Skip to main content

Neurophysiology of the Anuran Visual System

  • Chapter
Frog Neurobiology

Abstract

Due to recent behavioral and electrophysiological data found in different anurans, some investigators believe that the visual system of frogs and toads is a highly specialized machinery which detects only self-moving visual signals relevant to the survival of the animals (p. 357 f., 435 ff.). Other visual signals are believed to be “suppressed” by the neuronal network of the visual system. Thus the ironic poem of Heinrich Heine would be incorrect as such a neuronal machine leaves little possibility for frogs to “erquicken… an Sonnenblicken”. The angular velocity of the sun and the shadows cast by stationary objects in the frog’s habitat would be too slow to be discovered by the movement-detecting neuronal systems.

”… Chor der Frösche: Im Wasser, im Wasser da ist es noch nasser als auf der Erde, und ohne Beschwerde erquicken wir uns an den Sonnenblicken…“

H. Heine

Romanzen, 5. ”Aus einem Briefe“(1839).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach, v.: Über die Otolithenfunction und den Labyrinthtonus. Pflügers Arch. ges. Physiol. 86, 122–146 (1901).

    Google Scholar 

  • Adler, K.: The role of extraoptic photoreceptors in amphibian rhythms and orientation: A review. J. Herpetol. 4, 99–112 (1970).

    Google Scholar 

  • Akert, K.: Der visuelle Greifreflex. Helv. physiol. pharmacol. Acta 7, 112–134 (1949).

    PubMed  CAS  Google Scholar 

  • Aleksandrova, T.A.: Retino-tegmental projections in the brain of the frog R. temp. [Russ.] Z. Evol. Biokhim. Fiziol. 8, 456–458 (1972).

    CAS  Google Scholar 

  • Alexander-Schäfer, G.: Vergleichend-physiologische Untersuchungen über die Sehschärfe. Pflügers Arch. ges. Physiol. 119, 571–579 (1907).

    Google Scholar 

  • Andrew, A.M.: Action potentials from the frog colliculus. J. Physiol. (Lond.) 130, 25 (1955).

    Google Scholar 

  • Autrum, H.: Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Naturwissenschaften 46, 435 (1959).

    Google Scholar 

  • Bäck, I., Donner, K.O., Reuter, T.: The screening effect of the pigment epithelium on the retinal rods in the frog. Vision Res. 5, 101–111 (1965).

    PubMed  Google Scholar 

  • Bäckström, A.-C., Reuter, T.: Receptive field organization of ganglion cells in the frog retina: Contributions from cones, green rods and red rods. J. Physiol. (Lond.) 246, 79–107 (1975).

    Google Scholar 

  • Barlow, H.B.: The receptive field of ganglion cells in the frog’s retina. Abstr. 18th Intern. Congr. Physiol., p. 88–89 (1950).

    Google Scholar 

  • Barlow, H.B.: Action potentials from the frog’s retina. J. Physiol. (Lond.) 119, 58–68 (1953 a).

    CAS  Google Scholar 

  • Barlow, H.B.: Summation and inhibition in the frog’s retina. J. Physiol. (Lond.) 119, 69–88 (1953 b).

    CAS  Google Scholar 

  • Barlow, H.B., Fitzhugh, R., Kuffler, S.W.: Dark adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (Lond.) 137, 327–337 (1957).

    CAS  Google Scholar 

  • Bartels, M.: Vergleichendes über Augenbewegungen. In: Handb. der normalen pathologischen Physiologie (Bethe Bergmann, ed.), vol. XII/2, p. 1113–1165 (1931).

    Google Scholar 

  • Baumann, Ch.: Die absolute Schwelle der isolierten Froschnetzhaut. Pflügers Arch. ges. Physiol. 280, 81–88 (1964).

    CAS  Google Scholar 

  • Baumann, Ch.: Der Einfluß von Metarhodopsin auf die Sehpurpurbleichung in der isolierten Netzhaut. Vision Res. 6, 5–13 (1966).

    PubMed  CAS  Google Scholar 

  • Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschnetzhaut. I. Die Sehpurpurbleichung. Pflügers Arch. ges. Physiol. 298, 44–60 (1967 a).

    CAS  Google Scholar 

  • Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschnetzhaut. II. Die Begrenzung der Stäbchenfunktion durch Helladaptation. Pflügers Arch. ges. Physiol. 298, 61–69 (1967b).

    CAS  Google Scholar 

  • Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Froschnetzhaut. III. Die Dunkeladaptation des skotopischen Systems nach partieller Sehpurpurbleichung. Pflügers Arch. ges. Physiol. 298, 70–81 (1967 c).

    CAS  Google Scholar 

  • Baumann, Ch.: Regeneration of rhodopsin in the isolated retina of the frog (R. esculenta). Vision Res. 10, 627–637 (1970).

    PubMed  CAS  Google Scholar 

  • Baumann, Ch.: The regeneration and renewal of visual pigment in vertebrates. In: Handbook of Sensory Physiology (H.J.A. Dartnall, ed.), vol. VII/1, p. 395–416. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Baumann, Ch., Scheibner, H.: The dark adaptation of single units in the isolated frog retina following partial bleaching of rhodopsin. Vision Res. 8, 1127–1138 (1968).

    PubMed  CAS  Google Scholar 

  • Baurmann, M.: Über reflektorisch ausgelöste Augenmuskelbewegungen der Froschlarven. Klin. Mbl. Augenheilk. 56, 393–402 (1921).

    Google Scholar 

  • Bechterew, W.: Über die Function der Vierhügel. Pflügers Arch. ges. Physiol. 33, 413–439 (1884).

    Google Scholar 

  • Beer, Th.: Die Accommodation des Auges bei den Amphibien. Pflügers Arch. ges. Physiol. 73, 501–534 (1898).

    Google Scholar 

  • Belekhova, M.G., Vesselkin, N.P.: On the Characteristics of the Afferent System in the Frog Brain. [Russ.] Mechanisms of Nervous Activity, p. 162–171. Leningrad: Nauka 1969.

    Google Scholar 

  • Bellonci, J.: Über die centrale Endigung des Nervus opticus bei den Vertebraten. Z. wiss. Zool. 47, 1–46 (1888).

    Google Scholar 

  • Bertulis, A. V., Podvigin, N.F.: On new type of impulse responses in frog retina. [Russ.]. In: Investigations of Principles of Information Processing in the Visual System, p. 49–54. Leningrad: Nauka 1970.

    Google Scholar 

  • Bianki, B., Dushabaev, Z.R.: Morphophysiological structure of visual analysors of amphibians in relation to its paired structure. Fed. Proc., Transl. Suppl. 24, 353–356 (1965).

    CAS  Google Scholar 

  • Biersner, R., Melzack, R.: Approach-avoidance responses to visual stimuli in frogs. Exp. Neurol. 15, 418–424 (1966).

    PubMed  CAS  Google Scholar 

  • Birukow, G.: Untersuchungen über den optischen Drehnystagmus und über die Sehschärfe des Grasfrosches (R. temporaria). Z. vergl. Physiol. 25, 92–142 (1937).

    Google Scholar 

  • Birukow, G.: Purkinjesches Phänomen und Farbensehen beim Grasfrosch (R. temporaria). Z. vergl. Physiol. 27, 41–79 (1939).

    Google Scholar 

  • Birukow, G.: Die Entwicklung des Tages- und des Dämmerungssehens im Auge des Grasfrosches (R. temporaria L.). Z. vergl. Physiol. 31, 322–347 (1949).

    CAS  Google Scholar 

  • Birukow, G.: Studien über statisch-optisch ausgelöste Kompensationsbewegungen und Körperhaltung bei Amphibien. Z. vergl. Physiol. 34, 448–472 (1952).

    Google Scholar 

  • Birukow, G., Meng, M.: Eine neue Methode zur Prüfung des Gesichtssinnes der Amphibien. Naturwissenschaften 42, 652–653 (1955).

    Google Scholar 

  • Bishop, G.H.: Fiber groups in the optic nerve. Am. J. Physiol. 106, 461–474 (1933).

    Google Scholar 

  • Bishop, G.H., Clare, M.H.: Organization and distribution of fibers in the optic tract of the cat. J. comp. Neurol. 103, 269–304 (1955).

    PubMed  CAS  Google Scholar 

  • Blankenagel, F.: Untersuchungen über die Großhirnfunktionen von R. temporaria. Zool. Jb. 49, 271–322 (1931).

    Google Scholar 

  • Boldyreva, G.N., Grindel, O.M.: Investigation of the electrical activity of different areas of the brain in the frog. [Russ.] Fiziol. Zh. SSSR 45, 1035–1044 (1959).

    Google Scholar 

  • Bongard, M.M., Smirnow, M.S.: Spectral sensitivity curves for receptors connected to single fibers of the optic nerve of the frog. [Russ.] Biofizika 2, 336–341 (1957).

    Google Scholar 

  • Borchers, H.-W.: Entwicklung elektromethodischer Grundlagen für die Erforschung des visuellen Systems von Kröten. Diss. Math. Nat. Gesamthochsch. Kassel, 107 S. (1974).

    Google Scholar 

  • Boycott, B.B., Mrosovsky, N., Muntz, W.R.A.: Black and white preferences in the frog, R. temporaria, and other anura. J. exp. Biol. 41, 865–877 (1964).

    PubMed  CAS  Google Scholar 

  • Braitenberg, V.: Electroencephalographic evidence of “Gestalt” in the perception of movement by the frog. Kybernetik 2, 284–287 (1965).

    PubMed  CAS  Google Scholar 

  • Branston, N.M., Fleming, D.G.: Efferent fibers in the frog optic nerve. Exp. Neurol. 20, 611–623 (1968).

    PubMed  CAS  Google Scholar 

  • Brehm, A.E.: Die Lurche. Brehms Tierleben 1, 533–606 (1878).

    Google Scholar 

  • Brennecke-Dietz, M.: Microelectrode recordings from optic tract terminals in the diencephalon of toads (B. bufo). Unpublished experiments, München 1973–1974.

    Google Scholar 

  • Brindley, G.S.: Physiology of the retina and visual pathway. 298 p. London: E.Arnold Ltd. 1960.

    Google Scholar 

  • Brown, W.T., Ingle, D.: Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Res. 59, 405–409 (1973).

    PubMed  CAS  Google Scholar 

  • Brown-Séquard, E.: De la lumière, du froid et de la chaleur sur l’iris dans les cinq classes d’animaux vertebres. J. Physiol. (Paris) 2, 281–294 and 451–460 (1859).

    Google Scholar 

  • Bruesh, S.R., Arey, L.B.: The number of myelinated and un-myelinated fibers in the optic nerve of vertebrates. J. comp. Neurol. 77, 631–666 (1942).

    Google Scholar 

  • Bullock, Th.H.: In search of principles in integrative biology. Amer. Zoologist 5, 745–755 (1965).

    Google Scholar 

  • Burkhardt, D.A.: Correlation between nerve impulse discharge and graded response in the frog retina. J. opt. Soc. Amer. 59, 512 (1969).

    Google Scholar 

  • Burkhardt, D.A.: Proximal negative response of frog retina. J. Neurophysiol. 33, 405–420 (1970).

    PubMed  CAS  Google Scholar 

  • Burkhardt, D.A., Berntson, G.G.: Light adaptation and excitation: Lateral spread of signals within the frog retina. Vision Res. 12, 1095–1111 (1972).

    PubMed  CAS  Google Scholar 

  • Buser, P.: Réponse du tectum de Grenoulle à la stimulation lumineuse brêve; mise en évidence d’une composante lente et tardive. C. R. Soc. Biol. (Paris) 143, 30–32 (1949 a).

    Google Scholar 

  • Buser, P.: Contribution à l’étude des potentials lents centraux. Analyse de l’activité électrique du lobe optique de deux vertébrés inférieurs. Arch. Sci. Physiol. 3, 471–488 (1949b).

    Google Scholar 

  • Buser, P.: Etude de l’activité électrique du lobe optique des vertébrés inférieurs. J. Physiol. (Paris) 47, 737–768 (1955).

    CAS  Google Scholar 

  • Butenandt, E.: Die Verarbeitung von Form, Größe und Geschwindigkeit von Reizflächen durch das Wirkungsgefüge der Klasse-2-Neurone in der Froschnetzhaut. Diss. (Dr. rer. nat.) Berlin, Freiburg i. Br. (1971).

    Google Scholar 

  • Butenandt, E., Giebel, H.: Nichtlineare Schichtmodelle der Froschretina. Bericht Sonderforschungsbereich 50, Kybernetik, München, 7 p. (1974).

    Google Scholar 

  • Butenandt, E., Grüsser, O.-J.: The effect of stimulus area on the response of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 298, 283–293 (1968).

    CAS  Google Scholar 

  • Buytendijk, F. J. J.: Instinct de la recherche du nid et expérience chez les crapauds. (B. vulgaris et B. calamita). Arch. néerl. Physiol. (Sér. IIIc) 2, 1–50 (1918 a).

    Google Scholar 

  • Buytendijk, F.J.J.: L’instinct d’alimentation et l’expérience chez les crapauds. Arch. néerl. Physiol. (Sér. IIIc) 2, 217–228 (1918 b).

    Google Scholar 

  • Byzov, A.L.: The dynamics of the lability of single neurons of the frog retina (flicker stimulation at different intensities). Dokl. Akad. Nauk USSR 105, 852–855 (1955 a).

    Google Scholar 

  • Byzov, A.L.: The physiological lability of the frog retina. [Russ.] J.N. Sechenov. Physiol. J. USSR 41, 363–372 (1955 b).

    CAS  Google Scholar 

  • Byzov, A.L.: Physiological lability of the frog retina and its elements (russ.). In: 4th Conf. Problems Physiol. Optics. [Russ.] Acad. Sci., USSR, Moscow-Leningrad, p. 358–366 (1958).

    Google Scholar 

  • Byzov, A.L.: On the sources of impulses recorded from inner layers of the frog retina. [Russ.] Biophysica (Moscow) 4, 414–421 (1959).

    CAS  Google Scholar 

  • Byzov, A.L.: Functional properties of different cells in the retina of cold-blooded vertebrates. Cold Spr. Harb. Symp. quant. Biol. 30, 547–558 (1965).

    CAS  Google Scholar 

  • Byzov, A.L., Hanitzsch, R.: Intracellular records of the responses of different cells in the retina of the frog and amblystoma. [Russ.] J.N. Sechonov Physiol. J. USSR 52, Nr. 3 (1966).

    Google Scholar 

  • Cajal, S. Ramon y: Sur la morphologie et les connexions des éléments de la retine des oiseaux. Anat. Anz. 4, 111–121 (1889).

    Google Scholar 

  • Cajal, S. Ramon Y: Die Retina. Transl. by A. Greeff. Wiesbaden: Bergmann 1896.

    Google Scholar 

  • Cajal, S. Ramon Y: Histologie du système nerveux de l’homme et des vertébrés, vol. 2. Paris: Maloine 1911.

    Google Scholar 

  • Campenhausen, C. v.: Quantitative Beziehungen zwischen Lichtreiz und Kontraktion des Musculus sphincter pupillae von Scheibenzünglern (Discoglossus pictus). Kybernetik 1, 249–267 (1963).

    Google Scholar 

  • Chang, H.-T., Chiang, C.Y., Wu, C.P.: Electrical response of single neurons in the optic lobe of toad to photic stimulation. Scientia Sinica 8, 1131–1152 (1959).

    PubMed  CAS  Google Scholar 

  • Chang, H.-T., Kostyuk, P.G.: Unit discharges of cerebellar neurons elicited by stimulation of vestibular nerve in toads. Sci. Record, New Ser. 3, 507–515 (1959).

    Google Scholar 

  • Chang, H.-T., Mkrtycheva, L.: Neurons responsive to interruption of light and neurons active in darkness in the optic tectum of toad. Scientia Sinica 11, 90–99 (1962).

    PubMed  CAS  Google Scholar 

  • Chang, H.-T., Wu, C.-P.: Optic activation of cerebellar and vestibular neurons in the toad. Sci. Record (Peking), New Ser. 3, 640–644 (1959).

    Google Scholar 

  • Chapman, R.M.: Spectral sensitivity of single neural units in the bullfrog retina. J. opt. Soc. Amer. 51, 1102–1112 (1961).

    CAS  Google Scholar 

  • Chapman, R.M.: Spectral sensitivities of neural impulses and slow waves in the bullfrog retina. Vision Res. 2, 89–102 (1962).

    Google Scholar 

  • Chapman, R.M.: Spectral sensitivity comparison of on- and off-responses of the frog electroretinogram. Vision Res. 4, 455–463 (1964).

    PubMed  CAS  Google Scholar 

  • Chapman, R.M.: Light wavelength and energy preferences of the bull frog: Evidence for color vision. J. comp. physiol. Psychol. 61, 420–435 (1966).

    Google Scholar 

  • Chievitz, J.H.: Untersuchungen über die Area centralis retinae. Arch. Anat. Physiol., Anat. Abt. (Suppl. Band) 1889.

    Google Scholar 

  • Chievitz, J.H.: Über das Vorkommen der Area centralis retinae. Arch. Anat. 1891, 311–334 (1891).

    Google Scholar 

  • Chino, Y.M., Sturr, J.F.: The time course of inhibition during the delayed response of the on-off ganglion cell in the frog. Vision Res. 15, 185–191 (1975 a).

    PubMed  CAS  Google Scholar 

  • Chino, Y.M., Sturr, J.F.: Rod and cone contributions to the delayed response of the on-off ganglion cell in the frog. Vision Res. 15, 193–202 (1975 b).

    PubMed  CAS  Google Scholar 

  • Chung, S.-H., Gaze, R.M., Stirling, R.V.: Abnormal visual function in Xenopus following stroboscopic illumination. Nature (Lond.) New Biol. 246, 186–188 (1973).

    CAS  Google Scholar 

  • Chung, S.-H., Lettvin, J.Y., Raymond, S.A.: The Clooge: A simple device for interspike interval analysis. J. Physiol. (Lond.) 239, 63–66 (1974).

    Google Scholar 

  • Chung, S.-H., Raymond, S.A., Lettvin, J.Y.: Multiple meaning in single visual units. Brain, Behav. Evol. 3, 72–101 (1970).

    CAS  Google Scholar 

  • Clairambault, P.: Étude architectonique du télencéphale de R. pipiens en début de métamorphose. J. Hirnforsch. 11, 203–225 (1969).

    PubMed  CAS  Google Scholar 

  • Crescitelli, F.: The e-wave inhibition in the developing retina of the frog. Vision Res. 10, 1077–1091 (1970).

    PubMed  CAS  Google Scholar 

  • Crescitelli, F., Sickel, E.: Delayed off-responses recorded from the isolated frog retina. Vision Res. 8, 801–816 (1968).

    PubMed  CAS  Google Scholar 

  • Cronly-Dillon, J.: Pattern of retinotectal connections after retinal regeneration. J. Neurophysiol. 31, 410–418 (1968).

    PubMed  CAS  Google Scholar 

  • Czerny, V.: Ueber Blendung der Netzhaut durch Sonnenlicht. Sitzungsber. K. Akad. Wiss., math.-nat. Kl. 56(II) (1867).

    Google Scholar 

  • Diebschlag, E.: Zur Kenntnis der Großhirnfunktion einiger Urodelen und Anuren. Z. vergl. Physiol. 21, 343–394 (1934).

    Google Scholar 

  • Dieringer, N.: Responses of Purkinje cells in the cerebellum of the grassfrog (Rana temporaria) to somatic and visual stimuli. J. comp. Physiol. 90, 409–436 (1974).

    Google Scholar 

  • Dittler, R.: Zapfenkontraktion an der isolierten Froschnetzhaut. Pflügers Arch. ges. Physiol. 117, 295–328 (1907).

    Google Scholar 

  • Dogiel, A.S.: Über die nervösen Elemente der Netzhaut der Amphibien und Vögel. Anat. Anz. 3, 342–347 (1888).

    Google Scholar 

  • Domberg, H.: Die Veränderung der Größe des rezeptiven Feldzentrums retinaler on-Zentrum-Neurone der Katze bei verschiedener Lichtadaptation. Med. Diss. Berlin 1972.

    Google Scholar 

  • Donner, K.O.: The effect of a colored adapting field on the spectral sensitivity of frog retinal elements. J. Physiol. (Lond.) 149, 318–326 (1959).

    CAS  Google Scholar 

  • Donner, K.O.: The scotopic spectral sensitivity of the clawed toad (Xenopus laevis). Commentat. Biol. 28, 1–6 (1965).

    Google Scholar 

  • Donner, K.O.: Näkösolut ja näköaineet. Eripainos, Luonnon tutkija 77(3), 45–79 (1973).

    Google Scholar 

  • Donner, K.O., Reuter, T.: The spectral sensitivity and photopigment of the green rods in the frog’s retina. Vision Res. 2, 357–372 (1962).

    Google Scholar 

  • Donner, K.O., Reuter, T.: The dark-adaptation of single units in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res. 5, 615–632 (1965).

    PubMed  CAS  Google Scholar 

  • Donner, K.O., Reuter, T.: Dark-adaptation processes in the rhodopsin rods of the frog’s retina. Vision Res. 7, 17–41 (1967).

    PubMed  CAS  Google Scholar 

  • Donner, K.O., Reuter, T.: Visual adaptation of the rhodopsin rods in the frog’s retina. J. Physiol. (Lond.) 199, 59–87 (1968).

    CAS  Google Scholar 

  • Donner, K.O., Rushton, W.A.H.: Retinal stimulation by light substitution. J. Physiol. (Lond.) 149, 288–302 (1959 a).

    CAS  Google Scholar 

  • Donner, K.O., Rushton, W.A.H.: Rod-cone interaction in the frog’s retina analysed by the Stiles-Crawford effect and by dark-adaptation. J. Physiol. (Lond.) 149, 303–317 (1959 b).

    CAS  Google Scholar 

  • Dowling, J.E.: Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frog and primates. Proc. roy. Soc. B 170, 205–228 (1968).

    CAS  Google Scholar 

  • Dowling, J.E.: Organization of vertebrate retinas. Invest. Ophthal. 9, 655–680 (1970).

    PubMed  CAS  Google Scholar 

  • Ducret, S., Kogo, S.: Untersuchungen über den Einfluß der Sympathicusreizung auf die Retina. Pflügers Arch. ges. Physiol. 227, 71–80 (1931).

    Google Scholar 

  • Ebbesson, S.O.E.: On the organization of central visual pathways in vertebrates. Brain, Behav. Evol. 3, 178–194 (1970).

    CAS  Google Scholar 

  • Ebbesson, S.O.E.: A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain, Behav. Evol. 6, 75–91 (1972).

    CAS  Google Scholar 

  • Ebbesson, S.O.E., Jane, J.A., Schroeder, D.M.: A general overview of major interspecific variations in thalamic organization. Brain, Behav. Evol. 6, 92–130 (1972).

    CAS  Google Scholar 

  • Eckmiller, R.: Ein elektronisches Analogmodell zum Studium der Bedeutung der Wirbeltiernetzhaut für die Zeichenerkennung. Dissertation T.U. Berlin, 1971.

    Google Scholar 

  • Eckmiller, R., Grüsser, O.-J.: Electronic simulation of the velocity function of movement-detecting neurons. Bibl. Ophthal. (Basel) 82, 274–279 (1972).

    CAS  Google Scholar 

  • Eibl-Eibesfeld, I.: Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L.). Behaviour 4, 1–35 (1951).

    Google Scholar 

  • Eichler, U.B.: Neurogenesis in the optic tectum of larval R. pipens following unilateral enucleation. J. comp. Neurol. 141, 375–395 (1971).

    PubMed  CAS  Google Scholar 

  • Eikmanns, K.-H.: Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Z. Tierpsychol. 12, 229–253 (1955).

    Google Scholar 

  • Ewert, J.-P.: Der Einfluß peripherer Sinnesorgane und des Zentralnervensystems auf die Antwortbereitschaft bei der Richtbewegung der Erdkröte (Bufo bufo L.). Math. Nat. Diss. Göttingen (1965).

    Google Scholar 

  • Ewert, J.-P.: Auslösung des Beute- und des Fluchtverhaltens durch elektrische Mittelhirn-Reizung bei der Erdkröte (Bufo bufo L.). Naturwissenschaften 53, 589 (1966).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P.: Der Einfluß von Störreizungen auf die Antwortbereitschaft bei der Richtbewegung der Erdkröte (Bufo bufo L.). Z. Tierpsychol. 24, 208–312 (1967 a).

    Google Scholar 

  • Ewert, J.-P.: Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo). Z. vergl. Physiol. 57, 263–298 (1967 b).

    Google Scholar 

  • Ewert, J.-P.: Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 295, 90–98 (1967 c).

    CAS  Google Scholar 

  • Ewert, J.-P.: Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Z. vergl. Physiol. 54, 455–481 (1967 d).

    Google Scholar 

  • Ewert, J.-P.: Verhaltensphysiologische Untersuchungen zum ”stroboskopischen Sehen“der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 299, 158–166 (1968 a).

    CAS  Google Scholar 

  • Ewert, J.-P.: Der Einfluß von Zwischenhirndefekten auf Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 61, 41–70 (1968 b).

    Google Scholar 

  • Ewert, J.-P.: Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 308, 225–243 (1969 a).

    CAS  Google Scholar 

  • Ewert, J.-P.: Das Beuteverhalten Zwischenhirn-defekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Arch. 306, 210–218 (1969 b).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P.: Aufnahme und Verarbeitung visueller Informationen im Beutefang- und Fluchtverhalten der Erdkröte Bufo bufo (L.). Verh. Dtsch. Zool. Ges. Köln, 218–226 (1970a).

    Google Scholar 

  • Ewert, J.-P.: Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). In: Subcortical Visual Systems (D. Ingle and G.E. Schneider, eds.). Basel: S. Karger 1970 b.

    Google Scholar 

  • Ewert, J.-P.: Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). Brain, Behav. Evol. 3, 36–56 (1970 c).

    CAS  Google Scholar 

  • Ewert, J.-P.: Single unit response of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z. vergl. Physiol. 74, 81–102 (1971).

    Google Scholar 

  • Ewert, J.-P.: Lokalisation und Identifikation im visuellen System der Wirbeltiere. Fortschr. Zool. 21, 307–333 (1973).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P.: The neural basis of visually guided behavior. Sci. Amer. 230, 34–42 (1974).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P., Birukow, G.: Über den Einfluß des Zentralnervensystems auf die Ermüdbarkeit der Richtbewegung im Beuteschema der Erdkröte (Bufo bufo L.). Naturwissenschaften 52, 1–4 (1965).

    Google Scholar 

  • Ewert, J.-P., Borchers, H.-W.: Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Z. vergl. Physiol. 71, 165–189 (1971).

    Google Scholar 

  • Ewert, J.-P., Borchers, H.-W.: Antworten retinaler Ganglienzellen bei freibeweglichen Kröten. J. comp. Physiol. 92, 117–130 (1974 a).

    Google Scholar 

  • Ewert, J.-P., Borchers, H.-W.: Inhibition of toad (Bufo bufo L.) retinal on-off and off-ganglion cells via active eye closing. Vision Res. 14, 1275–1276 (1974 b).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P., Gebauer, L.: Größenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). J. comp. Physiol. 85, 303–315 (1973).

    Google Scholar 

  • Ewert, J.-P., Härter, H.-A.: Der hemmende Einfluß gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 64, 135–153 (1969).

    Google Scholar 

  • Ewert, J.-P., Hock, F.: Movement-sensitive neurons in the toad’s retina. Exp. Brain Res. 16, 41–59 (1972).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P., Hock, F.J., Wietersheim, A. v.: Thalamus, Praetectum, Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte Bufo bufo (L.). J. comp. Physiol. 92, 343–356 (1974).

    Google Scholar 

  • Ewert, J.-P., Ingle, D.: Excitatory effects following habituation of prey-catching activity in frogs and toads. J. comp. physiol. Psychol. 77, 369–374 (1971).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P., Rehn, B.: Wirksamkeit optischer Reizmuster beim Auslösen des Fluchtverhaltens der Wechselkröte. Naturwissenschaften 55, 351 (1968).

    Google Scholar 

  • Ewert, J.-P., Rehn, B.: Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur.). Behaviour 35, 212–234 (1969).

    Google Scholar 

  • Ewert, J.-P., Seelen, W. v.: Neurobiologie und System-Theorie eines visuellen Mustererkennungsmechanismus bei Kröten. Kybernetik 14, 167–183 (1974).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P., Siefert, G.: Seasonal change of contrast detection in the toad’s Bufo bufo (L.) visual system. J. comp. Physiol. 94, 177–186 (1974).

    Google Scholar 

  • Ewert, J.-P., Siefert, G.: Neuronal correlates of seasonal changes in contrast-detection of prey-catching behavior in toads (Bufo bufo L.). Vision Res. 14, 431–432 (1974).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P., Speckhardt, I., Amelang, W.: Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte Bufo bufo (L.). Z. vergl. Physiol. 68, 84–110 (1970).

    Google Scholar 

  • Ewert, J.-P., Wietersheim, A. v.: Musterauswertung durch Tectum- und Thalamus/Praetectum-Neurone im visuellen System der Kröte Bufo bufo (L.). J. comp. Physiol. 92, 131–148 (1974 a).

    Google Scholar 

  • Ewert, J.-P., Wietersheim, A. v.: Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte Bufo bufo (L.). J. comp. Physiol. 92, 149–160 (1974 b).

    Google Scholar 

  • Ewert, J.-P., Wietersheim, A. v.: Ganglienzellen in der retinotectalen Projektion der Kröte Bufo bufo (L.). Acta anat. (Basel) 88, 56–66 (1974 c).

    Google Scholar 

  • Feldman, J.D., Gaze, R.M., Keating, M.J.: Delayed innervation of the optic tectum during development in Xenopus laevis. Brain Res. 14, 16–23 (1971).

    CAS  Google Scholar 

  • Ferguson, D.E.: Orientation in three species on anuran amphibians. Ergeb. Biol. 26, 128–134 (1963).

    Google Scholar 

  • Ferguson, D.E., Landreth, H.F.: Celestial orientation of Fowlers toad Bufo fowleri. Behaviour 26, 105–123 (1966).

    Google Scholar 

  • Ferguson, D.E., Landreth, H.F., McKeown, J.P.: Sun compass orientation of the northern cricket frog, Acris crepitans. Animal Behav. 15, 45–53 (1967).

    CAS  Google Scholar 

  • Ferguson, D.E., McKeowna, J.P., Bosarge, O.S.: Sun-compass orientation of bullfrogs. Copeia 1968, 230–235 (1968).

    Google Scholar 

  • Finkelstein, D., Grüsser, O.-J.: Frog retina: Detection of movement. Science 150, 1050–1051 (1965).

    PubMed  CAS  Google Scholar 

  • Finkelstein, D., Grüsser, O.-J., Reich-Motel, H.: Reaktionen einzelner Retinaneurone des Frosches (Rana esculenta) auf bewegte Reize verschiedener Winkelgeschwindigkeit. Pflügers Arch. ges. Physiol. 283, R 48 (1965).

    Google Scholar 

  • Fisher, L.J.: Changes during maturation and metamorphosis in the synaptic organization of the tadpole retina inner plexiform layer. Nature (Lond.) 235, 391–393 (1972).

    CAS  Google Scholar 

  • Fite, K.V.: Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol. 24, 475–486 (1969).

    PubMed  CAS  Google Scholar 

  • Fite, K.V.: The visual fields of the frog and toad: A comparative study. Behav. Biol. 9, 707–718 (1973).

    PubMed  CAS  Google Scholar 

  • Franz, V.: Zur tierpsychologischen Stellung von Rana temporaria und Bufo calamita. Biol. Zbl. 47, 1–12 (1927).

    Google Scholar 

  • Franz, V.: III. Höhere Sinnesorgane. I. Vergleichende Anatomie des Wirbeltierauges. Handb. vergl. Anat. 2, 989–1093 (1934).

    Google Scholar 

  • Freisling, J.: Studien zur Biologie und Physiologie der Wechselkröte (B. viridis Laur.). Öst. Zool. Z. 1, 383–440 (1948).

    CAS  Google Scholar 

  • Fritz, F.: Ueber die Struktur des Chiasma nervorum opticorum bei Amphibien. Jenaische Z. Naturwissenschaften 33 (1900).

    Google Scholar 

  • Frontera, J.G.: A study of the anuran diencephalon. J. comp. Neurol. 96, 1–69 (1952).

    PubMed  CAS  Google Scholar 

  • Gaillard, F., Liègea, B., Galand, G.: About the binocular visual field of the frog: Existence of a horopter. Doc. ophthal. (Basel) 1974, manuscript in preparation.

    Google Scholar 

  • Galand, G., Liège, B.: Unités à convergence visuelle et hétérosensorielle dans le système nerveux central de la Grenouille, (Units with visual and heterosensorial convergence in the frog’s CNS). J. Physiol. (Paris) 62, Suppl. 1, 154 (1970).

    Google Scholar 

  • Galand, G., Liège, B., Morin, G.: Convergence visuelle dans le tronc cérébral de la Grenouille au niveau des unités proprioceptives répondant à l’abaissement de la mâchoire (Visual convergence recorded in the frog’s brain stem at the level of proprioceptive units responding to the lowering of the jaw). J. Physiol. (Paris) 63, 52 (1971).

    Google Scholar 

  • Gaupp, E.: A. Ecker’s und R. Wiederheim’s Anatomie des Frosches auf Grund eigener Untersuchungen durchaus neu bearbeitet. 2. ed. 1.–3. Abt. Braunschweig: Vieweg 1896 (229 p.), 1899 (548 p.), 1904 (961 p.).

    Google Scholar 

  • Gaze, R.M.: Binocular vision in frogs. J. Physiol. (Lond.) 143, 20 (1958 a).

    Google Scholar 

  • Gaze, R.M.: The representation of the retina on the optic lobe of the frog. Quart. J. exp. Physiol. 43, 209 (1958 b).

    PubMed  CAS  Google Scholar 

  • Gaze, R.M.: Regeneration of the optic nerve in X. laevis. J. Physiol. (Lond.) 146, 40 (1959).

    Google Scholar 

  • Gaze, R.M.: The formation of nerve connections: A consideration of neural specificity, modulation and comparable phenomena. London: Academic Press 1970.

    Google Scholar 

  • Gaze, R.M.: Neuronal specificity. Brit. med. Bull. 30, 116–121 (1974).

    PubMed  CAS  Google Scholar 

  • Gaze, R.M., Jacobson, M.: The projection of the binocular visual field on the optic tecta of the frog. Quart. J. exp. Physiol. 47, 273–280 (1962).

    Google Scholar 

  • Gaze, R.M., Jacobson, M.: A study of the retinotectal projection during regeneration of the optic nerve in the frog. Proc. roy. Soc. 157, 420–448 (1963 a).

    Google Scholar 

  • Gaze, R.M., Jacobson, M.: The path from the retina to the ipsilateral optic tectum of the frog. J. Physiol. (Lond.) 165, 73 (1963 b).

    Google Scholar 

  • Gaze, R.M., Jacobson, M.: Convexity detectors in the frog’s visual system. Proc. physiol. Soc. 169, 1–3 (1963 c).

    Google Scholar 

  • Gaze, R.M., Jacobson, M., Székely, G.: The retino-tectal projection in Xenopus with compound eyes. J. Physiol. (Lond.) 165, 484–499 (1963).

    CAS  Google Scholar 

  • Gaze, R.M., Jacobson, M., Székely, G.: On the formation of connexions by compound eyes in Xenopus. J. Physiol. (Lond.) 176, 409–417 (1965).

    CAS  Google Scholar 

  • Gaze, R.M., Keating, M.J.: Visual responses from ipsilateral tectal units in the frog. J. Physiol. (Lond.) 192, 52–53 (1967).

    Google Scholar 

  • Gaze, R.M., Keating, M.J.: The depth distribution of visual units in the tectum of the frog following regeneration of the optic nerve. J. Physiol. (Lond.) 200, 128–129 (1968).

    Google Scholar 

  • Gaze, R.M., Keating, M.J.: Receptive field properties of single units from the visual projection to the ipsilateral tectum in the frog. Quart. J. exp. Physiol. 55, 143–152 (1970).

    PubMed  CAS  Google Scholar 

  • Gaze, R.M., Keating, M.J., Chung, S.H.: The evolution of the retinotectal map during development in Xenopus. Proc. roy. Soc. 185, 301–330 (1974).

    CAS  Google Scholar 

  • Gaze, R.M., Keating, M.J., Székely, G., Beazley, L.: Binocular interaction in the formation of specific intertectal neuronal connexions. Proc. roy. Soc. B 175, 107–147 (1970).

    CAS  Google Scholar 

  • Genderen Stort, A.G.H. v.: Über Form- und Ortsveränderungen der Netzhautelemente unter Einfluß von Licht und Dunkel. Albrecht v. Graefes Arch. Ophthal. 33, Abt. III, 107–115 (1887).

    Google Scholar 

  • George, A.: Mikroelektrodenableitung einzelner Neurone im Tectum opticum von R.esculenta. Med. Diss. Berlin, 1975.

    Google Scholar 

  • George, A., Grüsser, O.-J., Grüsser-Cornehls, U.: Responses of tectal cells of the frog (Rana esculenta) to moving stimuli of different size, shape, contrast and angular velocity. Brain, Behav. Evol. (in preparation, 1975).

    Google Scholar 

  • George, A., Grüsser-Cornehls, U.: Responses of frog tectal cells to moving and stationary visual stimuli. Pflügers Arch. ges. Physiol. 359, 203 (1975).

    Google Scholar 

  • George, S.A., Marks, W.B.: Optic nerve terminal arborizations in the frog: Shape and orientation inferred from electrophysiological measurements. Exp. Neurol. 42, 467–482 (1974).

    PubMed  CAS  Google Scholar 

  • Gernandt, B.: Color sensitivity, contrast and polarity of the retinal elements. J. Neurophysiol. 10, 303–308 (1947).

    PubMed  CAS  Google Scholar 

  • Gernandt, B., Granit, R.: Single fibre analysis of inhibition and the polarity of retinal elements. J. Neurophysiol. 10, 295–301 (1947).

    PubMed  CAS  Google Scholar 

  • Glezer, V.D., Bertulis, A.V., Ivanov, V.A., Kostelyanets, N.B., Podvigin, N.F.: Functional Organization of the Receptive Fields of the Retina. Sensory Processes at the Neuronal and Behavioral Level, p. 19–46. New York and London: Academic Press 1971.

    Google Scholar 

  • Glickstein, M., Millodot, M.: Retinoscopy and eye size. Science 168, 605–606 (1970).

    PubMed  CAS  Google Scholar 

  • Goldberg, S., Kotani, M.: The projection of optic nerve fibers in the frog R. catesbiana as studied by radiography. Anat. Rec. 158, 325–332 (1967).

    PubMed  CAS  Google Scholar 

  • Goltz, F.: Beiträge zur Lehre von den Funktionen der Nervenzentren des Frosches. Berlin: A. Hirschwald 1869.

    Google Scholar 

  • Gordon, J., Graham, N.: Early light and dark adaptation in frog on-off ganglion cells. Vision Res. 13, 647–660 (1973).

    PubMed  CAS  Google Scholar 

  • Govardovskiǐ, V.I., Zueva, L.V.: Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vision Res. 14, 1317–1321 (1974).

    PubMed  Google Scholar 

  • Graham, L.T., Baxter, C.F., Lolley, R.N.: In vivo influence of light or darkness on the Gaba system in the retina of the frog (R. pipiens). Brain Res. 20, 379–388 (1970).

    PubMed  CAS  Google Scholar 

  • Granit, R.: Rotation activity and spontaneous rhythms in the retina. Acta physiol. scand. 1, 370–379 (1941).

    Google Scholar 

  • Granit, R.: Colour receptors of the frog’s retina. Acta physiol. scand. 3, 137–151 (1942).

    Google Scholar 

  • Granit, R.: Sensory mechanisms of the retina. London: Oxford Univ. Press 1947.

    Google Scholar 

  • Granit, R.: Neural organization of the retinal elements, as revealed by polarization. J. Neurophysiol. 11, 239–251 (1948).

    PubMed  CAS  Google Scholar 

  • Granit, R.: The organization of the vertebrate retinal elements. Ergebn. Physiol. 46, 31–70 (1950).

    Google Scholar 

  • Granit, R., Munsterhjelm: The electrical responses of dark-adapted frogs’ eyes to monochromatic stimuli. J. Physiol. (Lond.) 88, 436–458 (1937).

    CAS  Google Scholar 

  • Granit, R., Ridell, H.A.: The electrical responses of light- and dark-adapted frogs’ eyes to rhythmic and continuous stimuli. J. Physiol. (Lond.) 81, 1–28 (1934).

    CAS  Google Scholar 

  • Granit, R., Svaetichin, G.: Principles and technique of the electrophysiological analysis of color reception with the aid of microelectrodes. Upsala Läk.-Foren. Förh. 65, 161–177 (1939).

    Google Scholar 

  • Granit, R., Wrede, C.M.: The electrical responses of light-adapted frogs’ eyes to monochromatic stimuli. J. Physiol. (Lond.) 89, 239–256 (1937).

    CAS  Google Scholar 

  • Grauer, C., Grüsser-Cornehls, U., Reich-Motel, H.: Neuronal adaptation in the anuran retina. (in preparation, 1975).

    Google Scholar 

  • Grind, W.A. van de, Grüsser, O.-J., Lunkenheimer, H.U.: Temporal transfer properties of the afferent visual system. Psychophysical, neurophysiological and theoretical investigations. In: Handbook of Sensory Physiology, vol. VII/3A (R. Jung, ed.), p. 431–573. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Gruberg, E.R., Ambros, V.R.: A forebrain visual projection in the frog (R. pipiens). Exp. Neurol. 44, 187–197 (1974).

    PubMed  CAS  Google Scholar 

  • Groethuysen, G.: Dioptrik des Auges. Refraktionsanomalien. Augenleuchten und Augenspiegel. In: Handbuch der normalen und pathologischen Physiologie (A. Bethe et al., ed.), vol. XII/1. Berlin: Springer 1929.

    Google Scholar 

  • Grüsser, O.-J.: Ein Analogmodell der Funktion bewegungsempfindlicher Neurone der Froschnetzhaut. Pflügers Arch. ges. Physiol. 294, 65 (1967).

    Google Scholar 

  • Grüsser, O.-J.: Organization and performance of the anuran visual system. Europ. Prog. Brain Behav. Res.: Mechanisms of Visual Perception. Zuoz 1974.

    Google Scholar 

  • Grüsser, O.-J., Dannenberg, H.: Eine Perimeter-Apparatur zur Reizung mit bewegten visuellen Mustern. Pflügers Arch. ges. Physiol. 285, 373–378 (1965).

    Google Scholar 

  • Grüsser, O.-J., Finkelstein, D.: Analyse eines auf ”Bewegungswahrnehmung“spezialisierten Neuronensystems in der Froschnetzhaut. In: Fortschritte der Kybernetik (W. Kroebel, ed.), p. 83–96. München: R. Oldenbourg-Verl. 1967.

    Google Scholar 

  • Grüsser, O.-J., Finkelstein, D., Grüsser-Cornehls, U.: The effect of stimulus velocity on the response of movement sensitive neurons of the frog’s retina. Pflügers Arch. ges. Physiol. 300, 49–66 (1968).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z. vergl. Physiol. 59, 1–24 (1968 a).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Die Informationsverarbeitung im visuellen System des Frosches. Kybernetik 331–360 (1968 b).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungsspezifische Neurone im visuellen System. Ergebn. Physiol. 61, 178–265 (1969).

    PubMed  Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Die Steuerung des Beutefang- und Fluchtverhaltens von Anuren durch verschiedene Nervenzellklassen im Tectum opticum. Pflügers Arch. 319, R 149 (1970 a).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verhandlungsbericht Dtsch. zool. Ges. 64, 201–218 (1970 b).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Comparative physiology of movement-detecting neuronal systems in lower vertebrates (Anura and Urodela). Bibl. Ophthal. (Basel) 82, 260–273 (1972).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Handbook of Sensory Physiology (R. Jung, ed.), vol. VII/3A, p. 333–429. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U., Bullock, T.H.: Functional organization of receptive fields of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 279, 88–93 (1964).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U., Finkelstein, D., Henn, V., Patutschnik, M., Butenandt, E.: A quantitative analysis of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 293, 100–106 (1967).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U., Licker, M.D.: Die Geschwindigkeitsfunktion von bewegungsspezifischen Neuronen der Froschnetzhaut. I. Intern. Symp. Biokybernetik Leipzig (1967). Wiss. Z. Karl-Marx-Univ. Leipzig 2, 161–164 (1968 a).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U., Licker, M.D.: Further studies on the velocity function of movement-detecting class-2-neurons in the frog retina. Vision Res. 8, 1173–1185 (1968 b).

    PubMed  Google Scholar 

  • Grüsser, O.-J., Henn, V.: Mikroelektrodenuntersuchungen an bewegungsspezifischen Neuronen der Froschnetzhaut. Ergeb. exp. Med. 3, 194–207 (1970).

    Google Scholar 

  • Grüsser-Cornehls, U.: Reaktionen bewegungsempfindlicher Neurone der Froschnetzhaut bei stroboskopischer Belichtung des Reizmusters. Pflügers Arch. ges. Physiol. 294, 65 (1967).

    Google Scholar 

  • Grüsser-Cornehls, U.: Response of movement-detecting neurons of the frog’s retina to moving patterns under stroboscopic illumination. Pflügers Arch. 303, 1–13 (1968 a).

    PubMed  Google Scholar 

  • Grüsser-Cornehls, U.: A twofold projection of the visual field to the ipsilateral optic tectum of R. pipiens and R. esculenta. (Unpubl. 1968 b, cf. Grüsser and Grüsser-Cornehls, 1969.)

    Google Scholar 

  • Grüsser-Cornehls, U.: Bewegungsempfindliche Neuronensysteme im visuellen System von Amphibien. Eine vergleichende neurophysiologische Untersuchung. Nova Acta Leopoldina (Halle), N.F. 37(2), 117–136 (1973).

    Google Scholar 

  • Grüsser-Cornehls, U.: The effect of light-dark adaptation on the response of movement sensitive neurons of the anuran retina. Vision Res. (in preparation, 1976).

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th.H.: Reaktionen einzelner Retinaneurone des Frosches (R. pipiens) bei Reizung mit bewegten optischen Mustern. Pflügers Arch. ges. Physiol. 278, 60 (1963 a).

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th.H.: Unit responses in the frog’s tectum to moving and non-moving visual stimuli. Science 141, 820–822 (1963b).

    Google Scholar 

  • Grüsser-Cornehls, U., Himstedt, W.: Responses of retinal and tectal neurons of the salamander (Salamandra salamandra L.) to moving visual stimuli. Brain, Behav. Evol. 7, 145 (1973).

    Google Scholar 

  • Grüsser-Cornehls, U., Lüdcke, M.: Vergleichende neurophysiologische Untersuchungen zur Signalverarbeitung in der Netzhaut von Anuren. Pflügers Arch. 319, R 148 (1970).

    Google Scholar 

  • Grüsser-Cornehls, U., Saunders, R.McD.: The spectral properties of class 1, 2, 3, and 4 neurons of the frog’s optic tectum. Europ. J. Physiol. 359, Suppl. R 101 (1975).

    Google Scholar 

  • Grüsser-Cornehls, U., Wolynski, H.: The dependence of the response of movement sensitive neurons of the anuran retina on the level of light dark adaptation. Europ. J. Physiol. 343, R 90 (1973).

    Google Scholar 

  • Guth, E.: Untersuchungen über die directe motorische Wirkung des Lichtes auf den Sphincter pupillae des Aal- und Froschauges. Pflügers Arch. ges. Physiol. 85, 119–142 (1901).

    Google Scholar 

  • Hafter, E.: Untersuchungen über den Mechanismus der retinalen Umstimmung hinsichtlich einer Abhängigkeit vom vegetativen Nervensystem. Pflügers Arch. ges. Physiol. 229, 446–465 (1932).

    Google Scholar 

  • Halpern, M.: Some connections of the telencephalon of the frog, R. pipiens. Brain, Behav. Evol. 6, 42–68 (1972).

    CAS  Google Scholar 

  • Hartline, H.K.: Impulses in single optic nerve fibres of the vertebrate retina. Amer. J. Physiol. 113, 59–60 (1935).

    Google Scholar 

  • Hartline, H.K.: The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).

    Google Scholar 

  • Hartline, H.K.: The receptive fields of the optic nerve fibers. Amer. J. Physiol. 130, 690–699 (1940 a).

    Google Scholar 

  • Hartline, H.K.: The effects of spatial summation in the retina on the excitation of the fibers of the optic nerve. Amer. J. Physiol. 130, 700–711 (1940 b).

    Google Scholar 

  • Heine, H.: Sämtliche Werke, vol. I. Leipzig: P. Reclam 1887.

    Google Scholar 

  • Henn, V.: Die Summation unabhängiger Eingänge an bewegungsspezifischen Ganglienzellen der Froschretina. Dissertation Freie Universität Berlin, 31p. (1968).

    Google Scholar 

  • Henn, V., Grüsser, O.-J.: The summation of excitation in the receptive field of movement sensitive neurons of the frog’s retina. Vision Res. 9, 57–69 (1968).

    Google Scholar 

  • Henn, V., Reiter, H.: Die Erregungsintegration im excitatorischen rezeptiven Feld bewegungsspezifischer Retinaneurone des Frosches (R. esculenta). Pflügers Arch. ges. Physiol. 289, 86 (1966).

    Google Scholar 

  • Herk, A.W.H. v.: Le rétrécissement par éclairage de la pupille de l’iris isolé. Arch. néerl. Physiol. 13, 534–569 (1928).

    Google Scholar 

  • Herrick, D.J.: The amphibian forebrain III. The optic tract and centers of Amblystoma and the frog. J. comp. Neurol. 36, 433–489 (1925).

    Google Scholar 

  • Herter, K.: Die Physiologie der Amphibien. Hb. Zool. 6, 30–44, 173–176, 212–233, 208 (1941).

    Google Scholar 

  • Hertzler, D.R., Hayes, W.N.: Cortical and tectal function in visually guided behaviour of turtles. J. comp. Physiol. Psychol. 63, 444–447 (1967).

    PubMed  CAS  Google Scholar 

  • Hess, W.R., Bürgi, S., Bucher, V.: Motorische Funktion des Tektal- und Tegmentalgebietes. Mschr. Psychiat. Neurol. 112, 1–52 (1946).

    CAS  Google Scholar 

  • Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo (L.). S.-B. Ges. naturforsch. Freunde Berlin (N.F.) 8, 148–156 (1968 a).

    Google Scholar 

  • Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo; Laichzeit: Umstimmung, Ovulation, Verhalten. Vjschr. naturforsch. Ges. Zürich 113, 257–289 (1968 b).

    Google Scholar 

  • Heusser, H.: Die Lebensweise der Erdkröte. Rev. suisse Zool. 75, 928–946 (1968 c).

    Google Scholar 

  • Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo (L.). Das Orientierungsproblem. Rev. suisse Zool. 76, 444–518 (1969).

    Google Scholar 

  • Himstedt, F., Nagel, W.A.: Versuche über die Reizwirkung verschiedener Strahlenarten auf Menschen- und Tieraugen. In: Festschrift der Albrecht-Ludwigs-Universität in Freiburg, p. 259–274. Freiburg i.Br.: C.A. Wagner 1902.

    Google Scholar 

  • Hinsche, G.: Kampfreaktionen bei einheimischen Anuren. Biol. Zbl. 48, 577–617 (1928).

    Google Scholar 

  • Hinsche, G.: Ein Schnappreflex nach ”Nichts“bei Anuren. Zool. Anz. 111, 113–122 (1935).

    Google Scholar 

  • Hirsch, H.V., Jacobson, M.: Development and maintenance of connectivity in the visual system of the frog. II. The effects of eye removal. Brain Res. 49, 67–74 (1973).

    PubMed  CAS  Google Scholar 

  • Hirschberg, J.: Zur vergleichenden Ophthalmoskopie. Arch. Anat. Physiol. (Physiol. Abth.) 1882.

    Google Scholar 

  • Hirschberg, J.: Zur Dioptrik und Ophthalmoskopie der Fisch- und Amphibienaugen. Arch. Anat. Physiol. (Physiol. Abth.), 493–526 (1882).

    Google Scholar 

  • Ingle, D. J.: Visual releasers of prey-catching behavior in frogs and toads. Brain, Behav. Evol. 1, 500–518 (1968).

    Google Scholar 

  • Ingle, D.J.: Brain mechanisms and vision: subcortical systems. Science 168, 1493–1494 (1970).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J.: Prey-catching behavior of anurans toward moving and stationary objects. Vision Res. 3, 447–456 (1971).

    PubMed  Google Scholar 

  • Ingle, D.J.: Depth vision in monocular frogs. Psychol. Sci. 29, 37–38 (1972).

    Google Scholar 

  • Ingle, D.J.: Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180, 422–424 (1973 a).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J.: Spontaneous shape discrimination by frogs during unconditioned escape behavior. Physiol. Psychol. 1, 71–73 (1973 b).

    Google Scholar 

  • Ingle, D.J.: Two visual systems in the frog. Science 181, 1053–1055 (1973 c).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J.: Selective choice between double prey objects by frogs. Brain, Behav. Evol. 7, 127–144 (1973 d).

    CAS  Google Scholar 

  • Ingle, D.J.: Reduction of habituation of prey-catching activity by alcohol intoxication in the frog. Behav. Biol. 8, 123–129 (1973 e).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J.: Evolutionary perspectives on the function of the optic tectum. Brain, Behav. Evol. 8, 211–237 (1973 f).

    CAS  Google Scholar 

  • Ingle, D.J.: Enhancement of postrotary nystagmus by alcohol intoxication in the goldfish and in the frog. Behav. Biol. 9, 479–484 (1973 g).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J.: Size preferences for prey-catching in frogs: Relationship to motivational state. Behav. Biol. 9, 485–491 (1973 h).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J., Sprague, J.M.: Sensorimotor function of the midbrain tectum. Neurosci. Res. Progr. 13, 169–288 (1975).

    Google Scholar 

  • Ishihara, M.: Versuch einer Deutung der photoelektrischen Schwankungen am Froschauge. Pflügers Arch. ges. Physiol. 114, 569–618 (1904).

    Google Scholar 

  • Jacobson, M.: The representation of the retina on the optic tectum of the frog. Correlation between retino-tectal magnification factor and retinal ganglion cell count. J. exp. Physiol. 47, 170–178 (1962).

    CAS  Google Scholar 

  • Jacobson, M.: Development of specific neuronal connections. Science 163, 543–547 (1969).

    PubMed  CAS  Google Scholar 

  • Jacobson, M., Hirsch, H.V.B.: Development and maintenance of connectivity in the visual system of the frog. I. The effects of eye rotation and visual deprivation. Brain Res. 49, 47–65 (1973).

    PubMed  CAS  Google Scholar 

  • Jaeger, R.G., Hailman, J.P.: Two types of phototactic behaviour in anuran amphibians. Nature (Lond.) 230, 189–190 (1971).

    CAS  Google Scholar 

  • Johannes, Th.: Zur Funktion des sensiblen Thalamus. Pflügers Arch. ges. Physiol. 224, 373–385 (1930).

    Google Scholar 

  • Kalinina, A. V.: Classification of neurones of the retina by their quantitative characteristics. IX Internat. Congr. of Anatomists, Leningrad, Aug. 17–22, p. 233, 1970.

    Google Scholar 

  • Kalinina, A. V.:Classification of frog retina neurons by their quantitative characteristics. Vision Res. 14, 1305–1316 (1974).

    PubMed  CAS  Google Scholar 

  • Kaneko, A., Hashimoto, H.: Localization of spike-producing cells in the frog retina. Vision Res. 8, 259–262 (1968).

    PubMed  CAS  Google Scholar 

  • Kappers, C.U.A., Huber, G.C., Crosby, E.C.: In: The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Macmillan 1936.

    Google Scholar 

  • Kappers, C.U.A., Huber, G.C., Crosby, E.C.: The mesencephalic and diencephalic centers in amphibians. In: The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, vol. 2, p. 939–967. New York: Hafner Publ. Co. 1960.

    Google Scholar 

  • Karamanian, A.I., Vesselkin, N.P., Belekhova, M.G., Zagorulko, T.M.: Electrophysiological characteristics of tectal and thalamo-cortical divisions of the visual system in lower vertebrates. J. comp. Neurol. 127, 559–576 (1966).

    Google Scholar 

  • Keating, M.J.: The role of visual function in the patterning of binocular visual connexions. Brit. med. Bull. 30, 145–151 (1974).

    PubMed  CAS  Google Scholar 

  • Keating, M.J., Gaze, R.M.: Rigidity and plasticity in the amphibian visual system. Brain, Behav. Evol. 3, 102–120 (1970 a).

    CAS  Google Scholar 

  • Keating, M.J., Gaze, R.M.: Observations on the “surround” properties of the receptive fields of frog retinal ganglion cells. Quart. J. exp. Physiol. 55, 129–142 (1970 b).

    PubMed  CAS  Google Scholar 

  • Kemali, M., Agrelli, I.: Osservazioni sulle cellule ad ampia ramificazione dendritica nel tetto ottico della Rana esculenta. Soc. Ital. Biol. Sper. 47, 847–850 (1971).

    Google Scholar 

  • Kemali, M., Braitenberg, V.: Atlas of the Frog’s Brain. 74 p. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Kennedy, D., Milkman, R.D.: Selective light absorption by the lenses of lower vertebrates and its influence on spectral sensitivity. Biol. Bull. 111, 375–386 (1956).

    CAS  Google Scholar 

  • Keurs, H.E.D.J. ter: An electrophysiological study of the synapses between optic nerve fibres and tectal neurons of R. temporaria. Proefschrift, 45 p. Rijksuniversiteit, Leiden (1970).

    Google Scholar 

  • Keurs, H.E.D.J. ter: An electrophysiological study of the synapses between optic nerve fibres and tectal neurons of R. temporaria. In: Biokybernetik III (H. Drischel, N. Tiedt, eds.), p. 224–228. Jena: Gustav Fischer 1971.

    Google Scholar 

  • Kicliter, E.: Flux, wavelength and movement discrimination in frogs: Forebrain and midbrain contributions. Brain, Behav. Evol. 8, 340–365 (1973).

    CAS  Google Scholar 

  • Knapp, H., Scalia, F., Riss, W.: The optic tracts of Rana pipiens. Acta neurol. scand. 41, 325 (1965).

    Google Scholar 

  • Kogan, A.B., Aleynikowa, T.V., Aleynikov, D., Gogoleva, L.M.: The spatial organization of detector neurons in the caudo-medial portion of the frog optic tectum. [Russ.] Neirofiziologia 5, 468–475 (1973).

    CAS  Google Scholar 

  • Korn, A.: Bewegungsspezifische Filter für optische Signale. Kybernetik 14, 101–116 (1973).

    PubMed  CAS  Google Scholar 

  • Kostjeljanjets, H.B.: The effect of the stimulus velocity on the responses of off-ganglion cells in the frog retina. Dokl. Akad. Nauk 157, 1225–1227 (1964 a).

    Google Scholar 

  • Kostjeljanjets, H.B.: The influence of the speed of increment of the test-object upon the characteristics of the response of the ganglion off-cell of the frog’s retina. Biofisika, USSR 157, 1225–1228 (1964 b).

    Google Scholar 

  • Kostjeljanjets, N.B.: Investigation of receptive off-fields of frog retina by means of dark moving stimuli. Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I.P. Pavlova 15, 521–524 (1965).

    Google Scholar 

  • Kostjeljanjets, N.B.: Investigation of receptive off-fields of frog retina by means of dark moving stimuli. Fed. Proc. 25 (part 2), 377–380 (1966).

    Google Scholar 

  • Kostjeljanjets, N.: Investigation of inhibitory processes in the receptive field of off-center neurons of the frog retina (Russ.). In: Investigations of Principles of the Information Processing in the Visual System, p. 40–50. Leningrad: Nauka 1970.

    Google Scholar 

  • Kostjeljanjets, N.B.: Investigations of the off-responses in the frog retina. The dependence on the angular velocity of the stimulus. In: Investigations of Principles of Information Processing in the Visual System. Acad. Sci. USSR, p. 40–49. Leningrad: Nauka 1970 a.

    Google Scholar 

  • Krause, W.: Die Retina. III. Die Retina der Amphibien. Int. Mschr. Anat. Physiol. 9, 157–195 (1892)

    Google Scholar 

  • Krause, W.: Die Retina. III. Die Retina der Amphibien. Int. Mschr. Anat. Physiol. 9 u. 196–236 (1892).

    Google Scholar 

  • Kreth, H.: Die markhaltigen Fasersysteme im Gehirn der Anuren und Urodelen und ihre Myelogenie. Z. mikr.-anat. Forsch. 48, 192–285 (1940).

    Google Scholar 

  • Krueger, H., Moser, E.A.: Refraktion und Abbildungsgüte des Froschauges. Pflügers Arch. 326, 334–340 (1971).

    PubMed  CAS  Google Scholar 

  • Krueger, H., Moser, E.A.: The influence of the modulation transfer function of the dioptric apparatus on the acuity and contrast of the retinal image in R. esculenta. Vision Res. 12, 1281–1289 (1972).

    PubMed  CAS  Google Scholar 

  • Krueger, H., Moser, E.A.: On the approximation of the optical modulation transfer function (MTF) by analytical functions. Vision Res. 13, 493–494 (1973).

    PubMed  CAS  Google Scholar 

  • Krueger, H., Moser, E.A., Zrenner, E.: Influence of defocussing on retinal images of test patterns calculated with the modulation transfer function. Ophthal. Res. 5, 331–341 (1973).

    Google Scholar 

  • Landolt, E.: Beitrag zur Anatomie der Retina vom Frosch, Salamander and Triton. Arch. mikr. Anat. 7, 81–100 (1871)

    Google Scholar 

  • Lázár, G.: Distribution of optic terminals in the different optic centers of the frog. Brain Res. 16, 1–14 (1969 a).

    PubMed  Google Scholar 

  • Lázár, G.: Efferent pathways of the optic tectum in the frog. Acta biol. Acad. Sci. hung. 20, 171–183 (1969b).

    Google Scholar 

  • Lázár, G.: The projection of the retinal quadrants on the optic centres in the frog. A terminal degeneration study. Acta morph. Acad. Sci. hung. 19, 325–334 (1971).

    Google Scholar 

  • Lázár, G.: Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain, Behav. Evol. 5, 443–460 (1972).

    Google Scholar 

  • Lázár, G., Székely, G.: Golgi studies on the optic center of the frog. J. Hirnforsch. 9, 329–344 (1967).

    PubMed  Google Scholar 

  • Lázár, G., Székely, G.: Distribution of optic terminals in the different optic centres of the frog. Brain Res. 16, 1–14 (1969).

    PubMed  Google Scholar 

  • Lee, Y.W., Schetzen, M.: Measurement of the Winer kernels of a non-linear system by crosscorrelation. Intern. J. Control. 2, 237–254 (1965).

    Google Scholar 

  • Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: What the frog’s eye tells the frog’s brain. Proc. I.R.E. 47, 1940–1951 (1959).

    Google Scholar 

  • Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: Two remarks on the visual systems of the frog. In: Sensory Communication (W.A. Rosenblith, ed.), p. 757–776. Cambridge, Mass.: M.I.T. Press 1961.

    Google Scholar 

  • Liberman, E.A.: On the character of information entering the brain of a frog over one nerve fiber from two receptors of the retina. Biophysics 2, 427–430 (1957).

    Google Scholar 

  • Licker, M.: Changes in receptive field organization of movement detecting neurons of frog retina dependent on adaptation level. Pflügers Arch. ges. Physiol. 294, 64 (1967).

    Google Scholar 

  • Liebman, P.A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).

    PubMed  CAS  Google Scholar 

  • Liebman, P.A.: Spectral sensitivity of retinal screening pigment migration in the frog. Vision Res. 9, 377–384 (1969).

    PubMed  CAS  Google Scholar 

  • Liebman, P., Entine, G.: Visual pigments of frog and tadpole (R. pipiens). Vision Res. 8, 761–775 (1968).

    PubMed  CAS  Google Scholar 

  • Liège, B., Gaillard, F., Galand, G.: À propos de la vision binoculaire chez la Grenouille (About the frog binocular vision). J. Physiol. (Paris) 65, 139A (1972).

    Google Scholar 

  • Liège, B., Gaillard, F., Galand, G.: Peut-on parler d’horop-tère chez la Grenouille? (Has the frog a horopter?). J. Physiol. (Paris) 67, 290A (1973).

    Google Scholar 

  • Liège, B., Galand, G.: Single unit visual responses in the frog’s brain. Vision Res. 12, 609–622 (1972).

    PubMed  Google Scholar 

  • Lipetz, L.E.: Information processing in the frog’s retina. Manuscript Am. Med. Res. Lab. TR-65–24, pp. 1–75 (1965).

    Google Scholar 

  • Llinàs, R., Precht, W.: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain. Res. 9, 19–29 (1969).

    Google Scholar 

  • Llinàs, R., Precht, W.: Vestibulocerebellar input: Physiology. Progr. Brain Res. 37, 341–359 (1972).

    Google Scholar 

  • Llinàs, R., Precht, W., Clarke, M.: Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13, 408–431 (1971).

    PubMed  Google Scholar 

  • Luk’yanov, A.S.: Generation of action potentials by dendrites in the frog optic tectum. Neurosci. translations 16, 74–78 (1970/71).

    Google Scholar 

  • Mackeben, M.: Die Messung der horizontalen Bewegungen von kleinen Wirbeltieraugen. Dipl. Biol. Thesis; Freie Universität Berlin 1974.

    Google Scholar 

  • Magnus, R.: Beitrag zur Pupillenreaktion des Aal- und Froschauges. Z. Biol. 38, 567–603 (1899).

    Google Scholar 

  • Manteifel, U.F.: The direct and transcommissural reactive potentials of the roof of the frog midbrain. [Russ.] Dokl. Akad. Nauk SSSR 148, 179–182 (1963).

    Google Scholar 

  • Manteifel, Y.B., Dyachkova, L.N.: Axo-axonic synapses in the optic tectum of Rana temporaria. [Russ.] Neurofisiologia 6, 37–43 (1974).

    Google Scholar 

  • Manz, W.: Über den Mechanismus der Nickhautbewegung beim Frosche. Ber. Verh. Naturf. Ges. Freiburg i. Br. 2 (1862).

    Google Scholar 

  • Marmarelis, P.Z., Naka, K.-I.: Nonlinear analysis and synthesis of receptive field responses in the catfish retina: I. Horizontal cell to ganglion cell chain. J. Neurophysiol. 36, 605–618 (1973 a).

    PubMed  CAS  Google Scholar 

  • Marmarelis, P.Z., Naka, K.-I.: Nonlinear analysis and synthesis of receptive field responses in the catfish retina: II. One-input whitenoise analysis. J. Neurophysiol. 36, 619–633 (1973 b).

    PubMed  CAS  Google Scholar 

  • Martin, H.N.: The normal respiratory movements of the frog and the influence upon its respiratory centre of stimulation of the optic lobes. J. Physiol. (Lond.) 1, 131–170 (1878).

    CAS  Google Scholar 

  • Matsumoto, N., Naka, K.-I.: Identification of intracellular responses in the frog retina. Brain Res. 42, 59–71 (1972).

    PubMed  CAS  Google Scholar 

  • Maturana, H.R.: Efferent fibres in the optic nerve of the toad (B. bufo L.). J. Anat. (Lond.) 92, 21–27 (1958).

    CAS  Google Scholar 

  • Maturana, H.R.: Number of fibres in the optic nerve and the number of ganglion cells in the retina of anurans. Nature (Lond.) 183, 1406–1407 (1959).

    CAS  Google Scholar 

  • Maturana, H.R.: The fine anatomy of the optic nerve of anurans. An electron microscopy study. J. biophys. biochem. Cytol. 7, 107–120 (1960).

    PubMed  CAS  Google Scholar 

  • Maturana, H.R.: Especificidad versus ambigüedad en la retina de los vertebrados. Biologica 36, 69–96 (1964).

    PubMed  CAS  Google Scholar 

  • Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Evidence that cut optic fibers in a frog regenerate to their proper places in the tectum. Science 130, 1709–1710 (1959).

    PubMed  CAS  Google Scholar 

  • Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (R. pipiens). J. gen. Physiol. 43, 129–175 (1960).

    PubMed  Google Scholar 

  • Maximov, V., Liège, B., Galand, G.: Influence de la polarisation rétinienne sur la réponse retardée des cellules ganglionnaires de la Grenouille (Influence of a retinal polarization on the delayed response of the frog ganglion cells). J. Physiol. (Paris) 67, 207A (1973).

    Google Scholar 

  • Maximov, V., Liège, B., Galand, G.: Behaviour of the ganglion cells of the frog’s retina submitted to a polarizing current: An in vivo study. XII ISCERG Symposium, abstract No. 16, Clermont-Ferrand, May 20–22, 1974. In: Docum. Ophthal., in press (1974 a).

    Google Scholar 

  • Maximov, V., Liège, B., Galand, G.: Modification du comportement des cellules ganglionnaires par une polarisation électrique de la rétine: Étude in vivo chez la grenouille. J. Physiol. (Paris), in press (1974 b).

    Google Scholar 

  • Maximov, V., Liège, B., Galand, G.: Responses of the frog’s ganglion cells to a transretinal polarizing current: An in vivo study. Docum. ophthal., in press (1974 c).

    Google Scholar 

  • Meng, M.: Untersuchungen zum Farben- und Formsehen der Erdkröte (B. bufo L.). Zool. Beitr. 3, 313–363 (1958).

    Google Scholar 

  • Merzbacher, L.: Ueber die Beziehung der Sinnesorgane zu den Reflexbewegungen des Frosches. Pflügers Arch. ges. Physiol. 81, 222–262 (1900).

    Google Scholar 

  • Millodot, M.: Measurement of the refractive state of the eye in frogs (Rana pipiens). Rev. canad. Biol. 30, 249–252 (1971)

    PubMed  CAS  Google Scholar 

  • Millodot, M.: Optical measurement of the refraction of the eyes in frogs (R. pipiens). Pflügers Arch. 351, 173–175 (1974).

    PubMed  CAS  Google Scholar 

  • Mkrtycheva, L.I.: Electrical responses of single neurons in the frog’s optic lobe to chromatic stimulation. [Russ.] Dokl. Akad. Nauk USSR 143, 994–996 (1962).

    Google Scholar 

  • Mkrtycheva, L.I.: Elements of the functional organization of the visual system in the frog. [Russ.] J. High. Nerv. Activity J. P. Pavlov 15, 513–516 (1964).

    Google Scholar 

  • Mkrtycheva, L.I., Samsonova, V.G.: Responses of single neurons of the frog optic tectum to light stimuli of different duration. [Russ.] Dokl. Acad. Nauk USSR 161, 1242–1245 (1965 a).

    CAS  Google Scholar 

  • Mkrtycheva, L.I., Samsonova, V.G.: Significance of the time factor for the formation of units’ responses in the visual centre of the frog. [Russ.] J. High. Nerv. Activity J.P. Pavlov 15, 274–284 (1965 b).

    CAS  Google Scholar 

  • Mkrtycheva, L.I., Samsonova, V.G.: Functional characteristics of neurons in the visual centre of frogs, depending on the intensity of the photic stimulus. [Russ.] J. High. Nerv. Activity J.P. Pavlov 16, 125–127 (1966 a).

    CAS  Google Scholar 

  • Mkrtycheva, L.I., Samsonova, V.G.: Sensitivity of neurons of the frog’s tectum to changes in the intensity of light stimulus. Vision Res. 6, 419–426 (1966 b).

    Google Scholar 

  • Moreno-Diaz, R.: An analytical model of the group 2 ganglion cell in the frog’s retina. Instrumentation Lab., Mass. Inst. Technol., Cambridge 1965.

    Google Scholar 

  • Morita, Y.: Extra- und intracelluläre Abteilungen einzelner Elemente des lichtempfindlichen Zwischenhirns anurer Amphibien. Pflügers Arch. ges. Physiol. 286, 97–108 (1965).

    CAS  Google Scholar 

  • Morita, Y.: Wellenlängen-diskriminatoren im intrakranialen Pinealorgan von R. catesbiana. Experientia (Basel) 25, 1277 (1969).

    CAS  Google Scholar 

  • Morita, Y., Dodt, E.: Nervous activity of the frog’s epiphysis cerebri in relation to illumination. Experientia (Basel) 21, 221 (1965).

    CAS  Google Scholar 

  • Moser, E.A.: Retinoskopische und neurophysiologische Refraktion beim Frosch. Dissertation, Ludwig-Maximilians-Univ. München, 1973.

    Google Scholar 

  • Moser, E.A., Krueger, H.: Retinoscopic and neurophysiological refractometry in R. temporaria. Pflügers Arch. 335, 235–242 (1972).

    PubMed  CAS  Google Scholar 

  • Motokizawa, F.: Olfactory input to the thalamus: Electrophysiological evidence. Brain Res. 67, 334–337 (1974).

    PubMed  CAS  Google Scholar 

  • Müller-Limmroth, W., Güth, V., Schmitt, G.: Das Flimmer-Elektroretinogramm des Frosches bei Ableitung aus verschiedenen Retinaschichten. Z. Biol. 110, 326–339 (1958).

    PubMed  Google Scholar 

  • Muntz, W.R.A.: Microelectrode recordings from the diencephalon of the frog (R. pipiens) and a blue-sensitive system. J. Neurophysiol. 25, 699–711 (1962 a).

    PubMed  CAS  Google Scholar 

  • Muntz, W.R.A.: Effectiveness of different colors of light in releasing the positive phototactic behavior of frogs, and a possible function of the retinal projection to the diencephalon. J. Neurophysiol. 25, 712–720 (1962 b).

    Google Scholar 

  • Muntz, W.R.A.: The development of photopic and scotopic vision in the frog (R. temporaria). Vision Res. 4, 241–250 (1964).

    PubMed  CAS  Google Scholar 

  • Muntz, W.R.A.: Visual pigments and spectral sensitivity in R. temporaria and other European tadpoles. Vision Res. 6, 601–618 (1966).

    PubMed  CAS  Google Scholar 

  • Naka, K.-I., Inoma, S., Kosugi, Y., Tong, C.-W.: Recording of action potentials from single cells in the frog retina. Jap. J. Physiol. 10, 436–442 (1960).

    CAS  Google Scholar 

  • Noble, G.K.: The biology of the amphibia. 577 p. New York: Dover Public. Inc. 1931 (repr. 1954).

    Google Scholar 

  • Nomokonova, L.M.: Retino-tegmental projections in the frog, R. temporaria. Ž. Evol. Biochim. fiziol. (Leningrad) 4, 367–375 (1968).

    Google Scholar 

  • Northcutt, R.G.: Afferent projections of the telencephalon of the bullfrog (R. catesbiana). Anat. Rec. 172, 374 (1972).

    Google Scholar 

  • Norton, A.L., Spekreijse, H., Wagner, H.G., Wolbarsht, M.L.: Responses to directional stimuli in retinal preganglionic units. J. Physiol. (Lond.) 206, 93–107 (1970).

    CAS  Google Scholar 

  • Nye, P.W., Naka, K.J.: The dynamics of inhibitory interaction in a frog receptive field: A paradigm of paracontrast. Vision Res. 11, 377–392 (1971).

    PubMed  CAS  Google Scholar 

  • Pache, J.: Formensehen bei Fröschen. Z. vergl. Physiol. 17, 423–463 (1932).

    Google Scholar 

  • Parker, G.: The skin and the eyes as reception organs in the reactions of frogs to light. Amer. J. Physiol. 10, 28–36 (1904).

    Google Scholar 

  • Pearse, A.: The reactions of amphibians to light. Proc. Amer. Acad. Arts. Sci. 45, 159–208 (1910).

    Google Scholar 

  • Peretz, B.: Optic nerve contributions to sensory-motor integration in the frog. 24th Intern. Congr. Phys. Sci. Abstr. 1029, Washington, D.C., 1968.

    Google Scholar 

  • Peretz, B.: Vertical distribution of optic nerve fiber terminations in the frog optic tectum. Amer. J. Physiol. 217, 181–187 (1969).

    PubMed  CAS  Google Scholar 

  • Pickering, S.G.: The extremely long latency response from on-off retinal ganglion cells: Relationship to dark adaptation. Vision Res. 8, 383–387 (1968).

    PubMed  CAS  Google Scholar 

  • Pickering, S.G., Varjú, D.: Ganglion cells in the frog retina: Inhibitory receptive field and long-latency response. Nature (Lond.) 215, 545–546 (1967).

    CAS  Google Scholar 

  • Pickering, S.G., Varjú, D.: Delayed responses of ganglion cells in the frog retina: The influence of stimulus parameters upon the length of the delay time. Vision Res. 9, 865–879 (1969).

    PubMed  CAS  Google Scholar 

  • Pickering, S.G., Varjú, D.: The retinal ON-OFF components giving rise to the delayed response. Kybernetik 8, 145–150 (1971).

    PubMed  CAS  Google Scholar 

  • Pigarev, J.N., Zenkin, G.M., Girman, S.B.: The detectors of the frog retina. Responses in unrestrained frogs. [Russ.] Sechenov J. Physiol. USSR 57, 1448–1458 (1971).

    CAS  Google Scholar 

  • Podufal, G.: Zur Entfernungsmessung und Größenbeurteilung durch die Erdkröte (B. bufo L.). Dr. Diss. Univ. Göttingen 1971.

    Google Scholar 

  • Polyak, S.: The Retina. Chicago, Ill.: Univ. Chicago Press 1941.

    Google Scholar 

  • Pomeranz, B.: Metamorphosis of frog vision: Changes in ganglion cell physiology and anatomy. Exp. Neurol. 34, 187 – 199 (1972).

    PubMed  CAS  Google Scholar 

  • Pomeranz, B., Chung, S.H.: Dendritic-tree anatomy codes formvision physiology in tadpole retina. Science (N. Y.) 170, 983–984 (1970).

    CAS  Google Scholar 

  • Potter, H.D.: The distribution and orientation of optic nerve fibers in the optic tectum of the bullfrog. Anat. Rec. 158, 411 (1968).

    Google Scholar 

  • Potter, H.D.: Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbiana). J. comp. Neurol. 136, 203–232 (1969).

    PubMed  CAS  Google Scholar 

  • Precht, W.: Personal Communication (1974).

    Google Scholar 

  • Precht, W., Llinàs, R., Clarke, M.: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971).

    PubMed  CAS  Google Scholar 

  • Prince, J.H.: Comparative Anatomy of the Eye. 418 p. Springfield, Ill.: C.C. Thomas 1956.

    Google Scholar 

  • Ramon, P.: Investigaciones micrografias en el encephalo de los batraceos y reptiles. Thesis, Fac. Med. Zaragoza 1894.

    Google Scholar 

  • Reich-Motel, H., Butenandt, E.: Nicht photochemisch bedingte Adaptation in der Netzhaut von Fröschen (Rana esculenta). Pflügers Arch. ges. Physiol. 283, R 28 (1965).

    Google Scholar 

  • Rensch, B.: Elektrophysiologische Untersuchungen über das Zusammenwirken der Mittelhirnhemisphären beim Frosch. Z. vergl. Physiol. 37, 496–508 (1955).

    Google Scholar 

  • Reuter, T.: Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana temporaria). Acta zool. Fenn. 122, 1–64 (1969).

    Google Scholar 

  • Reuter, T.: Synens fysiologi. I. Hur näthinnan översätter ljus till nervsignaler. Ronden 19, 326–330 (1972 a).

    Google Scholar 

  • Reuter, T.: Synens fysiologi. II. Näthinnans analys av färg och form. Ronden 22, 371–375 (1972 b).

    Google Scholar 

  • Reuter, T., Virtanen, K.: Border and color coding in the retina of the frog. Nature (Lond.) 239, 260–263 (1972).

    CAS  Google Scholar 

  • Riss, W., Jakway, J.S.: A perspective on the fundamental retinal projections of vertebrates. Brain, Behav. Evol. 3, 30–35 (1970).

    CAS  Google Scholar 

  • Robbins, D.O.: Coding of intensity and wavelength in optic tectal cells of the turtle. Brain, Behav. Evol. 5, 124–142 (1972).

    CAS  Google Scholar 

  • Rochon-Duvigneaud, A.: Les yeux et la vision des vertèbres. 719 p. Paris: Masson et Cie. 1943.

    Google Scholar 

  • Rodieck, R.W.: The Vertebrate Retina. Principles of Structure and Function. 1044 p. San Francisco: W.H. Freeman and Co. 1973.

    Google Scholar 

  • Röhler, R.: Die Abbildungseigenschaften der Augenmedien. Vision Res. 2, 391–429 (1962).

    Google Scholar 

  • Röhler, R., Fischer, W.: Influence of waveguide on the light absorption in photoreceptors. Vision Res. 11, 97–101 (1971).

    PubMed  Google Scholar 

  • Röhler, R., Miller, U., Aberl, M.: Zur Messung der Modulationsübertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht. Vision Res. 9, 407–428 (1969).

    PubMed  Google Scholar 

  • Röthig, P.: Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. VIII. Über das Zwischenhirn der Amphibien. Arch. mikr. Anat. 98, 616–645 (1923).

    Google Scholar 

  • Röthig, P.: Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. X. Über die Faserzüge im Vorder- und Zwischenhirn der Anuren. Z. mikr.-anat. Forsch. 5, 23–58 (1926).

    Google Scholar 

  • Rubinson, K.: Projections of the tectum opticum of the frog. Brain, Behav. Evol. 1, 529–558 (1968).

    Google Scholar 

  • Rubinson, K.: Retinal projections in the toad Bufo marinus. Anat. Rec. 163, 254 (1969).

    Google Scholar 

  • Rubinson, K.: Connections of the mesencephalic nucleus of the trigeminal nerve in the frog. An experimental study with silver impregnation methods. Brain Res. 19, 3–14 (1970).

    PubMed  CAS  Google Scholar 

  • Rubinson, K., Colman, D.R.: Designated discussion: A preliminary report on ascending thalamic afferents in Rana pipiens. Brain, Behav. Evol. 6, 69–74 (1972).

    CAS  Google Scholar 

  • Rushmer, D.S., Woodward, D.J.: Responses of Purkinje cells in the frog cerebellum to electrical and natural stimulation. Brain Res. 33, 324–335 (1971).

    Google Scholar 

  • Rushton, W.A.H.: Excitation pools in the frog’s retina. J. Physiol. (Lond.) 149, 327–345 (1959).

    CAS  Google Scholar 

  • Samsonova, V.G.: Functional organization of neurons of different types in the visual center of frogs. [Russ.] J. High. Nerv. Act. 15, 491–499 (1965).

    CAS  Google Scholar 

  • Savage, R.M.: The Ecology and Life History of the Common Frog. 221 p. London: Pitman 1961.

    Google Scholar 

  • Scalia, F.: Autoradiographic demonstration of optic nerve fibers in the stratum zonale of the frog’s tectum. Brain Res. 58, 484–488 (1973).

    PubMed  CAS  Google Scholar 

  • Scalia, F., Colman, D.R.: Aspects of the central projection of the optic nerve in the frog as revealed by anterograde migration of horseradish peroxidase. Brain Res. 79, 496–512 (1974).

    PubMed  CAS  Google Scholar 

  • Scalia, F., Fite, K.: A retinotopic analysis of the central connections of the optic nerve in the frog. J. comp. Neurol. 158, 455–478 (1974).

    PubMed  CAS  Google Scholar 

  • Scalia, F., Gregory, K.: Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain, Behav. Evol. 3, 16–29 (1970).

    CAS  Google Scholar 

  • Scalia, F., Knapp, H., Halpern, M., Riss, W.: New observation on the retinal projection in the frog. Brain, Behav. Evol. 1, 324–353 (1968).

    Google Scholar 

  • Schaefer, A.A.: Habit formation in frogs. J. animal Behav. 1, 309–335 (1911).

    Google Scholar 

  • Schaefer, K.-P., Schneider, H.: Reizversuche im Tectum opticum des Kaninchens. Arch. Psychiat. Neurol. 211, 118–137 (1968).

    CAS  Google Scholar 

  • Scheibner, H., Baumann, Ch.: Elektrophysiologische Farbsinnuntersuchungen mittels Reizsubstitution. Ber. dtsch. ophthal. Ges. 69, 124–126 (1969).

    CAS  Google Scholar 

  • Scheibner, H., Baumann, Ch.: Properties of the frog’s retinal ganglion cells as revealed by substitution of chromatic stimuli. Vision Res. 10, 829–836 (1970).

    PubMed  CAS  Google Scholar 

  • Scheibner, H., Hunold, W., Bezaut, M.: Color discrimination functions of the frog optic tectum (R. esculenta). Vision Res. 15, 1175–1180 (1975).

    PubMed  CAS  Google Scholar 

  • Scheid-Patutschnick, M.: Der Einfluß des Reiz-Hintergrund-Kontrastes auf die Aktivierung bewegungsspezifischer Neurone der Froschnetzhaut (R. esculenta). Diss. Dr. med. Berlin (1970).

    Google Scholar 

  • Schiller, P.: The role of the monkey superior colliculus in the eye movement and vision. Invest. Ophthal. 2, 451–460 (1972).

    Google Scholar 

  • Schipiloff, K.: Über den Einfluß der Nerven auf die Erweiterung der Pupille bei Fröschen. Akad. Preisschrift. Ber. von M. Schiff. Pflügers Arch. ges. Physiol. 38, 219–278 (1886).

    Google Scholar 

  • Schipperheyn, J. J.: Respiratory eye movements and perception of stationary objects in the frog. Acta physiol. pharmacol. neerl. 12, 157–159 (1963).

    PubMed  CAS  Google Scholar 

  • Schipperheyn, J.J.: Contrast detection in frog’s retina. Acta physiol. pharmacol. neerl. 13, 231–277 (1965).

    PubMed  CAS  Google Scholar 

  • Schneider, D.: Beitrag zu einer Analyse des Beute- und Fluchtverhaltens einheimischer Anuren. Biol. Zbl. 73, 225 (1954 a).

    Google Scholar 

  • Schneider, D.: Das Gesichtsfeld und der Fixiervorgang bei einheimischen Anuren. Z. vergl. Physiol. 36, 147–164 (1954 b).

    Google Scholar 

  • Schneider, D.: Die Biologie der Wirbeltieraugen. Stud. Gen. 10, 214–230 (1957 a).

    Google Scholar 

  • Schneider, D.: Die Gesichtsfelder von Bombina variegata, Discoglossus pictus und X. laevis. Z. vergl. Physiol. 39, 524–530 (1957 b).

    Google Scholar 

  • Schnitzlein, H.N., Hamel, E.G., Jr., Carey, J.H., Brown, J.W., Hoffmann, H.H., Faucette, J.R., Showers, M.J.C.: The interrelations of the striatum with subcortical areas through the lateral forebrain bundle. J. Hirnforsch. 13, 409–455 (1973).

    PubMed  CAS  Google Scholar 

  • Schrader, M.E.G.: Zur Physiologie des Froschgehirnes. Pflügers Arch. ges. Physiol. 41, 75–90 (1887).

    Google Scholar 

  • Schützler, G.: Untersuchungen über den Farbensinn der Erdkröte (B. vulgaris L.). Diss. Phil. Fak. Berlin 1933.

    Google Scholar 

  • Schultze, M.: Zur Anatomie und Physiologie der Retina. Arch. mikr. Anat. 2, 175–286 (1864).

    Google Scholar 

  • Schultze, M.: Über Stäbchen und Zapfen der Retina. Arch. mikr. Anat. 3, 215–247 (1867).

    Google Scholar 

  • Servít, Z., Strejčková, A., Volanschi, D.: An epileptogenic focus in the frog telencephalon. Pathways of propagation of focal activity. Exp. Neurol. 21, 383–396 (1968).

    PubMed  Google Scholar 

  • Sétáló, G., Székely, G.: The presence of membrane specialization indicative of somato-dendritic synaptic junctions in the optic tectum of the frog. Exp. Brain Res. 4, 237–242 (1967).

    PubMed  Google Scholar 

  • Shafa, F., Marks, W.B.: Pathways mediating two types of visual response in the cerebellum of the frog. Fed. Proc. 33, 623 (1974).

    Google Scholar 

  • Shibkova, S.A.: Ganglion cells of the frog retina. [Russ.] Arch. Anat. Histol. Embryol. 59, 72–77 (1970).

    Google Scholar 

  • Shkolnik-Yarros, E.G.: Asymmetrical dendritic fields of ganglion cells of the retina. [Russ.] Neurofiziologia 3, 301–307 (1971).

    Google Scholar 

  • Shortess, G.K.: Binocular interaction in the frog retina. J. opt. Soc. Amer. 53, 1423–1429 (1963).

    CAS  Google Scholar 

  • Shortess, G. K.: Some effects of antidromic stimulation of frog retinal ganglion cells. Exp. Neurol. 29, 243–250 (1970).

    PubMed  CAS  Google Scholar 

  • Shortess, G.K.: A method for evaluating behavioral activity in R. pipiens induced by changes in illumination. Physiol. Behav. 6, 629–631 (1971).

    PubMed  CAS  Google Scholar 

  • Sickel, W.: Retinal metabolism in dark and light. In: Handbook of Sensory Physiology (M.G.F. Fuortes, ed.), vol. VII/2, chap. 18, p. 667–728. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Sickel, W., Crescitelli, F.: Delayed electrical response from the isolated frog retina. Pflügers Arch. ges. Physiol. 297, 266–269 (1967).

    Google Scholar 

  • Sillman, A.J.: The frog cone as site of rapid dark-adaptation. Amer. Zool. 13, 254 (1973).

    Google Scholar 

  • Sillman, A.J.: Rapid dark-adaptation in the frog cone. Vision Res. 14, 1021–1027 (1974).

    PubMed  CAS  Google Scholar 

  • Sillman, A.J., Owen, W.G., Fernandez, H.R.: Rapid dark-adaptation in the frog rod. Vision Res. 13, 393–402 (1973).

    PubMed  CAS  Google Scholar 

  • Skarf, B.: Development of binocular single units in the optic tectum of frog raised with disparate stimulation to the eyes. Brain Res. 51, 352–357 (1973).

    PubMed  CAS  Google Scholar 

  • Skarf, B., Jacobson, M.: Development of binocularly driven single units in frogs raised with asymmetrical visual stimulation. Exp. Neurol. 42, 669–686 (1974).

    PubMed  CAS  Google Scholar 

  • Sperry, R.W.: Restoration of vision after crossing of optic nerves and after contralateral transplantation of eye. J. Neurophysiol. 8, 15–29 (1945).

    Google Scholar 

  • Sperry, R.W.: Mechanisms of neural maturation. Handbook of Experimental Psychology. New York: J.Wiley and Sons 1961.

    Google Scholar 

  • Steinach, E.: Untersuchungen zur vergleichenden Physiologie der Iris. Erste Mittlg.: Über Irisbewegung bei den Wirbeltieren und über die Beziehung der Pupillarreaction zur Sehnervenkreuzung im Chiasma. Pflügers Arch. ges. Physiol. 47, 289–340 (1890).

    Google Scholar 

  • Steinach, E.: Untersuchungen zur vergleichenden Physiologie der Iris. Zweite Mittlg.: Ueber die directe motorische Wirkung des Lichtes auf den Sphincter pupillae bei Amphibien und Fischen und über die denselben aufbauenden pigmentierten glatten Muskelfasern. Pflügers Arch. ges. Physiol. 52, 495–525 (1892).

    Google Scholar 

  • Steiner, J.: Untersuchungen über die Physiologie des Froschhirns. Die Functionen des Centralnervensystems und ihre Phylogenese. 143 S. Braunschweig: Vieweg 1885.

    Google Scholar 

  • Stevens, R.J.: A cholinergic inhibitory system in the frog optic tectum: Its role in visual electrical responses and feeding behavior. Brain Res. 49, 309–321 (1973).

    PubMed  CAS  Google Scholar 

  • Stevens, R.J.: A model of an early “off” response in frog optic tectum. Brain Res. 67, 51–63 (1974).

    PubMed  CAS  Google Scholar 

  • Ströer, W.F.H.: Zur vergleichenden Anatomie des primären optischen Systems bei Wirbeltieren. Z. Anat. Entwickl-Gesch. 110, 301–321 (1939).

    Google Scholar 

  • Studnitz, G. v.: Studien zur vergleichenden Physiologie der Iris. I. R. temporaria. Pflügers Arch. ges. Physiol. 229, 492–537 (1932).

    Google Scholar 

  • Supin, A.Y., Guselnikov, V.I.: Representation of visual, auditory and somatosensory analysers in the forebrain hemispheres of the frog (R. temporaria) (russ.). Fiziol. Zh. SSSR 50, 426–434 (1964).

    PubMed  Google Scholar 

  • Sutro, L.L.: Information processing and data compression for exobiology missions. Instrumentation Lab., Mass. Inst. Technol., Cambridge 1965.

    Google Scholar 

  • Székely, G.: The mesencephalic and diencephalic optic centers in the frog. Vision Res., Suppl. 3, 269–279 (1971).

    PubMed  Google Scholar 

  • Székely, G.: Anatomy and synaptology of the optic tectum. In: Handbook of Sensory Physiology (R. Jung, ed.), vol. VII/2B. Berlin-Heidelberg-New York: Springer 1973a.

    Google Scholar 

  • Székely, G.: Fine structure of the frog’s optic tectum: Optic fibre termination layers. J. Hirnforsch. 14, 189–225 (1973 b).

    PubMed  Google Scholar 

  • Szent-Györgyi, A.: Untersuchungen über den Glaskörper der Amphibien und Reptilien. Arch. mikr. Anat. 85, 303–359 (1914).

    Google Scholar 

  • Tasaki, K.: Three fiber groups in the frog optic nerve. J. Physiol. Soc. Jap. 32, 1–2 (1970).

    Google Scholar 

  • Thomas, E.: Untersuchungen über den Helligkeits- und Farbensinn der Anuren. Zool. Jb. 66, 129–178 (1956).

    Google Scholar 

  • Tomita, T.: The electroretinogram, as analysed by microelectrode studies. In: Handbook of Sensory Physiology (M.G.F. Fuortes, ed.), vol. VII/2, chap. 17, p. 635–666. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Tomita, T., Murakami, M., Hashimoto, Y., Sasaki, Y.: Electrical activity of single neurons in the frog’s retina. In: The Visual System: Neurophysiology and Psychophysics (R. Jung, H. Kornhuber, eds.), p. 24–31. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Trachtenberg, M.C., Ingle, D.: Thalamo-tectal projections in the frog. Brain Res. 79, 419–430 (1974).

    PubMed  CAS  Google Scholar 

  • Trepakov, V.V.: Postsynaptic inhibition in the frog’s primordial hippocampus. [Russ.] Neurofiziologia 5, 583–592 (1974).

    Google Scholar 

  • Twitty, V., Grant, D., Anderson, O.: Amphibian orientation: An unexpected observation. Science 155, 352–353 (1967).

    PubMed  CAS  Google Scholar 

  • Uexküll, J. v.: Theoretische Biologic 2. Ed. Berlin: Springer 1928.

    Google Scholar 

  • Uexküll, J. v., Brock, F.: Atlas zur Bestimmung der Orte in den Sehräumen der Tiere. Z. vergl. Physiol. 5, 165–178 (1927).

    Google Scholar 

  • Varjú, D.: Functional classification of receptive field organization of retinal ganglion cells in the frog. In: Processing of Optical Data by Organism and Machines (W. Reichardt, ed.), p. 366–383. Academic Press 1969.

    Google Scholar 

  • Varjú, D., Pickering, S.G.: Delayed responses of ganglion cells in the frog retina. Kybernetik 6, 112–119 (1969).

    PubMed  Google Scholar 

  • Vesselkin, N.P.: Visual projections in amphibian brain. [Russ.] J. Evol. Biochem. Physiol. 2, 473–479 (1966).

    Google Scholar 

  • Vesselkin, N.P., Agayan, A.L., Nomokonova, L.M.: A study of thalamo-telencephalic afferent systems in frogs. Brain, Behav. Evol. 4, 295–306 (1971).

    CAS  Google Scholar 

  • Vesselkin, N.P., Kovačevič, N.: Non-olfactory afferent projections to the forebrain of the frog. [Russ.] Neurofisiologia 5, 537–543 (1973).

    Google Scholar 

  • Walls, G.: The Vertebrate Eye and its Adaptive Radiation. 785 p. New York-London: Hafner Publ. Co. 1963.

    Google Scholar 

  • Weale, R.A.: Observations of the direct effect of light on the irides of Rana temporaria and Xenopus laevis. J. Physiol. (Lond.) 132, 257–266 (1956).

    CAS  Google Scholar 

  • Wiener, N.: Non-linear Problems in Random Theory. New York: John Wiley and Sons 1958.

    Google Scholar 

  • Wilska, A.: Aktionspotentialentladungen einzelner Netzhautelemente des Frosches. Acta Soc. Med. Fenn. A 22, 50–62 (1939).

    Google Scholar 

  • Wilson, M.A.: Optic nerve fibre counts and retinal ganglion cell counts during development of X. laevis (Daudin). J. exp. Physiol. 56, 83–91 (1971).

    CAS  Google Scholar 

  • Wlassak, R.: Die optischen Leitungsbahnen des Frosches. Arch. Anat. Physiol., Physiol. Abth., Suppl., 1–28 (1893).

    Google Scholar 

  • Yerkes, R.M.: The instincts, habits and reactions of the frog. Harvard Psychol. Studies 1, 579–638 (1903).

    Google Scholar 

  • Zagorulko, T.M.: On the localization of cerebral centers of the visual analyser in the frog. [Russ.] J. Physiol. USSR, J.M. Sechenov 43, 1156–1165 (1957).

    Google Scholar 

Download references

Authors

Additional information

Dedicated to Professor T.H. Bullock. San Diego, on the occasion of his 60th birthday. Our first experiments on the frog visual system were performed 1962/63 together with him in his laboratory at the University of California, Los Angeles

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Grüsser, OJ., Grüsser-Cornehls, U. (1976). Neurophysiology of the Anuran Visual System. In: Frog Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66316-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66316-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66318-5

  • Online ISBN: 978-3-642-66316-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics