Skip to main content

Retinal Metabolism in Dark and Light

  • Chapter
Physiology of Photoreceptor Organs

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 2))

Abstract

One may expect to find in this concluding chapter on metabolism an account for the expenses incurred by the retina in the performance of the activities outlined in the preceding contributions to this volume. Information on its source and its fate — as a building block or fuel — should provide some insight in the inner workings, from which eventually a rationale may be derived for the beneficial intervention in the repair or even improvement of visual function, as perhaps in night vision. The uses of the substrate under specified load may serve to substantiate the powering of amplifier actions invoked in many guises, providing gain, feedback, preventing contamination of the visual signal to be processed, etc. The kinetics of metabolic reactions may help to determine which of a number of processes is the deciding one, e.g. during restoration of sensitivity after exposure to light. Or, the measured rate of metabolism could substitute for “neural work”, a quantity not otherwise available at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E.D., Matthews, R.: The action of light on the eye. Part I: The discharge of impulses in the optic nerve and its relation to the electric change in the retina. J. Physiol. (Lond.) 63, 378–414 (1927).

    CAS  Google Scholar 

  2. Albeety, R.A.: Effects of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J. biol. Chem. 243, 1337–1343 (1968).

    Google Scholar 

  3. Alpern, M., Campbell, F.W.: The spectral sensitivity of the consensual light reflex. J. Physiol. (Lond.) 164, 478–507 (1962).

    CAS  Google Scholar 

  4. Ames, A. III.: Studies of morphology, chemistry and function in isolated retina. In: Graymore, C.N. (Ed.): Biochemistry of the Retina. London-New York: Academic Press 1965.

    Google Scholar 

  5. Ames, A. III., Gurian, B.S.: Measurement of function in an in vitro preparation of mammalian central nervous tissue. J. Neurophysiol. 23, 676–691 (1960).

    PubMed  Google Scholar 

  6. Ames, A. III., Gurian, B.S.: Electrical recordings from isolated mammalian retina mounted as a membrane. Arch. Ophthal. 70, 837–841 (1963).

    PubMed  Google Scholar 

  7. Anderson, B., Saltzman, H.A.: Retinal oxygen utilization measured by hyperbaric blackout. Arch. Ophthal. 72, 792–796 (1964).

    PubMed  Google Scholar 

  8. Anfinsen, C.B.: The distribution of diphosphopyridine nucleotide in the bovine retina. J. biol. Chem. 152, 279–284 (1944).

    CAS  Google Scholar 

  9. Angelucci, A.: Physiologie générale de l’oeil. L’Encyclopédie Francaise d’Ophthalmologie 2, 106–241 (1905) (cit. by Keause).

    Google Scholar 

  10. Abden, G.B., Granit, R., Ponte, F.: Phase of suppression following each retinal b-wave in flicker. J. Neurophysiol. 23, 305–314 (1960).

    Google Scholar 

  11. Abden, G.B., Kelsey, J.H.: Changes produced by light in the standing potential of the human eye. J. Physiol. (Lond.) 161, 189–204 (1962);

    Google Scholar 

  12. Abden, G.B., Kelsey, J.H.: Some observations in the relationship between the standing potential of the human eye and the bleaching and regeneration of visual purple. J. Physiol. (Lond.) 161, 205–226 (1962).

    Google Scholar 

  13. Autrum, H.J., Tscharntke, H.: Der Sauerstoffverbrauch der Insektenretina im Licht und im Dunkeln. Z. vergl. Physiol. 45, 695–710 (1962).

    CAS  Google Scholar 

  14. Bauereisen, E., Lippmann, H.-G., Schubert, E., Sickel, W.: Bioelektrische Aktivität und Sauerstoffverbrauch isolierter Potentialbildner bei Sauerstoffdrucken zwischen 0 und 10 Atm. Pflügers Arch. ges. Physiol. 267, 636–648 (1958).

    CAS  Google Scholar 

  15. Baumann, Ch.: Die absolute Schwelle der isolierten Froschnetzhaut. Pflügers Arch. ges. ges. Physiol. 280, 81–88 (1964).

    CAS  Google Scholar 

  16. Baumann, Ch.: Sehpurpurbleichung und Stäbchenfunktion in der isolierten Netzhaut. Pflügers Arch. ges. Physiol. 298, 44–81 (1967).

    CAS  Google Scholar 

  17. Baumann, Ch., Dettmar, P., Hanitzsch, R., Sickel, W.: Untersuchungen an der umströmten Froschnetzhaut zur Analyse des ERG. Acta Ophthalm. (Kph.) Suppl. 70,156–163 (1962).

    Google Scholar 

  18. Baumann, Ch., Heiss,W.D.: Elektroretinogramm und retinale Impulsaktivität in Hypothermie. Experientia (Basel) 22, 184–185 (1966).

    CAS  Google Scholar 

  19. Baumgardt, E.: Absolute Schwelle und Differentialschwellen. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, S. 400–409. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  20. Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    CAS  Google Scholar 

  21. Benolken, R.M.: Effects of light and dark adaptation processes on the generator potential of the Limulus eye. Vision Res. 2, 103–124 (1962).

    Google Scholar 

  22. Beuchelt, H.: Die Abhängigkeit der photoelektrischen Reaktion des Froschauges von den ableitenden Medien. Z. Biol. 73, 205–230 (1921).

    CAS  Google Scholar 

  23. Böck, J., Bornschein, H., Hommer, K.: Die Erholungslatenz der Helligkeitsempfindung, und des Elektroretinogramms nach retinaler Ischämie. Albrecht v. Graefes Arch. Ophthal. 167, 276–283 (1964).

    Google Scholar 

  24. Bonavita, V., Guarneri, R., Ponte, F.: Neurochemical studies on the inherited retinal degeneration of the rat. II. NAD- and NADP-linked enzymes in the developing retina. Vision Res. 5, 113–121 (1965).

    PubMed  CAS  Google Scholar 

  25. Borchard, U.: Untersuchungen über Belichtungspotential und Ionentransport im Retina-Membransystem. Diss. Universität Köln 1969.

    Google Scholar 

  26. Bornschein, H., Lützow, A.V.: Electroretinographic threshold in the isolated rabbit retina. Nature (Lond.) 215, 1394–1395 (1967).

    CAS  Google Scholar 

  27. Bortoff, A., Norton, A.L.: An electrical model of the vertebrate photoreceptor cell. Vision Res. 7, 253–263 (1967).

    PubMed  CAS  Google Scholar 

  28. Bouma, H.: Size of the static pupil as a function of wavelength and luminosity of the light incident on the human eye. Nature (Lond.) 193, 690–691 (1962).

    CAS  Google Scholar 

  29. Brindley, G.S.: The effect on the frog ERG of varying the amount of retina illuminated. J. Physiol. (Lond.) 134, 353–359 (1956).

    CAS  Google Scholar 

  30. Brindley, G.S.: Physiology of the Retina and Visual Pathways. London: Arnold 1960.

    Google Scholar 

  31. Brink, F.: Role of calcium ions in neural processes. Pharmacol. Rev. 6, 243–298 (1954).

    PubMed  CAS  Google Scholar 

  32. Brown, K.T.: The electroretinogram: Its components and their origins. Vision Res. 8, 633–677 (1968).

    PubMed  CAS  Google Scholar 

  33. Brown, K.T., Murakami, M.: Delayed decay of the late receptor potential of monkey cones as a function of stimulus intensity. Vision Res. 7, 179–189 (1967).

    PubMed  CAS  Google Scholar 

  34. Brown, K.T., Wiesel, T.N.: Intraretinal recording in the unopened cat eye. Amer. J. Ophthal. 46, 91–96 (1958).

    PubMed  CAS  Google Scholar 

  35. Campos, R.: Ricerche sul ricambio della retina. Ann. Ottal. Clin. Ocul. 64, 456, (1936).

    Google Scholar 

  36. Campos, R.: Ricerche sul ricambio della retina. Ann. Ottal. Clin. Ocul. 64, 538, (1936).

    Google Scholar 

  37. Campos, R.: Ricerche sul ricambio della retina. Ann. Ottal. Clin. Ocul. 64, 577, (1936).

    Google Scholar 

  38. Campos, R.: Ricerche sul ricambio della retina. Ann. Ottal. Clin. Ocul. 64, 594–602 (1936).

    Google Scholar 

  39. Capolongo, G.: La lattoflavino nel metabolismo della retina. Ann. Ottal. Clin. Ocul. 75, 271–278 (1949).

    CAS  Google Scholar 

  40. Caspers, H.: Relations of steady potential shifts in the cortex to the wakefulness — sleep spectrum. In: Brazier, M. (Ed.): Brain Function: Cortical Excitability and Steady Potentials, pp. 177–213. Berkeley: Univ. of Calif. Press 1963.

    Google Scholar 

  41. Catanzaro, R., Chain, E.B., Pocchiari, F., Reading, H.W.: The metabolism of glucose and pyruvate in rat retina. Proc. roy. Soc. B 156, 139–143 (1962).

    CAS  Google Scholar 

  42. Chance, B.: Techniques for the assay of respiratory enzymes. In: Colowick, S.P., Kaplan, N.O. (Eds.): Methods of Enzymology, pp. 273–329. New York: Academic Press 1957.

    Google Scholar 

  43. Chance, B.: Quantitative Aspects of the Control of Oxygen Utilization. CIBA Found. Symp. on Cell Metabolism 1959, pp. 91–121.

    Google Scholar 

  44. Chance, B.: Fluorescence emission of the mitochondrial DPNH as a factor in the ultraviolet sensitivity of visual receptors. Proc. nat. Acad. Sci. (Wash.) 51, 359–361 (1964).

    CAS  Google Scholar 

  45. Chance, B.: Biochemical studies of transitions from rest to activity. In: Sleep and Altered States of Conciousness. Association for Research in Nervous and Mental Disease, Vol. 45, pp. 48–63. Baltimore: Williams and Wilkins Comp. 1967.

    Google Scholar 

  46. Chance, B., Hollunger, G.: Energy-linked reduction of mitochondrial pyridine nucleotide. Nature (Lond.) 185, 666–672 (1960).

    CAS  Google Scholar 

  47. Chance, B., Packer, L.: Light scattering and absorption effects caused by addition of adenosine diphosphate to rat-heart-muscle-sarcosoma. Biochem. J. 68, 295–297 (1958).

    PubMed  CAS  Google Scholar 

  48. Chance, B., Williams, G.R.: The respiratory chain and oxidative phosphorylation. In: Nord, F.F. (Ed.): Advances in Enzymology, Vol. 17, pp. 65–134. New York: Interscience Publ. 1956.

    Google Scholar 

  49. Chase, A.M., Smith, E.: Regeneration of visual purple in solution. J. gen. Physiol. 23, 21–39 (1939).

    PubMed  CAS  Google Scholar 

  50. Cohen, L.H., Noell, W.K.: Glucose catabolism of rabbit retina before and after development of visual function. J. Neurochem. 5, 253–276 (1960).

    PubMed  CAS  Google Scholar 

  51. Cohen, L.H., Noell, W.K.: Relationship between visual function and metabolism. In: Graymore, C.N. (Ed.): Biochemistry of the Eye, pp. 36–49. London-New York: Academic Press 1965.

    Google Scholar 

  52. Cone, R.A.: The rat electroretinogram. II. Bloch’s law and the latency mechanism of the b-wave. J. gen. Physiol. 47, 1107–1116 (1964).

    PubMed  CAS  Google Scholar 

  53. Cone, R.A., Brown, P.: Spontaneous regeneration of rhodopsin in the isolated rat retina. Nature (Lond.) 221, 818–822 (1969).

    CAS  Google Scholar 

  54. Crane, R.K., Ball, E.G.: Relation of 14CO2-fixation to carbohydrate metabolism of the retina. J. biol. Chem. 189, 269–276 (1951).

    PubMed  CAS  Google Scholar 

  55. Crescitelli, F., Sickel, E.: Delayed off-responses recorded from the isolated frog retina. Vision Res. 8, 801–816 (1968).

    PubMed  CAS  Google Scholar 

  56. Danis, P.: Contribution à l’étude électrophysiologique de la rétine. Bruxelles: Impr. Med. Sci. 1959.

    Google Scholar 

  57. Graymore, C.N.: General aspects of the metabolism of the retina. In: Davson, H. (Ed.): The Eye, 2. Ed., Vol. 1. London-New York: Academic Press 1969.

    Google Scholar 

  58. Demirchoglian, G.G.: Physiology and Pathology of the Retina. Moscow: Medical Press 1964. (Russ.).

    Google Scholar 

  59. Dettmar, P.: Energiereiche Phosphorsäureverbindungen und ihr Verhalten unter Lichtreizen in der isolierten, umströmten Froschnetzhaut. Biochem. Symp., S. 23–26. Dresden-Leipzig: Th. Steinkopff 1963.

    Google Scholar 

  60. Dickens, F., Greville, G.D.: Metabolism of normal and tumor tissue. Biochem. J. 27, 1134–1140 (1933).

    PubMed  CAS  Google Scholar 

  61. Ditchburn, R.W., Ginsborg, B.C.: Vision with a stabilized image. Nature (Lond.) 170, 36–37 (1952).

    CAS  Google Scholar 

  62. Dittler, R.: Über die chemische Reaktion der isolierten Froschnetzhaut. Pflügers Arch, ges. Physiol. 120, 44–50 (1907).

    Google Scholar 

  63. Dodt, E.: Beiträge zur Elektrophysiologie des Auges. II. Über Hemmungsvorgänge in der menschlichen Retina. Albrecht v. Graefes Arch. Ophthal. 153, 152–162 (1952).

    CAS  Google Scholar 

  64. Dolivo, M., Rouiller, C.H.: Changes in ultrastructure and synaptic transmission in the sympathetic ganglion during various metabolic conditions. Progr. Brain Res. 31, 111–123 (1969).

    CAS  Google Scholar 

  65. Donner, K.O., Reuter, T.: Visual adaptation of the rhodopsin rods in the frog’s retina. J. Physiol. (Lond.) 199, 59–87 (1968).

    CAS  Google Scholar 

  66. Dowling, J.E.: Chemistry of visual adaptation in the rat. Nature (Lond.) 188, 114–118 (1960).

    CAS  Google Scholar 

  67. Dowling, J.E.: Discrete potentials in the dark adapted eye of the crab Limulus. Nature (Lond.) 217, 28–31 (1968).

    CAS  Google Scholar 

  68. Dowling, J.E., Sidman, R.L.: Inherited retinal dystrophy in the rat. J. Cell Biol. 14, 73–109 (1962).

    PubMed  CAS  Google Scholar 

  69. Ebata, M. cit. by Kishida, K., Naka, K.I.: Amino acids and the spikes from the retinal ganglion cells. Science 156, 648–650 (1967).

    Google Scholar 

  70. Elenius, V.: Decay of suppression of retinal function after short flashes of light. Docum. ophthalm. (Den Haag) 18, 529–536 (1964).

    CAS  Google Scholar 

  71. Elenius, V., Karo, T.: Cone activity in the light-induced response of the human electro-oculogram. Pflügers Arch. ges. Physiol. 291, 241–248 (1966).

    CAS  Google Scholar 

  72. Elliott, K.A.C., Wolfe, L.S.: Brain tissue respiration and glycolysis. In: Elliott, K.A.C., Page, I.H., Quastel, J.H. (Eds.): Neurochemistry, 2nd. Ed., pp. 177–211. Springfield, Ill.: Charles C. Thomas Publ. 1962.

    Google Scholar 

  73. Engelhardt, W.A.: Die Beziehungen zwischen Atmung und Pyrophosphatumsatz in Vogelerythrocyten. Biochem. Z. 251, 343–368 (1932).

    CAS  Google Scholar 

  74. Enoch, J.M.: Validation of an indicator of mammalian receptor response: Recovery in the dark following exposure to a luminous stimulus. Invest. Ophthal. 6, 647–656 (1967).

    PubMed  CAS  Google Scholar 

  75. Epstein, M.H., O’Connor, J.S.: Enzyme changes in isolated retinal layers in light and darkness. J. Neurochem. 13, 907–911 (1966).

    PubMed  CAS  Google Scholar 

  76. Fenn, W.O., Galambos, R., Otis, A.B., Rahn, H.: Corneoretinal potential in anoxia and acapnia. J. appl. Physiol. 1, 710–715 (1949).

    PubMed  CAS  Google Scholar 

  77. Fischer, P.: Ernährung und Stoffwechsel der Gewebe des Auges. Ergebn. Physiol. 31, 507–591 (1931).

    CAS  Google Scholar 

  78. Fowlks, W.L., Peterson, D.E.: Substrate inhibition of tetrazolium salt reduction in dark adapted retinae. Proc. Soc. exp. Biol. (N. Y.) 118, 491–494 (1965).

    CAS  Google Scholar 

  79. Frank, R.N., Goldsmith, T.H.: Effects of cardiac glycosides on electrical activity in the isolated retina of the frog. J. gen. Physiol. 50, 1585–1606 (1967).

    PubMed  CAS  Google Scholar 

  80. Frisell, W.R., MacKenzie, C.G.: The photochemical oxidation of DPNH with riboflavin phosphate. Proc. nat. Acad. Sci. (Wash.) 45, 1568–1572 (1959).

    CAS  Google Scholar 

  81. Fröhlich, F.W.: Beiträge zur allgemeinen Physiologie der Sinnesorgane. Z. Sinnesphysiol. 48, 28–165 (1913).

    Google Scholar 

  82. Fry, G.A.: Mechanisms subserving bright and dark adaptation. Amer. J. Optom. 46, 319–338 (1969).

    PubMed  CAS  Google Scholar 

  83. Fuortes, M.G.F.: Electrical activity of the cells in the eye of Limulus. Amer. J. Ophthal. 46, 210–223 (1958).

    PubMed  CAS  Google Scholar 

  84. Futterman, S., Kinoshita, J.H.: Metabolism of the retina. I. Respiration of cattle retina. J. biol. Chem. 234, 723–726 (1959).

    PubMed  CAS  Google Scholar 

  85. Goto, M., Toida, N.: On the splitting of off-response in electroretinogram. Jap. J. Physiol. 4, 123–130 (1954).

    CAS  Google Scholar 

  86. Gouras, P.: Spreading depression of activity in amphibian retina. Amer. J. Physiol. 195, 28–32 (1958).

    PubMed  CAS  Google Scholar 

  87. Gouras, P., Rod and cone interaction in dark-adapted monkey ganglion cells. J. Physiol. (Lond.) 184, 499–510 (1966).

    CAS  Google Scholar 

  88. Gouras, P.: Electroretinography; some basic problems. Invest. Ophthal. 9, 557–569 (1970).

    PubMed  CAS  Google Scholar 

  89. Gouras, P., Carr, R.E.: Cone activity in the light induced dc response of monkey retina. Invest. Ophthal. 4, 318–321 (1965).

    PubMed  CAS  Google Scholar 

  90. Granit, R.: Sensory Mechanisms of the Retina. London-New York-Toronto: Oxford Univ. Press 1947.

    Google Scholar 

  91. Graymore, C.N. (Ed.): Biochemistry of the Retina. (Suppl. to Exp. Eye Res.) London-New York: Academic Press 1965.

    Google Scholar 

  92. Granit, R.: Biochemistry of the Retina. In: Graymore, C.N. (Ed.): Biochemistry of the Eye. London-New York: Academic Press 1970.

    Google Scholar 

  93. Granit, R., Towlson, M.J.: The metabolism of the retina of the normal and alloxan diabetic rat. The levels of oxidised and reduced pyridine nucleotides and the oxidation of the carbon-1 and carbon-6 of glucose. Vision Res. 5, 379–389 (1965).

    Google Scholar 

  94. Hagins, W.A., Penn, R.D., Yoshikami, S.: Dark current and photocurrent in retinal rods. Biophys. J. 10, 380-412 (1970).

    PubMed  CAS  Google Scholar 

  95. Hall, M.O., Bok, D., Bacharach, A. D. E.: Visual pigment renewal in the mature frog retina. Science 161, 787–789 (1968).

    PubMed  CAS  Google Scholar 

  96. Hamasaki, D.: The effect of sodium ion concentration on the electroretinogram of the isolated retina of the frog. J. Physiol. (Lond.) 167, 156–168 (1963).

    CAS  Google Scholar 

  97. Hanawa, I.: cit. by Noell, W.K.: Cellular physiology of the retina. J. Opt. Soc. Amer. 53, 36–48 (1963).

    Google Scholar 

  98. Hanawa, I., Kuge, K., Matsumura, K.: Effects of some common ions on the transretinal de potential and the electroretinogram of the isolated frog retina. Jap. J. Physiol. 17, 1–20 (1967).

    CAS  Google Scholar 

  99. Hanawa, I., Kuge, K., Matsumura, K.: Mechanisms of the slow depressive potential production in the isolated frog retina. Jap. J. Physiol. 18, 59–70 (1968).

    CAS  Google Scholar 

  100. Hanawa, I., Tateishi, T.: The effect of aspartate on the electroretinogram of the vertebrate retina. Experientia (Basel) 26, 1311–1312 (1970).

    CAS  Google Scholar 

  101. Hanitzsch, R., Bornschein, H.: Spezielle Überlebensbedingungen für isolierte Netzhäute verschiedener Warmblüter. Experientia (Basel) 21, 484–485 (1964).

    Google Scholar 

  102. Hanitzsch, R., Byzov, A.L.: Methodische Voraussetzungen zur Ableitung mit Mikroelektroden an der isolierten menschlichen Netzhaut. Vision Res. 3, 207–212 (1963).

    Google Scholar 

  103. Hanitzsch, R., Sickel, W.: Restitutionsprozesse der b-Welle des Elektroretinogramms nach Reizbelastung. Pflügers Arch. ges. Physiol. 274, 34 (1961).

    Google Scholar 

  104. Hansson, H.A.: Ultrastructural studies in the long term effects of sodium glutamate on the rat retina. Virchows Arch. Abt. B. Zellpath. 6, 1–11 (1970).

    CAS  Google Scholar 

  105. Hartline, H.K.: The electrical response to illumination of the eye in intact animals, including the human subject; and in decerebrate preparations. Amer. J. Physiol. 73, 600–612 (1925).

    Google Scholar 

  106. Hartline, H.K.: Visual receptors and retinal interaction. Science 164, 270–278 (1969).

    PubMed  CAS  Google Scholar 

  107. Hartline, H.K., MacNichol, E.F., Wagner, H.G.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. Quant. Biol. 17, 125–140 (1952).

    CAS  Google Scholar 

  108. Haschke, W., Sickel, W.: Das Elektroretinogramm des Menschen bei Ausfall der Ganglienzellen und partieller Schädigung der Bipolaren. Acta Ophthal. (Kph.) Suppl. 70, 164–167 (1962).

    Google Scholar 

  109. Heath, H., Eiddick, R.: The ascorbic acid-dependent oxidation of reduced nicotinamideadenine dinucleotide by ciliary and retinal microsomes. Biochem. J. 94, 114–119 (1965).

    PubMed  Google Scholar 

  110. Heath, H., Rutter, A.C., Beck, T.C: Reduced and oxidized pyridine nucleotides in the retinae from alloxandiabetic rats. Vision Res. 2, 333–342 (1962).

    CAS  Google Scholar 

  111. Heck, J., Papst, W.: Über den Ursprung des corneo-retinalen Ruhepotentials. Bibl. Ophthal. 48, 96–107 (1956).

    Google Scholar 

  112. Himwich, H.E.: Brain Metabolism and Cerebral Disorders. Baltimore: Williams and Wilkins 1951.

    Google Scholar 

  113. Hirsch, H., Schneider, M.: Zur Durchblutung und O2-Versorgung der Netzhaut. Proc. XX. Int. Congr. Ophthal. 1966, S. 123–133.

    Google Scholar 

  114. Hirsch, H., Schneider, M.: Durchblutung und Sauerstoffaufnahme des Gehirns. In: Olivecrona, H., Tönnis, W (Hrsg.): Handb. Neurochirurgie, S. 434–552. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  115. Hommer, K.: Die Wirkung des Chinins, Chlorochins, Jodacetats und Chlordiazepoxids auf das ERG der isolierten Kaninchennetzhaut. Albrecht. Graefes Arch. Ophthal. 175, 111–120 (1968).

    CAS  Google Scholar 

  116. Hokda, Y.: Studies on electrical activities of the mammalian retina and optic nerve in vitro. Acta Soc. Ophthal. Jap. 73, 1865–1899 (1969).

    Google Scholar 

  117. Horowicz, P., Larrabee, M.G.: Oxidation of glucose in a mammalian sympathetic ganglion at rest and in activity. J. Neurochem. 9, 1–21 (1962).

    PubMed  CAS  Google Scholar 

  118. Hosoya, Y., Okita, T., Akune, T.: Über die lichtempfindliche Substanz in der Zapfen-netzhaut. Tohoku J. exp. Med. 34, 532–541 (1938).

    CAS  Google Scholar 

  119. Hwang, T.: Respiration of retina tissue. Jap. J. Physiol. 1, 169–172 (1951).

    Google Scholar 

  120. Jöbsis, F.F.: Basic processes in cellular respiration. Handb. of Physiol., Sect. 3 Respir. Vol. 1, pp. 63–124. Washington D.C.: Amer. Physiol. Soc. 1964.

    Google Scholar 

  121. Jongbloed, J., Noyons, A. K.: Sauerstoffverbrauch und Kohlendioxydproduktion der Froschretina bei Dunkelheit und bei Licht. Z. Biol. 97, 399–408 (1936).

    CAS  Google Scholar 

  122. Jung, R.: Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Ber. Ophthalm. Ges., 66. Zus., Heidelberg 1964, S. 69–111.

    Google Scholar 

  123. Kaneko, A., Hashimoto, H.: Electrophysiological study of single neurons in the inner nuclear layer of carp retina. Vision Res. 9, 37–56 (1969).

    PubMed  CAS  Google Scholar 

  124. Kaneko, A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond.) 207, 623–633 (1970).

    CAS  Google Scholar 

  125. Kaplan, N.O., Swartz, M.N., Frech, M.E., Ciotti, M.M.: Phosphorylative and non-phosphorylative pathways of electron transfer in rat liver mitochondria. Proc. nat. Acad. Sci. (Wash.) 42, 481–487 (1956).

    CAS  Google Scholar 

  126. Karlson, P.: Kurzes Lehrbuch der Biochemie, 6. Aufl., S. 175. Stuttgart: Georg Thieme 1967.

    Google Scholar 

  127. Keen, H., Chlouverakis, C.: Metabolism of isolated rat retina. The role of non-esterified fatty acids. Biochem. J. 94, 488–493 (1965).

    PubMed  CAS  Google Scholar 

  128. Kikawada, N.: Variations in the corneo-retinal standing potential of the vertebrate eye during light and dark adaptation. Jap. J. Physiol. 18, 687–702 (1968).

    CAS  Google Scholar 

  129. Kinoshita, J.H.: The stimulation of phosphogluconate pathway by pyruvate in bovine corneal epithelium. J. biol. Chem. 228, 247–253 (1957).

    PubMed  CAS  Google Scholar 

  130. Kinoshita, J.H., Futterman, S.: Lactic acid dehydrogenase activity with TPNH in ocular tissue. Fed. Proc. 18, 260 (1950).

    Google Scholar 

  131. Klingenberg, M., Slenczka, W., Ritt, E.: Vergleichende Biochemie der Pyridin-nucleotid-Systeme in Mitochondrien verschiedener Organe. Biochem. Z. 332, 47–66 (1959).

    PubMed  CAS  Google Scholar 

  132. Kobakowa, J.M.: pH-changes of the frog retina. Fiz. Zh. SSSR 32, 385–394 (1946) (Russ.; Engl, summary).

    Google Scholar 

  133. Krause, A.C.: Biochemistry of the Eye. Baltimore: Johns Hopkins Press 1934.

    Google Scholar 

  134. Krebs, H.A., Eggleston, L.V., Terner, C.: In vitro measurements of the turnover rate of potassium in brain and retina. Biochem. J. 48, 530–537 (1951).

    PubMed  CAS  Google Scholar 

  135. Kühne, W., Steiner, J.: Über das electromotorische Verhalten der Netzhaut. Unters. Physiol. Inst. Heidelberg 3, 327–377 (1880).

    Google Scholar 

  136. Langer, H.: Die Wirkung von Licht auf den chemischen Grundaufbau des Auges von Calliphora Erythrocephala Meig. J. Insect. Physiol. 4, 283–303 (1960).

    CAS  Google Scholar 

  137. Larrabee, M.G.: Metabolic effects of nerve impulses and nerve-growth factor in sympathetic ganglia. Progr. Brain Res. 31, 95–110 (1969).

    CAS  Google Scholar 

  138. Laser, H.: Tissue metabolism under the influence of low oxygen tension. Biochem. J. 31, 1671–1676 (1937).

    PubMed  CAS  Google Scholar 

  139. Laser, H.: Tissue metabolism under the influence of carbon monoxide. Biochem. J. 31, 1677–1682 (1937).

    PubMed  CAS  Google Scholar 

  140. Laufer, M., Svaetichin, G., Mitarai, G., Fatehchand, R., Vallecalle, E., Villegas, J.: The effect of temperature, carbon dioxide, and ammonia in the neuron-glia unit. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 457–463. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  141. Leão, A.A.P.: Spreading depression of activity in cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Google Scholar 

  142. Lehninger, A.L.: Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol. Rev. 42, 467–517 (1962).

    PubMed  CAS  Google Scholar 

  143. Le-Van Nham: La consommation d’oxygène de la rétine des boeuf a la lumière du jour et dans l’obscurité. Bull. Soc. Zool. France 80, 70–74 (1955).

    Google Scholar 

  144. Lodato, G.: Imutamenti della retina sotto l’influenza della luce, dei colori e di altri agenti fisici e chimichi, con speciale riguardo alla reazione chimica. Contribuzione alla fisiologia della retina. Arch. Ottal. 7, 335 (1900). (Cit. by Krause.)

    Google Scholar 

  145. Lowry, O.H., Roberts, N.R., Lewis, C.H.: The quantitative histochemistry of the retina. J. biol. Chem. 220, 879–892 (1956), see also:

    PubMed  CAS  Google Scholar 

  146. Lowry, O.H., Roberts, N.R., Lewis, C.H.: The quantitative histochemistry of the retina. J. biol. Chem. 236, 2813–2820 (1961).

    PubMed  CAS  Google Scholar 

  147. v. Lützow, A.: Die Bedeutung der Plasmafaktoren für die isolierte umströmte Kaninchen-netzhaut. Experientia (Basel) 22, 215–216 (1966).

    Google Scholar 

  148. Lynen, F.: Phosphatkreislauf und Pasteur-Effekt. 8. Coll. Ges. Physiol. Chem. in Mosbach 1957, S. 155–184. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  149. MacNichol, E.F.: Subthreshold excitatory processes in the eye of Limulus. Exp. Cell Res. Suppl. 5, 411–425 (1958).

    Google Scholar 

  150. MacNichol, E.F.: Cit. by Chase, A.M. In: Glick, D. (Ed.): Methods of Biochem. Analysis, Vol. 8, p. 61. New York: Interscience Publ. 1960.

    Google Scholar 

  151. MacNichol, E.F., Wagner, H.G.: A high impedance input circuit suitable for electrophysiological recording from micropipette electrodes. Nav. Res. Inst. Bethesda, Md. 12, 97–118. Rept. No. 7 (1954).

    Google Scholar 

  152. Mahneke, A.: Electroretinography with double flashes. Acta Ophthal. (Kph.) 35, 131–141 (1957).

    CAS  Google Scholar 

  153. Maksimov, V.V., Zenkin, G.M.: Spreading depression in bipolar cells of frog retina. Fiz. Zh. SSSR 51, 1188–1191 (1965) (Russ.);

    CAS  Google Scholar 

  154. Maksimov, V.V., Zenkin, G.M.: Spreading depression in bipolar cells of frog retina. Fed. Proc. 25, T 663–664 (1966) (Engl.).

    Google Scholar 

  155. Martins-Ferreira, H., de Oliveira Castro, G.: Light scattering changes accompanying spreading depression in isolated retina. J. Neurophysiol. 29, 715–726 (1966).

    PubMed  CAS  Google Scholar 

  156. Matschinsky, F.M.: Quantitative histochemistry of nicotinamide adenine nucleotides in retina of monkey and rabbit. J. Neurochem. 15, 643–657 (1968).

    PubMed  CAS  Google Scholar 

  157. Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (rana pipiens). J. gen. Physiol. 43, 129–175 (1960).

    PubMed  Google Scholar 

  158. McIlwain, H.: Electrical influences and speed of chemical change in the brain. Physiol. Rev. 36, 355–375 (1956).

    PubMed  CAS  Google Scholar 

  159. Miller, R.F., Dowling, J.E.: Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).

    PubMed  CAS  Google Scholar 

  160. Millikan, G.A.: Experiments on muscle haemoglobin in vivo; the instantaneous measurement of muscle metabolism. Proc. Roy. Soc. B 123, 218–241 (1937).

    CAS  Google Scholar 

  161. Müller-Limmroth, W.: Elektrophysiologie des Gesichtsinnes. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  162. Müller-Limmroth, W., Pohlschmidt, W.: Die Wirkungen des 2,4-Dinitrophenol auf das Elektroretinogramm. Naturwissenschaften 47, 44 (1960).

    Google Scholar 

  163. Nagata, Y., Yukoi, Y., Tsukada, Y.: Studies on free amino acid metabolism in excised cervical sympathetic ganglia from the rat. J. Neurochem. 13, 1421–1431 (1966).

    PubMed  CAS  Google Scholar 

  164. Nakajima, A.(Ed.): Retinal Degenerations; ERG and Optic Pathways. Proc. 4th ISCERG Symp. Hakone, Japan 1965. Jap. J. Ophthal. 10, Suppl. 1966.

    Google Scholar 

  165. Negishi, K., Svaetichin, G.: Effects of anoxia, CO2 and NH3 on S-potential producing cells and neurons. Pflügers Arch. ges. Physiol. 292, 177–205 (1966).

    CAS  Google Scholar 

  166. Niemi, M., Merenmies, E.: Cytochemical localization of the oxidative enzyme systems in the retina. I. Diaphorases and dehydrogenases. J. Neurochem. 6, 200–205 (1961).

    PubMed  CAS  Google Scholar 

  167. Noell, W.K.: Azide-sensitive potential difference across the eye bulb. Amer. J. Physiol. 170, 217–238 (1952).

    PubMed  CAS  Google Scholar 

  168. Noell, W.K.: Studies on the electrophysiology and the metabolism of the retina. US Air Force, SAM Project 21-1201-0004 (1953).

    Google Scholar 

  169. Noell, W.K.: The origin of the electroretinogram. Amer. J. Ophthal. 38, 78–90 (1954).

    PubMed  CAS  Google Scholar 

  170. Noell, W.K.: Cellular physiology of the retina. J. Opt. Soc. Amer. 53, 36–48 (1963).

    Google Scholar 

  171. Noell, W.K., Walker, V.S., Kang, B.S., Berman, S.: Retinal damage by light in rats. Invest. Ophthal. 5, 450–473 (1966).

    PubMed  CAS  Google Scholar 

  172. Nover, A., Schultze, B.: Autoradiographische Untersuchung über den Eiweißstoffwechsel in den Geweben und Zellen des Auges. Albrecht v. Graefes Arch. Ophthal. 161, 554–578 (1960).

    CAS  Google Scholar 

  173. Noyons, A.K.M., Wiersma, C.A.G.: L’influence de la lumière sur la consommation d’oxygène de la rétine d l’oeil de grenouille. Acta brev. neerl. 3, 156–157 (1933).

    CAS  Google Scholar 

  174. Opitz, E., Schneider, M.: Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergebn. Physiol. 46, 126–260 (1950).

    Google Scholar 

  175. Ostrovskii, M.A., Dettmar, P.: Effect of ouabain on the electroretinogram of isolated perfused frog retina. Biofizika 11, 724–726 (1966) (Russ.).

    PubMed  CAS  Google Scholar 

  176. Ostrovskii, M.A., Feodorovich, J.B., Poliak, S.E.: Change in pH of the medium during illumination of the retina and of a suspension of outer segments of photoreceptors. Biofizika 13, 338–339 (1968) (Russ.).

    PubMed  CAS  Google Scholar 

  177. Ottoson, D., Svaetichin, G.: Electrophysiological investigations of the origin of the ERG of the frog retina. Acta physiol. scand. 29, 538–563 (1953).

    Google Scholar 

  178. Oyama, N.: Einflüsse der Wasserstoffionenkonzentration auf den Sauerstoff-Verbrauch der Hellnetzhaut von Kaninchen in vitro. Tohoku J. exp. Med. 35, 567–599 (1939).

    Google Scholar 

  179. Pilz, A., Sickel, W., Birke, R.: Lokale Entstehung und Ausbreitung des Elektroretinogramms der isolierten Froschnetzhaut. Pflügers Arch. ges. Physiol. 265, 550–562 (1958).

    CAS  Google Scholar 

  180. Pirie, A., v. Heyningen R.: Biochemistry of the Eye. Blackwell Scientific Publ., Oxford 1956.

    Google Scholar 

  181. Ponte, F., Lauricella, M., Bonavita, V.: Electroretinographic changes in the rat after injection of 2-deoxyglucose. Vision Res. 4, 355–359 (1964).

    PubMed  CAS  Google Scholar 

  182. Quastel, J.H., Bickis, I.J.: Metabolism of normal tissue and neoplasma in vitro. Nature (Lond.) 183, 281–286 (1959).

    CAS  Google Scholar 

  183. Rahman, M.A., Kerly, M.: Pathways of glucose metabolism in ox retina. Biochem. J. 78, 536–540 (1961).

    PubMed  CAS  Google Scholar 

  184. Ranke, O.F.: Die optische Simultanschwelle als Gegenbeweis gegen das Fechnersche Gesetz. Z. Biol. 105, 224–231 (1952).

    PubMed  CAS  Google Scholar 

  185. Reading, H.W.: Protein biosynthesis and the hexosemonophosphate shunt in the developing normal and dystrophic retina. In: Graymore, C.N. (Ed.): Biochemistry of the Eye, p.. 73–82. London-New York: Academic Press 1965.

    Google Scholar 

  186. Riggs, L.A.: Human retinal response. Ann. N.Y. Acad. Sci. 74, 372–376 (1958).

    Google Scholar 

  187. Roe, O.: The effect of pH on the oxygen consumption of the retina. Acta Ophthal. (Kph.) 32, 181–193 (1954).

    CAS  Google Scholar 

  188. Rösch, H., TeKamp, W.: Über Ammoniakbildung bei der Belichtung der Netzhaut. Z. physiol. Chem. 175, 158–177 (1928).

    Google Scholar 

  189. Rüchardt, E.: Sichtbares und unsichtbares Licht. Berlin: J. Springer 1938.

    Google Scholar 

  190. Rushton, W.A.H.: Rod/cone rivalry in pigment regeneration. J. Physiol. (Lond.) 198, 219–236 (1968).

    CAS  Google Scholar 

  191. Rutman, R.J., George, P.: Hydrogen ion effects in high-energy phosphate reactions. Proc. nat. Acad. Sci. (Wash.) 47, 1094–1109 (1961).

    CAS  Google Scholar 

  192. Schweitzer, N.M. J., Troelstra, A.: The recovery of the b-wave in the electroretinography during dark adaptation. Vision Res. 4, 345–353 (1964).

    PubMed  CAS  Google Scholar 

  193. Shichi, H.: Microsomal electron transfer system of bovine retinal pigment epithelium. Exp. Eye Res. 8, 60–68 (1969).

    PubMed  CAS  Google Scholar 

  194. Sickel, W.: Stoffwechsel und Funktion der isolierten Netzhaut. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 80–94. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  195. Sickel, W.: Respiratory and electrical responses to light stimulation in the retina of the frog. Science 148, 648–651 (1965).

    PubMed  CAS  Google Scholar 

  196. Sickel, W.: Microelectrode recording of ERG components and unit activity in the isolated perfused frog’s retina. Biophys. J. 5, 76 (1965).

    Google Scholar 

  197. Sickel, W.: The isolated retina maintained in a circulating medium: combined optical and electrical investigations of metabolic aspects of generation of the electroretinogram. In: Burian, H.M., Jacobson, J.H. (Eds.): Clinical Electroretinography, pp. 115–124. Oxford Pergamon Press 1966. Suppl. to Vision Res.

    Google Scholar 

  198. Sickel, W.: Metabolism of the retina in relation to the ERG. Proc. 4 th ISCERG Symp. Hakone, Japan 1965.

    Google Scholar 

  199. Sickel, W.: Jap. J. Ophthal. 10, Suppl. 36–52 (1966).

    Google Scholar 

  200. Retinal Oxidation-Reduction States. Proc. 5th ISCERG Symp. Ghent, Belgium 1966, pp. 232–242. Basel-New York: Karger 1968.

    Google Scholar 

  201. Sickel, W., Crescitelli, F.: Delayed electrical responses from the isolated frog retina. Pflügers Arch. ges. Physiol. 297, 266–269 (1967).

    Google Scholar 

  202. Sickel, W., Lippmann, H.-G., Haschke, W., Baumann, Ch.: Elektrogramm der umströmten menschlichen Retina. Ber. dtsch. Ophthal. Ges., 63. Zus. Berlin 1960. S. 316–318.

    Google Scholar 

  203. Sillman, A.J., Ito, H., Tomita, T.: Studies on the mass receptor potential of the isolated frog retina; 1. General properties of the response. Vision Res. 9, 1435–1442 (1969a).

    PubMed  CAS  Google Scholar 

  204. Sillman, A.J., Ito, H., Tomita, T.: Studies on the mass receptor potential of the isolated frog retina; 2. On the basis of the ionic mechanism. Vision Res. 9, 1442–1451 (1969b).

    Google Scholar 

  205. Skou, J.C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. biophys. Acta (Amst.) 23, 394–401 (1957).

    CAS  Google Scholar 

  206. Slater, T.F., Heath, H., Graymore, C.N.: Levels of oxidized and reduced pyridine nucleotides in rat retina. Biochem. J. 84, 37 P (1962).

    Google Scholar 

  207. Smit, J.A.: Over den infloed van intensiteit en golflengte van licht op de electrische verschijnselen van het oog. Diss. Utrecht 1934 (cit. by Granit).

    Google Scholar 

  208. Süllmann, H.: Auge und Tränen. In: Flaschenträger, B., Lehnartz, E. (Hrsg.): Handb. d. Physiol. Chemie, Vol. II/2a, S. 864–948. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  209. Sverak, J., Peregrin, J., Hradecky, F.: Electroretinographic study on the metabolism of the retina (glucose test). Ophthalmologe (Basel) 138, 287–291 (1959).

    CAS  Google Scholar 

  210. Svaetichin, G., Negishi, K., Fatehchand, R., Drujan, B.D., Selvin, D.E., Testa, A.: Nervous function based on interactions between neuronal and non-neuronal elements. Progr. Brain Res. 15, 243–266 (1965).

    CAS  Google Scholar 

  211. Svaetichin, G., Negishi, K., Fatehchand, R.: Cellular mechanisms of a Young-Hering visual system. In: De Reuck, A.V.S., Knight, J. (Eds.): Color Vision. Boston: Little, Brown and Co. 1965.

    Google Scholar 

  212. Sym, E., Nilsson, R., v. Euler H.: Co-Zymasegehalt verschiedener tierischer Gewebe. Z. physiol. Chem. 190, 228–246 (1930).

    CAS  Google Scholar 

  213. Tansley, K., Copenhaver, R.M., Gunkel, R.D.: Some observations of the mammalian cone ERG. J. Opt. Soc. Amer. 51. 207–213 (1961).

    CAS  Google Scholar 

  214. Terner, C.: Anaerobic and aerobic glycolysis in lactating mammary gland and in nervous tissue. Biochem. J. 52, 229–237 (1952).

    PubMed  CAS  Google Scholar 

  215. Therman, P.O.: The neurophysiology of the retina in the light of chemical methods of modifying its excitability. Acta Soc. Sci. Fenn. New Ser. B, Nr. 1, 2–74 (1938).

    Google Scholar 

  216. Tomita, T.: Studies on intraretinal action potentials. Part I: Relation between the localization of the micropipette in the retina and the shapes of the intraretinal action potential. Jap. J. Physiol. 1, 110–117 (1950).

    Google Scholar 

  217. Tomita, T.: Electrical activity in the vertebrate retina. J. Opt. Soc. Amer. 53, 49–57 (1963).

    CAS  Google Scholar 

  218. Tomita, T.: Electrical response of single photoreceptors. Proc. IEEE 56, 1015–1023 (1968).

    Google Scholar 

  219. Tomita, T.: The electroretinogram. In: Handbook of Sensory Physiology, Vol. VII/2. Berlin-Heidelberg-New York: Springer 635–665

    Google Scholar 

  220. Tomita, T.: Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spr. Harb. Symp. Quant. Biol. 30, 559–566 (1965).

    CAS  Google Scholar 

  221. Toyoda, J., Hashimoto, H., Anno, H., Tomita, T.: The rod response in the frog as studied by intracellular recording. Vision Res. 10, 1093–1100 (1970).

    PubMed  CAS  Google Scholar 

  222. Toyoda, J., Nosaki, H., Tomita, T.: Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9, 453–463 (1969).

    PubMed  CAS  Google Scholar 

  223. Trappl, R., Bornschein, H.: Ein mathematisches Modell für die Komponente PIII des Elektroretinogramms. Kybernetik 4, 40–43 (1967).

    PubMed  CAS  Google Scholar 

  224. Tsukada, Y., Uyemura, K., Matsutani, T.: Metabolism of amino acids and nucleic acids in the isolated rabbit retina. Advan. Neurol. Sci. (Tokyo) 10, 210–218 (1966) (Jap.).

    CAS  Google Scholar 

  225. Turini, S., Sorbi, T., Cavaggioni, A.: The effect of illumination on the efflux of radioactive potassium and rubidium from the isolated frog retina. IUPS-ISCERG Symposium, Brighton 1971.

    Google Scholar 

  226. Val’tsev, V.B.: Investigation in flowing liquid of retinal potentials. Biofizika 11, 1095–1096 (1966) (Russ.).

    PubMed  Google Scholar 

  227. Vernon, L.P.: Photochemical oxidation and reduction reactions catalysed by flavin nucleotides. Biochim. biophys. Acta (Amst.) 36, 177–185 (1959).

    CAS  Google Scholar 

  228. Wang, D.Y., Slater, T.F., Dartnall, H.J.A.: Swelling properties of mitochondrial preparations from the retina. Vision Res. 3, 171–181 (1963).

    Google Scholar 

  229. Warburg, O., Posener, K., Negelein, E.: Über den Stoffwechsel der Carcinomzelle. Biochem. Z. 152, 309–344 (1924).

    CAS  Google Scholar 

  230. Webster, H.D., AmesIII. A.: Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation. J. Cell Biol. 26, 885–909 (1965).

    Google Scholar 

  231. Webster, H.D., Ames III. A.: The effects of osmotic changes on the phase and electron microscopic appearance of nervous tissue. J. Neuropath, exp. Neurol. 26, 160–161 (1967).

    CAS  Google Scholar 

  232. Weinstein, G.W., Hobson, R.R., Dowling, J.E.: Light and dark adaptation in the isolated rat retina. Nature (Lond.) 215, 134–138 (1967).

    CAS  Google Scholar 

  233. Werblin, F.S., Dowling, J.E.: Organization of the retina of the Mudpuppy Necturus maculosus. J. Neurophysiol. 32, 339–355 (1969).

    PubMed  CAS  Google Scholar 

  234. Yeandle, S.S.: Studies on the slow potential and the effects of cations on the electrical responses of the Limulus ommatidium. Ph. Diss., Johns Hopkins Univ. 1957.

    Google Scholar 

  235. Young, R.W., Droz, B.: The renewal of protein in retinal rods and cones. J. Cell Biol. 39, 169–184 (1968).

    PubMed  CAS  Google Scholar 

  236. Zevi, M.: On regeneration of visual purple. Acta Soc. Sci. Fenn. S. B, Nr. 2, 1–56 (1939).

    Google Scholar 

  237. Ziv, B., Burian, H.M.: Electric response of the phakic and aphakic human eye to stimulation with near ultraviolet. 18. Conc. Ophthalm. 1958, pp. 644–647. Bruxelles: Press Med. Sci. 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Sickel, W. (1972). Retinal Metabolism in Dark and Light. In: Fuortes, M.G.F. (eds) Physiology of Photoreceptor Organs. Handbook of Sensory Physiology, vol 7 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65340-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65340-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65342-1

  • Online ISBN: 978-3-642-65340-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics