Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 61))

Abstract

The earliest studies demonstrating inhibition of viral growth by guanidine were published approximately 20 years ago (Rightsel et al. 1961). Soon after the initial discovery, mutants that were either resistant to or dependent upon guanidine were described (Lonno et al. 1963; Nakano et al. 1963). In general, growth of many members of the Picornaviridae family, which comprises a large number of lipid-free animal viruses that contain single-stranded RNA genomes, is susceptible to inhibition by guanidine (Caliguiri and Tamm 1973). Included among the sensitive picornaviruses are the three strains of poliovirus, coxsackieviruses, echoviruses, rhinoviruses, and foot-and-mouth disease virus (FMDV). Echoviruses 6, 7, 8, 12, and coxsackievirus B6 are resistant to the compound (Crowther and Melnick 1961). Orthomyxoviruses, paramyxoviruses, reoviruses, most togaviruses, and animal viruses that contain DNA are also naturally resistant to guanidine. Replication of Sindbis and Semliki Forest viruses of the Alphavirus genus of the togavirus family (Friedman 1970) and two plant viruses, tobacco necrosis (Varna 1968) and tobacco mosaic virus (TMV; Dawson 1975) are sensitive to the inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham G, Cooper P (1975) Poliovirus polypeptides examined in more detail. J Gen Virol 29: 199–213

    PubMed  CAS  Google Scholar 

  • Adrian T, Rosenwirth B, Eggers H (1979) Isolation and characterization of temperature-sensitive mutants of echovirus 12. Virology 99: 329–339

    PubMed  CAS  Google Scholar 

  • Ambros V, Baltimore D (1978) Protein is linked to the 5’ end of poliovirus RNA by a phosphodiester linkage to tyrosine. J Biol Chem 253: 5263–5266

    PubMed  CAS  Google Scholar 

  • Ambros V, Petterson RF, Baltimore D (1978) An enzymatic activity in uninfected cells that cleaves the linkage between polio virion RNA and the 5’ terminal protein. Cell 15:1439–1446

    PubMed  CAS  Google Scholar 

  • Armstrong JA, Edmonds M, Nakazato H, Phillips BA, Vaughan MH (1972) Polyadenylic acid sequences in the virion RNA of poliovirus and Eastern Equine Encephalitis virus. Science 176: 526–528

    PubMed  CAS  Google Scholar 

  • Bablanian R, Eggers H, Tamm I (1965) Studies on the mechanism of poliovirus-induced cell damage. II. The relation between poliovirus growth and virus-induced morphological changes in cells. Virology 26: 114–121

    PubMed  CAS  Google Scholar 

  • Baltimore D (1964) In vitro synthesis of viral RNA by the poliovirus RNA polymerase. Proc Natl Acad Sci USA 51: 450–456

    PubMed  CAS  Google Scholar 

  • Baltimore D, Franklin RM, Eggers HJ, Tamm I (1963) Poliovirus induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proc Natl Acad Sci USA 49: 843–849

    PubMed  CAS  Google Scholar 

  • Bowles S, Tershak D (1978) Proteolysis of non-capsid protein 2 of type 3 poliovirus at the restrictive temperature: breakdown of non-capsid protein 2 correlates with loss of RNA synthesis. J Virol 27: 443–448

    PubMed  CAS  Google Scholar 

  • Brawerman G (1974) Eukaryotic messenger RNA. Annu Rev Biochem 43:621–642

    Google Scholar 

  • Brown F, Newman JFE, Stott J, Porter A, Frisby D, Newton C, Carey N, Fellner P (1974) Poly C in animal viral RNAs. Nature 251: 342–344

    Google Scholar 

  • Butterworth B, Rueckert R (1972) Kinetics of synthesis and cleavage of EMC virus-specific proteins. Virology 50: 535–549

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Compans RW (1973) The formation of poliovirus particles in association with the RNA replication complexes. J Gen Virol 21: 99–108

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1968a) Action of guanidine on the replication of poliovirus RNA. Virology 35: 408–417

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1968b) Distribution and translation of poliovirus RNA in guanidine treated cell. Virology 36: 223–231

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1970) The role of cytoplasmic membranes in polio biosynthesis. Virology 42: 100–111

    PubMed  CAS  Google Scholar 

  • Caliguiri LA, Tamm I (1973) Guanidine and 2-(a-hydroxybenzyl)-bensimidazole (HBB): selective inhibitors of picornavirus multiplication. In: Carter W (ed) Selective inhibitors of viral function. CRC Press, Cleveland, pp 257–294

    Google Scholar 

  • Carp RI (1964)Studies on the guanidine character of poliovirus. Virology 22:270–279

    Google Scholar 

  • Celma ML, Ehrenfeld E (1975) Translation of poliovirus RNA in vitro: detection of two different initiation sites. J Mol Biol 98: 761–780

    PubMed  CAS  Google Scholar 

  • Cherington H, Greenberg H, Soyer A (1973) Guanidine and germine in botulism. Clin Toxicol 6: 83–89

    PubMed  CAS  Google Scholar 

  • Cherington M, Schultz D (1977) Effect of guanidine, germine, and steroids in a case of botulism. Clin Toxicol 11: 19–25

    PubMed  CAS  Google Scholar 

  • Cole CN, Baltimore D (1973) Defective interfering particles of poliovirus. II. Nature of the defect. J Mol Biol 76: 325–343

    PubMed  CAS  Google Scholar 

  • Cooper PD (1969) The genetic analysis of poliovirus. In: Levy HB (ed) The biochemistry of viruses. Dekker, New York, pp 177–218

    Google Scholar 

  • Cooper PD, Wentworth BB, McCahon D (1970) Guanidine inhibition of poliovirus: a dependence of viral RNA synthesis on the configuration of structural protein. Virology 40: 486–493

    CAS  Google Scholar 

  • Cooper PD, Steiner-Pryor A, Wright P (1973) A proposed regulator for poliovirus: the equestron. Intervirology 1: 1–10

    PubMed  CAS  Google Scholar 

  • Crowther D, Melnick JL (1961) Studies of the inhibitory action of guanidine on poliovirus multiplication in cell culture. Virology 15: 65–74

    PubMed  CAS  Google Scholar 

  • Dasgupta A, Baron M, Baltimore D (1979) Poliovirus replicase: a soluble enzyme able to initiate copying of polioviral RNA. Proc Natl Acad Sci USA 76: 2679–2683

    PubMed  CAS  Google Scholar 

  • Dasgupta A, Zabel P, Baltimore D (1980) Dependence of the activity of poliovirus replicase on a host cell protein. Cell 19: 423–429

    PubMed  CAS  Google Scholar 

  • Daubert SD, Bruening G, Najarian RC (1978) Protein bound to the genome RNAs of Cow-pea mosaic virus. Eur J Biochem 92: 45–51

    PubMed  CAS  Google Scholar 

  • Davidoff F (1973) Guanidine derivatives in medicine. N Engl J Med 289: 141–146

    PubMed  CAS  Google Scholar 

  • Dawson WO (1975) Guanidine inhibits tobacco mosaic virus RNA synthesis at two stages. Intervirology 6: 83–89

    PubMed  Google Scholar 

  • Dinter Z, Bengston Z (1964) Suppression of the inhibitory action of guanidine on virus multiplication by some amino acids. Virology 24: 254–261

    PubMed  CAS  Google Scholar 

  • Dmitrieva T, Shcheglova M, Agol V (1979) Inhibition of activity of EMC virus-induced RNA polymerase by antibodies against cellular components. Virology 92: 271–277

    PubMed  CAS  Google Scholar 

  • Dorsch-Häsler K, Yogo Y, Wimmer E (1975) Replication of picornaviruses. I. Evidence from in vitro RNA synthesis that poly ( A) of the poliovirus genome is genetically coded. J Virol 16: 1512–1527

    Google Scholar 

  • Eggers HJ (1979) Successful treatment of enterovirus-infected mice by 2-(a hydroxybenzyl)benzimidazole and guanidine. J Exp Med 143: 1367–1381

    Google Scholar 

  • Eggers HJ, Ikegami N, Tamm I (1965a) Comparative studies with selective inhibitors of picornavirus reproduction. Ann NY Acad Sci 130: 267–281

    CAS  Google Scholar 

  • Eggers HJ, Ikegami N, Tamm I (1965b) The development of ultravioletirradiation resistance by poliovirus infective centers and its inhibition by guanidine. Virology 25: 475–478

    PubMed  CAS  Google Scholar 

  • Ehrenfeld E (1979) In vitro translation of picornavirus RNA in cell-free extracts. In: Pérez Bercoff R (ed) Molecular biology of picornaviruses. Plenum, New York, p 223

    Google Scholar 

  • Fernandez-Munoz R, Darnell J (1976) Structural differences between the 5’ termini of viral and cellular mRNA in poliovirus infected cells: possible basis for the inhibition of host protein synthesis. J Virol 18: 719–726

    PubMed  CAS  Google Scholar 

  • Flanegan JB, Baltimore D (1977) Poliovirus-specific primerdependent RNA polymerase able to copy poly ( A). Proc Natl Acad Sci USA 74: 3677–3680

    Google Scholar 

  • Flanegan JB, van Dyke T (1979) Isolation of a soluble and template dependent poliovirus RNA polymerase that copies virion RNA in vitro. J Virol 32: 155–166

    PubMed  CAS  Google Scholar 

  • Flanegan JB, Pettersson RF, Ambros V, Hewlett MJ, Baltimore D (1977) Covalent linkage of a protein to a defined nucleotide sequence at the 5’-terminus of a virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci USA 74: 961–965

    PubMed  CAS  Google Scholar 

  • Friedman RM (1970) Basis for variable response of arboviruses to guanidine treatment. J Virol 6: 628–636

    PubMed  CAS  Google Scholar 

  • Ghendon Y (1972) Conditional lethal mutants of animal viruses. Prog Med Virol 14: 68–122

    Google Scholar 

  • Girard M (1969) In vitro synthesis of poliovirus ribonucleic acid: role of the replicative intermediate. J Virol 3: 376–384

    PubMed  CAS  Google Scholar 

  • Girard M, Baltimore D, Darnell JE (1967) The poliovirus replication complex: site for synthesis of poliovirus RNA. J Mol Biol 24: 59–74

    CAS  Google Scholar 

  • Goldstein NO, Pardoe IU, Burness A (1976) Requirement of an adenylic acid rich segment for the infectivity of EMC RNA. J Gen Virol 31: 271–278

    PubMed  CAS  Google Scholar 

  • Golini F, Nomoto A, Wimmer E (1978) The genome-linked protein of picornavirus. IV. Difference in the VPgs of EMC virus and poliovirus as evidence that the genome linked proteins are virus coded. Virology 89: 112–118

    Google Scholar 

  • Gomez-Puyou A, Sandoval F, Lotina B, Gomez-Puyou T (1973) Guanidine sensitive trans- port of Na+ and K+ in mitochondria. Biochem Biophys Res Commun 52: 74–78

    PubMed  CAS  Google Scholar 

  • Gorbalenya A, Svitkin Y, Kazachkou Y, Agol V (1979) EMC virus-specific polypeptide p22 is involved in the processing of the viral precursor polypeptides. FEBS Lett 108: 1–5

    PubMed  CAS  Google Scholar 

  • Grubman M, Barth B, Bachrach HL (1979) Foot-and-mouth disease virion RNA: studies on the relation between length of its 3’ ( A) segment and infectivity. Virology 97: 22–31

    Google Scholar 

  • Haas DJ, Harris DR, Mills HH (1965) The crystal structure of guanidinium chloride. Acta Crystallogr (Copenh) 19: 676–679

    CAS  Google Scholar 

  • Harris TJR (1980) Comparison of the nucleotide sequence at the 5’ end of RNAs from nine aphthoviruses, including representatives of the seven serotypes. J Virol 36: 659–66

    PubMed  CAS  Google Scholar 

  • Harris TJR (1976) The location of the poly (C) tract in the RNA of foot-and-mouth disease virus. J Gen Virol 33: 493–501

    PubMed  CAS  Google Scholar 

  • Hewlett M, Florkiewicz R (1980) Sequence of picornavirus RNAs containing a radioiodinated 5’-linked peptide reveals a conserved 5’ sequence. Proc Natl Acad Sci USA 77: 303–307

    PubMed  CAS  Google Scholar 

  • Hewlett MJ, Rose JK, Baltimore D (1976) 5’-Terminal structure of poliovirus polyribosomal RNA is pUp. Proc Natl Acad Sci USA 73:327–330

    Google Scholar 

  • Holland JJ (1964) Inhibition of host ma.romolecular synthesis by high multiplicities of poliovirus under conditions preventing virus synthesis. J Mol Biol 8: 574–581

    PubMed  CAS  Google Scholar 

  • Hruby DE, Roberts WK (1976) Encephalomyocarditis virus RNA: Variations in polyadenylic acid content and biological activity. J Virol 19: 325–330

    Google Scholar 

  • Hruby DE, Roberts WK (1978) Encephalomyocarditis virus RNA. III. Presence of a genome associated protein. J Virol 25: 413–415

    Google Scholar 

  • Huang AS, Baltimore D (1970) Initiation of polysome formation in poliovirus-infected HeLa cells. J Mol Biol 47: 275–291

    PubMed  CAS  Google Scholar 

  • Jacobson MF, Baltimore D (1968) Morphogenesis of poliovirus. I. Association of the viral RNA with coat protein. J Mol Biol 33: 369–378

    Google Scholar 

  • King AMQ, Sangar DV, Harris TJR, Brown F (1980) Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J Virol 34: 627–634

    PubMed  CAS  Google Scholar 

  • Kitamura N, Adler C, Wimmer E (1980) Structure and expression of the picornavirus genome. Ann NY Acad Sci 354: 183–201

    PubMed  CAS  Google Scholar 

  • Koch AS, Eremenko T, Benedetto A, Volpe P (1974) A guanidine-sensitive step of the poliovirus RNA replication cycle. Intervirology 4: 221–225

    PubMed  CAS  Google Scholar 

  • Koch G, Hiller E, Scharli C (1980) Influence of medium hyperosmolarity and guanidine on the synthesis and processing of poliovirus proteins. In: Koch G, Richter G (eds) Biosynthesis, modification, and processing of cellular and viral proteins. Academic Press, New York London, pp 246–262

    Google Scholar 

  • Korant B (1973) Cleavage of poliovirus-specific polypeptide aggregates. J Virol 12: 556–563

    PubMed  CAS  Google Scholar 

  • Korant B (1975) Regulation of animal virus replication by protein cleavage. In: Reich E, Rifkin D, Shaw E (eds) Proteases and biological control. Cold Spring Harbor Lab Press, New York, p 621

    Google Scholar 

  • Korant B (1977 a) Protein cleavage in virus-infected cells. Acta Biol Med Ger 36:1565–1573

    Google Scholar 

  • Korant BD (1977 b) Poliovirus coat protein as the site of guanidine action. Virology 81:1728

    Google Scholar 

  • Korant B (1979) Role of cellular and viral proteases in the processing of picornavirus proteins. In: Pérez-Bercoff R (ed) Molecular biology of picornaviruses. Plenum, New York, p 149

    Google Scholar 

  • Korant B, Chow N, Lively M, Powers J (1979) Virus-specified protease in poliovirus-infected HeLa cells. Proc Natl Acad Sci USA 76: 2992–2995

    PubMed  CAS  Google Scholar 

  • Koschel K, Wecker E (1971) Early functions of poliovirus. III. The effect of guanidine on early functions. Z Naturforsch 26b: 940–944

    Google Scholar 

  • Lee YF, Nomoto A, Wimmer E (1976) The genome of poliovirus is an exceptional eukaryotic mRNA. Prog Nucleic Acid Res Mol Biol 19: 89–96

    PubMed  CAS  Google Scholar 

  • Lee YF, Nomoto A, Detjen BM, Wimmer E (1977) A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci USA 74: 59–63

    PubMed  CAS  Google Scholar 

  • Lenk R, Penman S (1979) The cytoskeletal framework and poliovirus metabolism. Cell 16: 289–301

    PubMed  CAS  Google Scholar 

  • Loddo B, Ferrari W, Brotzu G, Spanedda A (1962) In vitro inhibition of infectivity of poliovirus by guanidine. Nature 193: 97–98

    PubMed  CAS  Google Scholar 

  • Loddo B, Mutoni S, Spanedda A, Brotzu G, Ferrari W (1963) Guanidine conditional infectivity of ribonucleic acid extracted from a strain of guanidine-dependent polio-1 virus. Nature 197: 315

    PubMed  CAS  Google Scholar 

  • Loddo B, Gressa GL, Schivo ML, Spanedda A, Brotzu G, Ferrari W (1966) Antagonism of the guanidine interference with poliovirus replication by simple methylated and ethylated compounds. Virology 28: 707–712

    PubMed  CAS  Google Scholar 

  • Lowe PA, Brown F (1981) Isolation of a soluble and template dependent foot-and-mouth disease virus RNA polymerase. Virology 111: 23–32

    PubMed  CAS  Google Scholar 

  • Lucas-Lenard J (1979) Inhibition of cellular protein synthesis after virus infection. In: PérezBercoff R (ed) Molecular biology of picornaviruses. Plenum, New York, p 73

    Google Scholar 

  • Lund GA, Scraba DC (1979) The isolation of mengo virus stable non-capsid polypeptides from infected L cells and preliminary characterization of an RNA polymerase activity associated with polypeptide E. J Gen Virol 44: 391–403

    CAS  Google Scholar 

  • Lundquist RE, Maizel JV (1978) Structural studies on the RNA component of the poliovirus replication complex. I. Purification and biochemical characterization. Virology 85: 434–444

    Google Scholar 

  • Lundquist RE, Ehrenfeld E, Maizel JV (1974) Isolation of a viral polypeptide associated with the poliovirus replication complex. Proc Natl Acad Sci USA 71: 4773–4777

    PubMed  CAS  Google Scholar 

  • Lundquist R, Sullivan M, Maizel JV (1979) Characterization of a new isolate of poliovirus defective interfering particles. Cell 18: 759–769

    PubMed  CAS  Google Scholar 

  • Lwoff A (1965) The specific effectors of viral development. Biochem J 96: 289–302

    PubMed  CAS  Google Scholar 

  • McDonnel JP, Levintow L (1970) Kinetics of appearance of poliovirus-induced RNA polymerase. Virology 42: 999–1006

    Google Scholar 

  • Mitchell W, Tershak DR (1973) The synthesis of complementary ribonucleic acid during infection with LSc poliovirus. Virology 54: 290–293

    PubMed  CAS  Google Scholar 

  • Mosser AG, Caliguiri LA, Tamm I (1971) Blocking action of guanidine on poliovirus multiplication. Virology 45: 653–663

    PubMed  CAS  Google Scholar 

  • Nair CN, Stowers JW, Singfield B (1979) Guanidine-sensitive Na+ accumulation by poliovirus-infected HeLa cells. J Virol 31: 184–189

    PubMed  CAS  Google Scholar 

  • Nakano M, Iwami S, Tagawa I (1963) A guanidine-dependent variant of poliovirus. Virology 21: 264–266

    PubMed  CAS  Google Scholar 

  • Newman JFE, Cartwright B, Doel TR, Brown F (1979) Purification and identification of the RNA dependent RNA polymerase of foot-and-mouth disease virus. J Gen Virol 45: 497–507

    PubMed  CAS  Google Scholar 

  • Nick H, Ahl R (1976) Inhibitors of foot-and-mouth disease virus. II. Temperature-dependence of the effect of guanidine on virus growth. Arch Virol 52: 71–83

    Google Scholar 

  • Noble J, Levintow L (1970) Dynamics of poliovirus-specific RNA synthesis and the effects of inhibitors of virus replication. Virology 40: 634–642

    PubMed  CAS  Google Scholar 

  • Nomoto A, Lee YF, Wimmer E (1976) The 5’ end of poliovirus mRNA is not capped with m7G(5’)ppp(5)-Np. Proc Natl Acad Sci USA 73: 375–380

    PubMed  CAS  Google Scholar 

  • Nomoto A, Detjen B, Pozzatti R, Wimmer E (1977a) The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268: 208–213

    PubMed  CAS  Google Scholar 

  • Nomoto A, Kitamura N, Golini F, Wimmer E (1977b) The 5’ terminal structure of polio virion RNA and poliovirus mRNA differ only in the genome linked protein VPg. Proc Natl Acad Sci USA 74: 5345–5349

    PubMed  CAS  Google Scholar 

  • O’Farrell P (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  Google Scholar 

  • Palmenberg A, PallanschM, Rueckert R (1979) Protease required for processing picornaviral coat protein resides in the viral replicase gene. J Virol 32: 770–778

    CAS  Google Scholar 

  • Penman S, Summers D (1965) Effects on host metabolism following synchronous infection with poliovirus. Virology 27: 614–620

    PubMed  CAS  Google Scholar 

  • Pérez-Bercoff R (1979) Replication of picornavirus RNA. In: Pérez-Bercoff R (ed) Molecular biology of picornaviruses. Plenum, New York, p 293

    Google Scholar 

  • Pérez-Bercoff R, Gander M (1978) In vitro translation of mengovirus RNA deprived of the terminally-linked (capping?) protein. FEBS Lett 96: 306–312

    PubMed  Google Scholar 

  • Pérez-Bercoff R, Cioé L, Degener AM, Meo P, Rita G (1979) Infectivity of mengovirus replicative form. IV. Intracellular conversion into replicative intermediate. Virology 96: 307–310

    Google Scholar 

  • Pérez-Bercoff R, Cioé L, Meo P, Carra G, Mechali M, Falcoff E, Rita G (1974) Infectivity of mengovirus replicative form. Relationship to cellular transcription. J Gen Virol 25: 53–62

    Google Scholar 

  • Petterson RF, Ambros V, Baltimore D (1978) Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol 27: 357–365

    Google Scholar 

  • Philipson L, Bengston S, Barbera-Oro J (1966) The reversion of guanidine inhibition of poliovirus synthesis. Virology 29: 317–329

    PubMed  CAS  Google Scholar 

  • Phillips B, Lundquist R, Maizel J (1980) Absence of subviral particles and assembly activity in HeLa cells infected with defective-interfering particles of poliovirus. Virology 100: 116–124

    PubMed  CAS  Google Scholar 

  • Porter A, Fellner P, Black D, Rowlands D, Harris T, Brown F (1978) 3-Terminal nucleotide sequences in the genome RNA of picornavirus. Nature 276:298–300

    Google Scholar 

  • Rekosh DM, Russell WC, Bellett AJD (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    PubMed  CAS  Google Scholar 

  • Richards OG, Hey TD, Ehrenfeld E (1981) Two forms of VPg on poliovirus RNAs. J Virol 38: 863–871

    PubMed  CAS  Google Scholar 

  • Rightsel WA, Dice JR, McAlpine RJ, Timm EA, McLean IW, Dixon GJ, Schabel FM (1961) Antiviral effect of guanidine Science 134: 558–559

    CAS  Google Scholar 

  • Röder A, Koschel K (1974) Reversible inhibition of poliovirus RNA synthesis in vivo and in vitro by viral products. J Virol 14: 846–852

    PubMed  Google Scholar 

  • Röder A, Koschel A (1975) Virus-specific proteins associated with the replication complex of poliovirus RNA. J Gen Virol 28: 85–98

    PubMed  Google Scholar 

  • Rothberg P, Harris T, Nomoto A, Wimmer E (1978) 04-(5’uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc Natl Acad Sci USA 75:4868–4872

    Google Scholar 

  • Rowlands DJ, Harris TJR, Brown F (1978) More precise location of the polycytidylic acid tract in foot-and-mouth disease virus RNA. J Virol 26: 335–343

    PubMed  CAS  Google Scholar 

  • Rueckert R, Mathews T, Kew O, Pallausch M, McLean C, Omilianowski D (1979) Synthesis and processing of picornaviral polyprotein. In: Pérez-Bercoff R (ed) Molecular biology of picornaviruses. Plenum, New York, p 113

    Google Scholar 

  • Saborio J, Pong S, Koch G (1974) Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J Mol Biol 85: 195–211

    PubMed  CAS  Google Scholar 

  • Sangar DV (1979) The replication of picornaviruses. J Gen Virol 45: 1–13

    PubMed  CAS  Google Scholar 

  • Sangar DV, Rowlands DJ, Harris TJR, Brown F (1977) A protein covalently linked to foot-and-mouth disease virus RNA. Nature 268: 648–650

    PubMed  CAS  Google Scholar 

  • Sangar DV, Black DN, Rowlands DJ, Harris TJR, Brown F (1980) Location of the initiation site for protein synthesis on foot-and-mouth disease virus RNA by in vitro translation of defined fragments of RNA. J Virol 33: 59–68

    PubMed  CAS  Google Scholar 

  • Saunders K, King AMQ, Slade WR, Newman JWI, McCahon D (1981) Coding arrangements of polypeptides in the middle of the FMDV genome: A possible site of action of guanidine. 5th Int Congress of Virology, Strasbourg, p 357

    Google Scholar 

  • Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9: 645–653

    PubMed  CAS  Google Scholar 

  • Spector DH, Baltimore D (1974) Requirement of 3’-terminal poly (adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci USA 71: 2983–2987

    PubMed  CAS  Google Scholar 

  • Stein IM, Micklus MJ (1973) Concentrations in serum and urinary excretion of guanidine, 1-methylguanidine, and 1,1-dimethylguanidine in renal failure. Clin Chem 19: 583–585

    PubMed  CAS  Google Scholar 

  • Steiner-Pryor A, Cooper P (1973) Temperature-sensitive poliovirus mutants defective in repression of host protein synthesis are also defective in structural protein. J Gen Virol 21: 215–225

    PubMed  CAS  Google Scholar 

  • Sugiyama T, Korant B, Lonberg-Holm K (1972) RNA virus gene expression and its control. Annu Rev Microbiol 26: 467–502

    PubMed  CAS  Google Scholar 

  • Summers DF, Levintow L (1965) Constitution and function of polysomes of poliovirus-infected HeLa cells. Virology 27: 44–53

    PubMed  CAS  Google Scholar 

  • Summers DF, Maizel JV, Darnell JE (1967) The decrease in size and synthetic activity of poliovirus polysomeslate in the infectious cycle. Virology 31: 427–435

    PubMed  CAS  Google Scholar 

  • Taber R, Rekosh D, Baltimore D (1971) Effect of pactamycin on synthesis of poliovirus protein: a method of genetic mapping. J Virol 8: 395–401

    PubMed  CAS  Google Scholar 

  • Tershak DR (1964) Effect of 5-fluorouracil on poliovirus growth. Virology 24: 264–269

    Google Scholar 

  • Tershak DR (1974) Guanidine inhibition of poliovirus growth. Partial elimination by protease antagonists and low temperature. Can J Microbiol 20: 817–824

    PubMed  CAS  Google Scholar 

  • Tershak DR (1982) Inhibition of poliovirus polymerase by guanidine in vitro. J Virol 41: 313–318

    PubMed  CAS  Google Scholar 

  • Traub A, Diskin B, Rosenberg H, Kalmar E (1976) Isolation and properties of the replicase of EMC virus. J Virol 18: 375–382

    PubMed  CAS  Google Scholar 

  • Van de Woude G, Ascione R (1974) Translation products of foot-and-mouth disease virus-infected baby hamster kidney cells. Archiv Ges Virusforsch 45: 259–271

    Google Scholar 

  • Varma JP (1968) Inhibition of tobacco necrosis virus by guanidine carbonate. Virology 36: 305–308

    PubMed  CAS  Google Scholar 

  • Wimmer E (1972) Sequence studies of poliovirus RNA. I. Characterization of the 5’-terminus. J Mol Biol 68: 537–540

    PubMed  CAS  Google Scholar 

  • Wimmer E (1979) The genome-linked protein of picornaviruses: discovery, properties, and possible functions. In: Pérez-Bercoff R (ed) Molecular biology of picornaviruses. Plenum, New York, p 175

    Google Scholar 

  • Yin FH (1977a) Involvement of viral procapsid in the RNA synthesis and maturation of poliovirus. Virology 82: 299–307

    PubMed  CAS  Google Scholar 

  • Yin FH (1977b) Possible in vitro repair of viral RNA by ligase-like enzyme(s) in poliovirusinfected cells. J Virol 21: 61–68

    PubMed  CAS  Google Scholar 

  • Yogo Y, Wimmer E (1972) Polyadenylic acid at the 3’ terminus of poliovirus RNA. Proc Natl Acad Sci USA 69: 1877–1882

    PubMed  CAS  Google Scholar 

  • Yogo Y, Wimmer E (1973) Poly (A) and poly ( U) in poliovirus double stranded RNA. Nature 242: 171–174

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tershak, D.R., Yin, F.H., Korant, B.D. (1982). Guanidine. In: Came, P.E., Caliguiri, L.A. (eds) Chemotherapy of Viral Infections. Handbook of Experimental Pharmacology, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68487-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68487-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68489-0

  • Online ISBN: 978-3-642-68487-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics