Skip to main content

Splitting of the Circadian Rhythm of Activity in Hamsters

  • Conference paper
Vertebrate Circadian Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

There is now unequivocal evidence, obtained from a variety of different experimental approaches, that the circadian system of multicellular organisms is composed of a population of circadian oscillators (Pittendrigh 1974, Aschoff and Wever 1976, Moore-Ede et al. 1976, Menaker et al. 1978, Block and Page 1978, Jacklet 1981). Indeed, it appears that even a single measurable circadian rhythm may in fact be regulated by more than one circadian oscillator. Strong evidence for this proposition is the observation that the circadian rhythm of locomotor activity can dissociate into two distinct components. An important feature of this dissociation is that for at least a period of time the two components, or bouts of activity, can free-run with clearly distinct periods which result in a series of changing phase relationships between the two components. Usually these components become recoupled some 12-h out of phase with each other and thereafter assume an identical free-running period. This “splitting” phenomenon is difficult to explain in terms of a single oscillator-regulating activity, but instead indicates that at least two mutually coupled circadian pacemakers underlie the circadian rhythm of activity (Pittendrigh 1974, Pittendrigh and Daan 1976, Daan and Berde 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleva JJ, Waleski MV, Alleva FR (1971) A biological clock controlling the estrus cycle of the hamster. Endocrinology 88: 1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1954) Zeitgeber der tierischen Jahresperiodik. Naturwissenschaften 41: 49–56

    Article  Google Scholar 

  • Aschoff J (1979) Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49: 225–249

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J, Wever R (1976) Human circadian rhythms: a multioscillatory system. Fed Proc 35:2326–2332

    CAS  Google Scholar 

  • Block GD, Page TL (1978) Circadian pacemakers in the nervous system. Annu Rev Neurosci 1:19–34

    Article  PubMed  CAS  Google Scholar 

  • Boulos Z, Terman M (1979) Splitting of circadian rhythms in the rat. J Comp Physiol 134: 75–83

    Article  Google Scholar 

  • Daan S, Berde C (1978) Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. J Theor Biol 70: 297–313

    Article  PubMed  CAS  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106: 253–266

    Article  Google Scholar 

  • Earnest DJ, Turek FW (1982) Splitting of the circadian rhythm of activity in hamsters: effects of exposure to constant darkness and subsequent re-exposure to constant light. J Comp Physiol 145:405–411

    Article  Google Scholar 

  • Ellis GB, McKlveen RE, Turek FW (1982) Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light. Am J Physiol 242: R44–R50

    PubMed  CAS  Google Scholar 

  • Fitzgerald KM, Zucker I (1976) Circadian organization of the estrous cycle of the golden hamster. Proc Natl Acad Sci USA 73: 2923–2927

    Article  PubMed  CAS  Google Scholar 

  • Fuller CA, Sulzman FM, Moore-Ede MC (1979) Circadian control of thermoregulation in the squirrel monkey, Saimiri sciureus. Am J Physiol 236: R153–R161

    PubMed  CAS  Google Scholar 

  • Gwinner E (1974) Testosterone induces “splitting” of circadian locomotor activity rhythms in birds. Science 185: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K (1971) Splitting of the circadian rhythm as a function of light intensity. In: Menaker M (ed) Biochronometry. Washington DC, Natl Acad Sci, pp 134–150

    Google Scholar 

  • Hudson DJ, Lickey ME (1980) Internal desynchronization between two identified circadian oscillators in Aplysia. Brain Res 183: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW (1981) Circadian timing by endogenous oscillators in the nervous system: toward cellular mechanisms. Biol Bull 160: 199–227

    Article  CAS  Google Scholar 

  • Menaker M, Takahashi JS, Eskin A (1978) The physiology of circadian pacemakers. Annu Rev Physiol 40: 501–526

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC, Schmelzer WS, Kass DA, Herd JA (1976) Internal organization of the circadian timing system in multicellular animals. Fed Proc 35: 2333–2338

    PubMed  CAS  Google Scholar 

  • Morin LP (1980) Effect of ovarian hormones on synchrony of hamster circadian rhythms. Physiol Behav 24: 741–749

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Rusak B, Zucker I (1977) Circadian organization and neural mediation of hamster reproductive rhythms. Psychoneuroendocrinology 2: 73–98

    Article  PubMed  CAS  Google Scholar 

  • Pickard GE, Turek FW (1982) Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei Science 215: 1119–1121

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25: 159–184

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1974) Orcadian oscillations in cells and the circadian organization of multicellular systems. In: Schmitt FO, Worden FG (eds) The neuroscience: Third study program. MIT Press, Cambridge, pp 437–458

    Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol 106: 333–355

    Article  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59: 449–526

    PubMed  CAS  Google Scholar 

  • Shander D, Goldman B (1978) Ovarian steroid modulation of gonadotropin secretion and pituitary responsiveness to luteinizing hormone-releasing hormone in the female hamster. Endocrinology 103: 1383–1393

    Article  PubMed  CAS  Google Scholar 

  • Shibyua CA, Melnyk RB, Mrosovsky N (1980) Simultaneous splitting of drinking and locomotor activity rhythms in a golden hamster. Naturwissenschaften 67: 45–46

    Article  Google Scholar 

  • Silverman AJ, Pickard GE (1980) Retinal and CNS input to the suprachiasmatic nucleus of the golden hamster. Soc Neurosci Abstr 6: 266

    Google Scholar 

  • Stetson MH, Anderson PJ (1980) Circadian pacemaker times gonadotropin release in free-running female hamsters. Am J Physiol 238: R23–R27

    PubMed  CAS  Google Scholar 

  • Stetson MH, Gibson JT (1977) The estrous cycle in golden hamsters: a circadian pacemaker times preovulatory gonadotropin release. J Exp Zool 201: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Stetson MH, Watson-Whitmyre M, Matt KS (1978) Cyclic gonadotropin release in the presence and absence of estrogenic feedback in ovariectomized golden hamsters. Biol Reprod 19: 40–50

    Article  PubMed  CAS  Google Scholar 

  • Swann J, Turek FW (1982) The cycle of lordosis behavior in female hamsters whose circadian activity rhythm has split into two components. Am J Physiol (in press)

    Google Scholar 

  • Turek FW, Ellis GB (1979) The effect of dark pulses on the circadian rhythm of locomotor activity in hamsters maintained in constant light. Soc Neurosci Abstr 5: 462

    Google Scholar 

  • Underwood H (1977) Circadian organization in lizards: the role of the pineal organ. Science 195: 587–589

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Turek, F.W., Earnest, D.J., Swann, J. (1982). Splitting of the Circadian Rhythm of Activity in Hamsters. In: Aschoff, J., Daan, S., Groos, G.A. (eds) Vertebrate Circadian Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68651-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68651-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68653-5

  • Online ISBN: 978-3-642-68651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics