure gradients on net transfer of sodium and water across isolated rat colonic mucosa. Naunyn-Schmiedeberg’s Arch Pharmacol 297:191–194

    CAS  Google Scholar 

  • Warren R (1939) Serosal and mucosal dimensions at different levels of the dog’s small intestine. Anat Rec 75:427–437

    Google Scholar 

  • Wedner HJ, Diamond JM (1969) Contributions of unstirred layer effects to apparent electrokinetic phenomena in the gallbladder. J Membr Biol 1:92–108

    CAS  Google Scholar 

  • Weinstein AM, Stephenson JL (1981 a) Models of coupled salt and water transport across leaky epithelia. J Membr Biol 60:1–20

    PubMed  CAS  Google Scholar 

  • Weinstein AM, Stephenson JL (1981 b) Coupled water transport in standing gradient models of the lateral intercellular space. Biophys J 35:167–191

    PubMed  CAS  Google Scholar 

  • Welling DJ, Welling LW (1979) Cell shape as an indicator of volume reabsorption in proximal nephron. Fed Proc 38:121–127

    PubMed  CAS  Google Scholar 

  • Wells HS (1931) The passage of materials through the intestinal walls. I. The relation between intraintestinal pressure and the rate of absorption of water. Am J Physiol 99:209–220

    CAS  Google Scholar 

  • Wheeler HO (1963) Transport of electrolytes and water across wall of rabbit gallbladder. Am J Physiol 205:427–438

    PubMed  CAS  Google Scholar 

  • Whitlock RT, Wheeler HO (1964) Coupled transport of solute and water across rabbit gallbladder epithelium. J Clin Invest 43:2249–2265

    PubMed  CAS  Google Scholar 

  • Whittembury G, Oken DE, Windhager E, Solomon AK (1959) Single proximal tubules of Necturus kidney. IV. Dependence of H2O movement on osmotic gradients. Am J Physiol 197:1121–1127

    PubMed  CAS  Google Scholar 

  • Windhager EE, Whittembury G, Oken DE, Schatzmann HJ, Solomon AK (1959) Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentrations. Am J Physiol 197:313–318

    PubMed  CAS  Google Scholar 

  • Windhager E, Bouplpaep E, Giebisch G (1967) Electrophysiological studies in single nephrons. 3rd International congress of nephrology, Washington 1966. Karger, Basel, p 35

    Google Scholar 

  • Winne D (1966) Der Einfluß einiger Pharmaka auf die Darmdurchblutung und die Resorption tritiummarkierten Wassers aus dem Dünndarm der Ratte. Naunyn-Schmiedeberg’s Arch Pharmacol 254:199–224

    CAS  Google Scholar 

  • Winne D (1972) The influence of blood flow and water net flux on the absorption of tritiated water from the jejunum of the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 272:417–436

    CAS  Google Scholar 

  • Winne D (1975) The influence of villus countercurrent exchange on intestinal absorption. J Theor Biol 53:145–176

    PubMed  CAS  Google Scholar 

  • Winne D (1978) Blood flow in intestinal absorption models. J Pharmacokinet Biopharm 6:55–78

    PubMed  CAS  Google Scholar 

  • Winne D (1979) Influence of blood flow on intestinal absorption of drugs and nutrients. J Pharm Therap 6:333–393

    CAS  Google Scholar 

  • Winne D, Remischovsky J (1971 a) Der Einfluß der Durchblutung auf die Resorption von Harnstoff, Methanol und Äthanol aus dem Jejunum der Ratte. Naunyn-Schmiedeberg’s Arch Pharmacol 268:392–419

    CAS  Google Scholar 

  • Winne D, Remischovsky J (1971 b) Der Einfluß der Durchblutung auf die Resorption von Polyalkoholen aus dem Jejunum der Ratte. Naunyn-Schmiedeberg’s Arch Pharmacol 270:22–40

    CAS  Google Scholar 

  • Wood HO (1944) The surface area of the intestinal mucosa in the rat and in the cat. J Anat 78:103–105

    PubMed  CAS  Google Scholar 

  • Wright EM (1970) The transport across the frog choroid plexus. Brain Res 23:302–304

    PubMed  CAS  Google Scholar 

  • Wright EM (1977) Passive water transport across epithelia. In: Jungreis AM, Hodges TK, Kleinzeller A, Schultz SG (eds) Water relations in membrane transport in plants and animals. Academic, New York, pp 199–213

    Google Scholar 

  • Wright EM, Diamond JM (1969) Patterns of non-electrolyte permeability. Proc R Soc Lond [Biol] 172:227–271

    CAS  Google Scholar 

  • Wright EM, Pietras RJ (1974) Routes of nonelectrolyte permeation across epithelial membranes. J Membr Biol 17:293–312

    PubMed  CAS  Google Scholar 

  • Wright EM, Smulders AP, Tormey JM (1972) The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder. J Membr Biol 7:198–219

    Google Scholar 

  • Yablonski ME, Lifson N (1976) Mechanism of production of intestinal secretion by elevated venous pressure. J Clin Invest 57:904–915

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turnheim, K. (1984). Intestinal Permeation of Water. In: Csáky, T.Z. (eds) Pharmacology of Intestinal Permeation I. Handbook of Experimental Pharmacology, vol 70 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69505-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69505-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69507-0

  • Online ISBN: 978-3-642-69505-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics