Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 90))

Abstract

The regular alternation of day and night, of light and darkness, has strongly affected the development of life on Earth. Many organisms adapted themselves to this environmental condition and, finally, evolved an endogenous timer, which usually oscillates in phase with the Earth’s rotation. It exists in almost all classes of plants and animals, in men as well as in protozoans, but it has not been demonstrated unambiguously in prokaryotes. When it is allowed to run in a constant environment it completes about one cycle in 24 h. Biologic functions coupled to this internal timer or clock oscillate with a period of about 1 day. These functions, therefore, exhibit the socalled circadian rhythm (derived from circa dies, i.e., about 1 day (Halberg and Reinberg 1968)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson DE (1971) Adenine nucleotides as universal stoichiometric metabolic coupling agents. Adv Enzyme Regul 9:207–219

    Article  Google Scholar 

  • Brinkmann K (1966) Temperatureinflüsse auf die circadiane Periodik von Euglena gracilis bei Mixothrophie und Autotrophic. Planta 70:344–389

    Article  Google Scholar 

  • Brinkmann K (1971) Metabolie control of temperature compensation in the circadian rhythm of Euglena gracilis. In: Menaker M (ed) Biochronometry. Natl Acad Sci, Washington D.C., pp 567–593

    Google Scholar 

  • Brinkmann K (1973) The role of actidione in the temperature jump response of the circadian rhythm in Euglena gracilis. In: Chance B (ed) Biological and biochemical oscillators. Academie Press, New York, pp 523–529

    Google Scholar 

  • Brinkmann K (1976) The influence of alcohols on the circadian rhythm and metabolism of Euglena gracilis. J Interdiscipl Cycle Res 7:149–170

    Article  CAS  Google Scholar 

  • Bruce VG (1970) The biological clock in Chlamydomonas reinhardii. J Protozool 17:328–334

    Google Scholar 

  • Bruce VG (1972) Mutants in the biological clock in Chlamydomonas reinhardii. Genetics 70:537–548

    PubMed  CAS  Google Scholar 

  • Bruce VG (1974) Recombinants between clock mutants of Chlamydomonas reinhardii. Genetics 77:221–229

    PubMed  CAS  Google Scholar 

  • Bruce VG (1976) Clock mutants. In: Hastings JW, Schweiger HG (eds) The molecular basis of circadian rhythms. Dahlem Konferenzen Berlin, pp 339–351

    Google Scholar 

  • Bruce VG, Bruce NC (1978) Diploids of clock mutants of Chlamydomonas reinhardii. Genetics 89:225–233

    PubMed  CAS  Google Scholar 

  • Bruce VG, Pittendrigh CS (1956) Temperature independence in a unicellular “clock”. Proc Natl Acad Sci USA 42:676–682

    Article  PubMed  CAS  Google Scholar 

  • Bruce VG, Pittendrigh CS (1958) Resetting the Euglena clock with a single light stimulus. Am Nat 92:295–306

    Article  Google Scholar 

  • Bruce VG, Pittendrigh CS (1960) An effect of heavy water on the phase and period of the circadian rhythm in Euglena. J Cell Physiol 56:25–31

    Article  CAS  Google Scholar 

  • Burgoyne RD (1978) A model for the molecular basis of circadian rhythms involving monovalent ion-mediated translational control. FEBS Lett 94:17–19

    Article  PubMed  CAS  Google Scholar 

  • Ebersold WT, Levine RP (1959) A genetic analysis of linkage group I of Chlamydomonas reinhardii. Z Vererb 90:74–82

    Article  CAS  Google Scholar 

  • Edmunds LN Jr (1966) Studies on synchronously dividing cultures of Euglena gracilis Klebs(strain Z). III. Circadian components of cell division. J Cell Comp Physiol 67:35–43

    Google Scholar 

  • Edmunds LN Jr (1971) Persisting circadian rhythm of cell division in Euglena: some theoretical considerations and the problem of intercellular communication: In: Menaker M (ed) Biochronometry Washington, DC, Natl Acad Sci, pp 594–611

    Google Scholar 

  • Edmunds LN Jr, Chuang L, Jarret RM, Terry OW (1971) Long-term persistence of free-running circadian rhythms of cell division in Euglena and the implication of autosynchrony. J Interdiscipl Cycle Res 2:121–132

    Article  Google Scholar 

  • Edmunds LN, Funch R (1969) Circadian rhythm of cell division in Euglena: Effects of a random illumination regimen. Science 165:500–503

    Article  PubMed  Google Scholar 

  • Edmunds LN Jr, Jay ME, Kohlmann A, Liu SC (1976) The coupling effects of some thiol and other sulfurcontaining compounds on the circadian rhythm of cell division in photosynthetic mutants of Euglena. Arch Microbiol 108:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ehret CF, Trucco E (1967) Molecular models for the circadian clock. J Theor Biol 15:240–262

    Article  PubMed  CAS  Google Scholar 

  • Feldman JF (1967) Lengthening the period of a biological clock in Euglena gracilis by cyclohexi-mide, an inhibitor of protein synthesis. Proc Natl Acad Sci USA 57:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Feldman JF, Bruce VG (1972) Circadian rhythm changes in autotrophic Euglena induced by organic carbon sources. J Protozool 19:370–373

    PubMed  CAS  Google Scholar 

  • Halberg, F, Remberg A (1968) Rhythmes circadiens et rythmes de basses fréquences en physiologie humaine. Masson, Paris

    Google Scholar 

  • Hastings JW (1960) Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spring Harbor Symp Quant Biol 25:131–142

    PubMed  CAS  Google Scholar 

  • Hastings JW, Asehoff J, Buenning E, Edmunds LN, Hoffmann K, Pittendrich CS, Winfree AT (1976) Basic features. In: Hastings JW, Schweiger HG (eds) The molecular basis of circadian rhythms. Dahlem Konferenzen Berlin pp 49–62

    Google Scholar 

  • Hastings JW, Astrachan JW, Sweeney BM (1961) A persistent daily rhythm in photosynthesis. J Gen Physiol 45:69–76

    Article  PubMed  CAS  Google Scholar 

  • Hastings JW, Keynan A (1965) Molecular aspects of circadian systems. In: Asehoff J (ed) Circadian clocks. Elsevier, Amsterdam, pp 167–182

    Google Scholar 

  • Hastings JW, Schweiger H-G (1976) The molecular basis of circadian rhythms. Dahlem Konferenzen, Berlin

    Google Scholar 

  • Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–458

    Article  Google Scholar 

  • Hastings JW, Sweeney BM (1960) The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra. J Gen Physiol 43:697–706

    Article  PubMed  CAS  Google Scholar 

  • Jones RF (1970) Physiological and biochemical aspects of growth and gametogenesis in Chlamydomonas reinhardii. Ann NY Acad Sci 175:648–659

    Article  CAS  Google Scholar 

  • Karakashian MW, Hastings JW (1962) The inhibition of a biological clock by actinomycin D. Proc Natl Acad Sci USA 48:2130–2137

    Article  PubMed  CAS  Google Scholar 

  • Karakashian MW, Hastings JW (1963) The effect of inhibitors of macromolecular biosynthesis upon the persistent rhythm of luminescence in Gonyaulax. J Gen Physiol 47:1–12

    Article  PubMed  CAS  Google Scholar 

  • Karakashian MW, Schweiger HG (1976a) Circadian properties of the rhythmic system in individual nucleated and anucleated cells of Acetabularia mediterranea. Exp Cell Res 97:366–377

    Article  PubMed  CAS  Google Scholar 

  • Karakashian MW, Schweiger HG (1976b) Evidence for a eycloheximide-sensitive component in the biological clock of Acetabularia. Exp Cell Res 98:303–12

    Article  PubMed  CAS  Google Scholar 

  • Karakashian MW, Schweiger HG (1976c) Temperature dependence of cycloheximide-sensitive phase of circadian cycle in Acetabularia mediterranea. Proc Natl Acad Sci USA 73:3216–3219

    Article  PubMed  CAS  Google Scholar 

  • Klitzing L v, Schweiger HG (1969) A method for recording the circadian rhythm of the oxygen balance in a single cell of Acetabularia mediterranea. Protoplasma 67:327–332

    Article  Google Scholar 

  • Leong TY, Schweiger HG (1978) The role of chloroplast membrane protein synthesis in the circadian clock. Occurrence of a polypeptide which tentatively is involved in the clock. In: A koyunoglou (ed) Chloroplast development Elsevier, Amsterdam 323–332

    Google Scholar 

  • Levine RP, Goodenough UW (1970) The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardii. Annu Rev Genet 4:397–407

    Article  PubMed  CAS  Google Scholar 

  • Macke W (1967) Mechanik der Teilchen, Systeme und Kontinua. Akademische Verlagsgesell- sehaft Leipzig

    Google Scholar 

  • McDaniel M, Sulzman FM, Hastings JW (1974) Heavy water slows the Gonyaulax clock: a test of the hypothesis that D20 affects circadian oscillations by diminishing the apparent temperature. Proc Natl Acad Sci USA 71:4389–4391

    Article  PubMed  CAS  Google Scholar 

  • Mahon D (1975) Cycloheximide is not a specific inhibitor of protein synthesis in vivo. Plant Physiol 55:815–821

    Article  Google Scholar 

  • Mergenhagen D, Hastings JW (1977) The circadian rhythm in metabolic mutant strains of Chlamydomonas reinhardii. Chronobiologia 4:735–740

    Google Scholar 

  • Mergenhagen D, Schweiger HG (1973) Recording the oxygen production of a single Acetabularia cell for a prolonged period. Exp Cell Res 81:360–364

    Article  PubMed  CAS  Google Scholar 

  • Mergenhagen D, Schweiger HG (1975a) The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia. Exp Cell Res 94:321–326

    Article  PubMed  CAS  Google Scholar 

  • Mergenhagen D, Schweiger HG (1975b) Circadian rhythm of oxygen evolution in cell fragments of Acetabularia mediterranea. Exp Cell Res 92:127–130

    Article  PubMed  CAS  Google Scholar 

  • Njus D, Sulzman FM, Hastings JW (1974) Membrane model for the circadian clock. Nature 248:116–120

    Article  PubMed  CAS  Google Scholar 

  • Pohl R (1948) Tagesrhythmus im phototaktischen Verhalten der Euglena gracilis. Z Naturforsch [C] 3:367–374

    Google Scholar 

  • Sager R (1972) Cytoplasmic genes and organelles. Pergamon, New York

    Google Scholar 

  • Schnabel G (1968) Der Einfluß von Licht auf die circadiane Rhythmik von Euglena gracilis bei Autotrophie und Mixotrophie. Planta 81:49–63

    Article  Google Scholar 

  • Schweiger HG (1969) Cell biology of Acetabularia. Curr Top Microbiol Immunol 50:1–36

    PubMed  CAS  Google Scholar 

  • Schweiger HG, Schweiger M (1977) Circadian rhythms in unicellular organisms: an endeavour to explain the molecular mechanism. Int Rev Cytol 51:315–342

    Article  PubMed  CAS  Google Scholar 

  • Schweiger E, Wallraff HG, Schweiger HG (1964a) Über tagesperiodische Schwankungen der Sauerstoffbilanz kernhaltiger und kernloser Acetabularia mediterranea. Z Naturforsch [C] 19:499–505

    CAS  Google Scholar 

  • Schweiger E, Wallraff HG, Schweiger HG (1964b) Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus. Science 146:658–659

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM (1960) The photosynthetic rhythm in single cells of Gonyaulax polyedra. Cold Spring Harbor Symp Quant Biol 25:145–148

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1972) The Acetabularia rhythm paradoxes. Protoplasma 75:488

    Google Scholar 

  • Sweeney BM (1974a) The potassium content of Gonyaulax polyedra and phase changes in the circadian rhythm of stimulated bioluminescence by short exposures to ethanol and valino- myein. Plant Physiol 53:337–342

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM (1974b) A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes. Int J Chronobiol 2:25–31

    PubMed  CAS  Google Scholar 

  • Sweeney BM, Hastings JW (1957) Characteristics of the diurnal rhythm of luminescence in Gonyaulax polyedra. J Cell Comp Physiol 49:115–128

    Article  Google Scholar 

  • Sweeney BM, Hastings JW (1958) Rhythmic cell division in Gonyaulax polyedra. J Protozool 5:217–224

    Google Scholar 

  • Sweeney BM, Hastings JW (1960) Effects of temperature upon diurnal rhythms. Cold Spring Harbor Symp Quant Biol 25:87–104

    PubMed  CAS  Google Scholar 

  • Sweeney BM, Haxo FT (1961) Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134:1361–1363

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM, Tuffli CPF, Rubin RH (1967) The circadian rhythm in photosynthesis in Acetabularia in the presence of Actinomycin D, Puromycin, and Chloramphenicol. J Gen Physiol 50:647–659

    Article  PubMed  CAS  Google Scholar 

  • Van den Driessche T (1966a) Circadian rhythms in Acetabularia: photosynthetic capacity and chloroplast shape. Exp Cell Res 42:18–30

    Article  Google Scholar 

  • Van den Driessche T (1966b) The role of the nucleus in the circadian rhythm of Acetabularia mediterranea. Biochim Biophys Acta 126:456–470

    Article  Google Scholar 

  • Van den Driessche T (1967) Experiments and hypothesis on the role of RNA in the circadian rhythm of photosynthetic capacity in Acetabularia mediterranea. Nachr Akad Wiss (Göttingen) 10:108–109

    Google Scholar 

  • Van den Driessche T, Bonotto S, Brächet J (1970) Inability of rifampicin to inhibit circadian rhythmieity in Acetabularia despite inhibition of RNA synthesis. Biochim Biophys Acta 224:631–634

    Google Scholar 

  • Wagner E (1976) Endogenous rhythmieity in energy metabolism: basis for timer-photo-receptor interactions in photoperiodic control. In: Hastings JW, Schweiger HG (eds) The molecular basis of circadian rhythms. Dahlem Konferenzen, Berlin, pp 215–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mergenhagen, D. (1980). Circadian Rhythms in Unicellular Organisms. In: Arber, W., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67717-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67717-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67719-9

  • Online ISBN: 978-3-642-67717-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics