Skip to main content

Tolerance and Sensitization to the Effects of Antipsychotic Drugs on Dopamine Transmission

  • Chapter
Antipsychotics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 120))

Abstract

Beginning with the finding by Carlsson and Lindqvist (1963) that acute administration of chlorpromazine increases dopamine (DA) turnover, an extensive literature has developed concerning the effects of antipsychotic drug (APD) administration on multiple brain DA systems. Although APDs of different chemical classes can vary markedly in their molecular structure and receptor binding profiles (Hyttel et al. 1985), they all act to some degree as DA receptor antagonists (Seeman et al. 1976; Farde et al. 1988). A wide variety of neuronal mechanisms have been studied in relation to acute and prolonged APD effects on dopaminergic function, including changes in DA receptors, DA receptor-linked second messenger activity, and DA neuron electrophysiology (See and Chapman 1994, for review). Among the many effects of APDs on DA function, the release and turnover of forebrain DA continues to serve as the primary reflection of dynamic APD-induced alterations in neural activity. One aim of the present chapter is to review findings on APD effects on DA release and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlenius S, Ericson EL, Hogberg K, Wijkstrom A (1991) Behavioural and biochemical effects of subchronic treatment with raclopride in the rat: tolerance and brain monoamine receptor sensitivity. Pharmacol Toxicol 68:302–309

    Article  PubMed  CAS  Google Scholar 

  • Anden NE, Stock G (1973) Effects of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 25:346–348

    Article  PubMed  CAS  Google Scholar 

  • Antelman SM (1988) Stressor-induced sensitization to subsequent stress: implications for the development and treatment of clinical disorders. In: Kalivas PW, Barnes CD (eds) Sensitization in the nervous system. Telford, Caldwell, pp 227–256

    Google Scholar 

  • Antelman SM, Kocan D, Edwards DJ, Knopf S, Perel JM, Stiller R (1986) Behavioral effects of a single neuroleptic treatment grow with the passage of time. Brain Res 385:58–67

    Article  PubMed  CAS  Google Scholar 

  • Antelman SM, Caggiula AR, Knopf S, Kocan DJ, Edwards DJ (1992a) Amphetamine or haloperidol 2 weeks earlier antagonize plasma corticosterone response to amphetamine; evidence for the stressful/foreign nature of drugs. Psychopharma- cology (Berl) 107:331–336

    Article  CAS  Google Scholar 

  • Antelman SM, Kocan D, Knopf S, Edwards DJ, Caggiula AR (1992b) One brief exposure to a psychological stressor induces long-lasting, time-dependent sensitization of both the cataleptic and neurochemical responses to haloperidol. Life Sci 51:261–266

    Article  PubMed  CAS  Google Scholar 

  • Asper H, Baggiolini M, Burki HR, Lauener H, Ruch W, Stille G (1973) Tolerance phenomena with neuroleptics: catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur J Pharmacol 22:287–294

    Article  PubMed  CAS  Google Scholar 

  • Ayd FJ (1967) Drug holidays: intermittent pharmacotherapy for psychiatric patients. Med Sci 1:59–62

    Google Scholar 

  • Bacopoulos NG, Bustos G, Redmond DE, Roth RH (1982) Chronic treatment with haloperidol or fluphenazine decanoate: regional effects on dopamine and serotonin metabolism in primate brain. J Pharmacol Exp Ther 221:22–28

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68

    PubMed  CAS  Google Scholar 

  • Barnes DE, Robinson B, Csernansky JG, Bellows EP (1990) Sensitization versus tolerance to haloperidol-induced catalepsy: multiple determinants. Pharmacol Biochem Behav 36:883–887

    Article  PubMed  CAS  Google Scholar 

  • Barrett RJ, White DK (1980) Reward system depression following chronic amphetamine: reversal by haloperidol. Pharmacol Biochem Behav 13:555–559

    Article  PubMed  CAS  Google Scholar 

  • Bartholini G (1977) Preferential effect of noncataleptogenic neuroleptics onmesolimbic dopaminergic function. Adv Biochem Psychopharmacol 16:607–611

    PubMed  CAS  Google Scholar 

  • Blaha CD, Lane RF (1987) Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbens in vivo. Neurosci Lett 78:199–204

    Article  PubMed  CAS  Google Scholar 

  • Booth RG, Baldessarini RJ, Campbell A (1991) Inhibition of dopamine synthesis in rat striatal minces: evidence of dopamine autoreceptor supersensitivity to S(+)- but not R(-)-N-n-propylnorapomorphine after pretreatment with fluphenazine. Biochem Pharmacol 41(12):2040–2043

    Article  PubMed  CAS  Google Scholar 

  • Bowers MB (1984) Family history and CSF homo vanillic acid pattern during neuroleptic treatment. Am J Psychiatry 141:296–298

    PubMed  Google Scholar 

  • Bowers MB, Hoffman FJ (1986) Homo vanillic acid in caudate and pre-frontal cortex following acute and chronic neuroleptic administration. Psychopharmacology (Berl) 88:63–65

    Article  CAS  Google Scholar 

  • Bowers MB, Rozitis A (1974) Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs. J Pharm Pharmacol 26:743–745

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23:1715–1728

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571

    PubMed  CAS  Google Scholar 

  • Bunney BS, Chiodo LA, Grace AA (1991) Midbrain dopamine system electrophysiological functioning: a review and new hypothesis. Synapse 9:79–94

    Article  PubMed  CAS  Google Scholar 

  • Carey RJ, De Veaugh-Geiss J (1984) Treatment schedule as a determinant of the development of tolerance to haloperidol. Psychopharmacology (Berl) 82:164- 167

    Article  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia Neuropsychopharmacology 1:179–186

    CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol (Kbh) 20:140–144

    Article  CAS  Google Scholar 

  • Casey DE (1987) Tardive dyskinesia. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1411–1420

    Google Scholar 

  • Casey DE (1989) Clozapine: neuroleptic-induced EPS and tardive dyskinesia. Psychopharmacology (Berl) 99:S47-S53

    Article  Google Scholar 

  • Casey DE (1992) Dopamine Di(SCH23390) and D2 (haloperidol) antagonists in drug- naive monkeys. Psychopharmacology (Berl) 107:18–22

    Article  CAS  Google Scholar 

  • Chai B, Meltzer HY (1992) The effect of chronic clozapine on basal dopamine release and apomorphine-induced DA release in the striatum and nucleus accumbens as measured by in vivo brain microdialysis. Neurosci Lett 136:47–50

    Article  Google Scholar 

  • Chen J, Paredes W, Gardner EL (1991) Chronic treatment with clozapine selectively decreases basal dopamine release in nucleus accumbens but not in caudate- putamen as measured by in vivo brain microdialysis: further evidence for depolarization block. Neurosci Lett 122:127–131

    Article  PubMed  CAS  Google Scholar 

  • Clow A, Jenner P, Theodorou A, Marsden CD (1979) Striatal dopamine receptors become supersensitive while rats are given trifluoperazine for six months. Nature 278:59–61

    Article  PubMed  CAS  Google Scholar 

  • Clow A, Jenner P, Theodorou A, Marsden CD (1980) Changes in cerebral dopamine metabolism and receptors during one-year neuroleptic administration and subsequent withdrawal: relevance to brain biochemistry in schizophrenia. Adv Biochem Psychopharmacol 24:53–55

    PubMed  CAS  Google Scholar 

  • Compton DR, Johnson KM (1989) Effects of acute and chronic clozapine and haloperidol on in vitro release of acetylcholine and dopamine from striatum and nucleus accumbens. J Pharmacol Exp Ther 248:521–530

    PubMed  CAS  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ (1985) The continuity of dopamine receptor antagonism can dictate the long-term behavioural consequences of a mesolimbic infusion of dopamine. Neuropharmacology 24(3):193–197

    Article  PubMed  CAS  Google Scholar 

  • Coward DM (1993) The pharmacology of clozapine-like, atypical antipsychotics. In: Barnes TM (ed) Antipsychotic drugs and their side effects. Academic, London, pp 27–44

    Google Scholar 

  • Coward DM, Imperato A, Urwyler S, White TG (1989) Biochemical and behavioral properties of clozapine. Psychopharmacology (Berl) 99:S6-S12

    Article  Google Scholar 

  • Coyle S, Napier TC, Breese GR (1985) Ontogeny of tolerance to haloperidol: behavioral and biochemical measures. Dev Brain Res 23:27–38

    Article  CAS  Google Scholar 

  • Csernansky JG, Bellows EP, Barnes DE, Lombrozo L (1990) Sensitization versus tolerance to the dopamine turnover-elevating effects of haloperidol: the effect of regular/intermittent dosing. Psychopharmacology (Berl) 100:519–524

    Article  Google Scholar 

  • Csernansky JG, Wrona CT, Bardgett ME, Early TS, Newcomer JN (1993) Subcortical dopamine and serotonin turnover during acute and subchronic administration of typical and atypical neuroleptics. Psychopharmacology (Berl) 110:145–151

    Article  CAS  Google Scholar 

  • Davidson M, Kahn RS, Knott P, Kaminsky R, Cooper M, DuMont K, Apter S, Davis KL (1991) Effects of neuroleptic treatment on symptoms of schizophrenia and plasma homovanillic acid concentrations. Arch Gen Psychiatry 48:910–913

    PubMed  CAS  Google Scholar 

  • De Graaf CJ, Korf J (1986) Conditional tolerance to haloperidol-induced catalepsy is not caused by striatal dopamine receptor supersensitivity. Psychopharmacology (Berl) 90:54–57

    Article  Google Scholar 

  • DiChiara G, Imperato A (1985) Rapid tolerance to neuroleptic-induced stimulation of dopamine release in freely moving rats. J Pharmacol Exp Ther 235(2):487–494

    CAS  Google Scholar 

  • Dunn LA, Atwater GE, Kilts CD (1993) Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112:315–323

    Article  CAS  Google Scholar 

  • Egan MF, Karoum F, Wyatt RJ (1991) Effects of acute and chronic clozapine and haloperidol administration on 3-methoxytyramine accumulation in rat prefrontal cortex, nucleus accumbens and striatum. Eur J Pharmacol 199:191–199

    Article  PubMed  CAS  Google Scholar 

  • Ezrin-Waters C, Seeman P (1977) Tolerance to haloperidol catalepsy. Eur J Pharmacol 41:321–327

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76

    PubMed  CAS  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  • Finlay JM, Jakubovic A, Fu DS, Fibiger HC (1987) Tolerance to haloperidol-induced increases in dopamine metabolites: fact or artifact? Eur J Pharmacol 137:117- 121

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Magnusson O, Thorell G, Mohringe B, Huang RB (1987) Dopamine turnover and glutamate decarboxylase activity in the rat brain after acute and chronic treatment with raclopride, a dopamine D2-selective antagonist. Neuropharmacology 26(4):339–345

    Article  PubMed  CAS  Google Scholar 

  • Gianutsos G, Hynes MD, Lai H (1975) Enhancement of apomorphine-induced inhibition of striatal dopamine-turnover following chronic haloperidol. Biochem Pharmacol 24:581–582

    Article  PubMed  CAS  Google Scholar 

  • Glenthoj B, Hemmingsen R (1989) Intermittent neuroleptic treatment induces long-lasting abnormal mouthing in the rat. Eur J Pharmacol 164:393–396

    Article  PubMed  CAS  Google Scholar 

  • Glenthoj B, Hemmingsen R, Allerup P, Bolwig TG (1990) Intermittent versus continuous neuroleptic treatment in a rat model. Eur J Pharmacol 190:275–286

    Article  PubMed  CAS  Google Scholar 

  • Glenthoj B, Mogensen J, Laursen H, Holm S, Hemmingsen R (1993) Electrical sensitization of the meso-limbic dopaminergic system in rats: a pathogenetic model for schizophrenia. Brain Res 619:39–54

    Article  PubMed  CAS  Google Scholar 

  • Goldman MB, Luchins DJ (1984) Intermittent neuroleptic therapy and tardive dyskinesia: a literature review. Hosp Community Psychiatry 35:1215–1219

    PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuro- science 41(l):l-24

    Google Scholar 

  • Grace A A (1992) The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm 36:91–131

    CAS  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–20

    Article  Google Scholar 

  • Gunne LM, Andren PE (1993) An animal model for coexisting tardive dyskinesia and tardive parkinsonism: a glutamate hypothesis for tardive dyskinesia. Clin Neuro- pharmacol 16:90–95

    CAS  Google Scholar 

  • Hamamura T, Akiyama K, Akimoto K, Kashihara K, Okumara K, Ujike H, Otsuki S (1991) Co-administration of either a selective Dx or D2 dopamine antagonist with methamphetamine prevents methamphetamine-induced behavioral sensitization and neurochemical change, studied by in vivo intracerebral dialysis. Brain Res 546:40–46

    Article  PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1989) Haloperidol given chronically decreases basal dopamine in the prefrontal cortex more than the striatum or nucleus accumbens as simultaneously measured by microdialysis. Brain Res Bull 22:763–769

    Article  PubMed  CAS  Google Scholar 

  • Herz MI, Glazer WM, Mostert MA, Sheard MA, Szymanski HV, Hafez H, Mirza M, Vana J (1991) Intermittent vs maintenance medication in schizophrenia. Arch Gen Psychiatry 48:333–339

    PubMed  CAS  Google Scholar 

  • Honma T, Fukushima H (1976) Correlation between catalepsy and dopamine decrease in the rat striatum induced by neuroleptics. Neuropharmacology 15:601–607

    Article  PubMed  CAS  Google Scholar 

  • Hyttel J, Larsen JJ, Christensen AV, Arnt J (1985) Receptor-binding profiles of neuroleptics. In: Casey DE, Chase TN, Christensen AV, Gerlach J (eds) Dyskinesia - research and treatment. Springer, Berlin Heidelberg New York, pp 9–18

    Google Scholar 

  • Ichikawa J, Meltzer HY (1990) Apomorphine does not reverse reduced basal dopamine release in rat striatum and nucleus accumbens after chronic haloperidol. Brain Res 507:138–142

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1991) Differential effects of repeated treatment with haloperidol and clozapine on dopamine release and metabolism in the striatum and the nucleus accumbens. J Pharmacol Exp Ther 256(l):348–357

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1992) The effect of chronic atypical antipsychotic drugs and haloperidol on amphetamine-induced dopamine release in vivo. Brain Res 574:98–104

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Angelucci L (1989) The effects of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and in the prefrontal cortex of freely moving rats. Psychopharmacol Bull 25(3):383–389

    PubMed  CAS  Google Scholar 

  • Imperato A, DiChiara G (1985) Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis. J Neurosci 5:297- 306

    PubMed  CAS  Google Scholar 

  • Invernizzi R, Morali F, Pozzi L, Samanin R (1990) Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats. Br J Pharmacol 100:774–778

    PubMed  CAS  Google Scholar 

  • Janicak PG, Davis JM, Preskorn SH, Ayd FJ (1993) Principles and practice of psychopharmacotherapy. Williams and Wilkins, Baltimore, pp 93–184

    Google Scholar 

  • Jeste DV, Wyatt RJW (1982) Therapeutic strategies against tardive dyskinesia: two decades of experience. Arch Gen Psychiatry 39:803–816

    PubMed  CAS  Google Scholar 

  • Jeste DV, Potkin SG, Sinha S, Feder S, Wyatt RJ (1979) Tardive dyskinesia reversible and persistent. Arch Gen Psychiatry 36:585–590

    PubMed  CAS  Google Scholar 

  • Kahn RS, Davidson M, Knott P, Stern RG, Apter S, Davis KL (1993) Effect of neuroleptic medication on cerebrospinal fluid monoamine metabolite concentrations in schizophrenia. Serotonin-dopamine interactions as a target for treatment. Arch Gen Psychiatry 50:599–605

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1989) Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biol Psychiatry 25:913- 928

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and suppression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223- 244

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Sorg BA, Hooks MS (1993) The pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol 4:315–334

    Article  PubMed  CAS  Google Scholar 

  • Kashihara K, Sato M, Fujiwara Y, Harada T, Ogawa T, Otsuki S (1986) Effects of intermittent and continuous haloperidol administration on the dopaminergic system in the rat brain. Biol Psychiatry 21:650–656

    Article  PubMed  CAS  Google Scholar 

  • Kehr W, Carlsson A, Lindqvist M, Magnusson T, Atack CV (1972) Evidence for a receptor mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol 24:744–747

    Article  PubMed  CAS  Google Scholar 

  • Kolbe H, Clow A, Jenner P, Marsden CD (1981) Neuroleptic-induced acute dystonic reactions may be due to enhanced release on to supersensitive postsynaptic receptors. Neurology 31:434–439

    PubMed  CAS  Google Scholar 

  • Kolenik SA, Hoffman FJ, Bowers MB (1989) Regional homovanillic acid levels and oral movements in rats following chronic haloperidol treatment. Psychopharma- cology (Berl) 98:430–431

    Article  CAS  Google Scholar 

  • Kriekhaus EE, Donahoe JW, Morgan MA (1992) Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus. Biol Psychiatry 31:560–570

    Article  Google Scholar 

  • Kuczenski R (1980) Amphetamine-haloperidol interactions on striatal and mesolimbic tyrosine hydroxylase activity and dopamine metabolism. J Pharmacol Exp Ther 215:135–142

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Leith NJ (1981) Chronic amphetamine: is dopamine a link in or a mediator of the development of tolerance and reverse tolerance? Pharmacol Biochem Behav 15:405–413

    Article  PubMed  CAS  Google Scholar 

  • Lerner P, Nose PN, Gordon EK, Lovenberg W (1977) Haloperidol: effect of long- term treatment on rat striatal dopamine synthesis and turnover. Science 197:181–183

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE, Janssen PMF, Gommeren W, Wynants J, Pauwels PJ, Janssen PAJ (1992) In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone. Mol Pharmacol 41:494–508

    PubMed  CAS  Google Scholar 

  • Liebman J, Neale R (1980) Neuroleptic-induced acute dyskinesias in squirrel monkeys: correlation with propensity to cause extrapyramidal side effects. Psychopharma- cology (Berl) 68:25–29

    Article  CAS  Google Scholar 

  • Lindefors N, Sharp T, Ungerstedt U (1986) Effects of subchronic haloperidol and sulpiride treatment on regional brain dopamine metabolism in the rat. Eur J Pharmacol 129:401–404

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (1993) Cortical regulation of the mesolimbic dopamine system: implications for schizophrenia. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC, Boca Raton, pp 329–350

    Google Scholar 

  • Magnusson O, Mohringe B, Thorell G, Lake-Bakaar DM (1987) Effects of the dopamine D2 selective receptor antagonist remoxipride on dopamine turnover in the rat brain after acute and repeated administration. Pharmacol Toxicol 60:368–373

    Article  PubMed  CAS  Google Scholar 

  • Masuda Y, Murai S, Itoh T (1982) Tolerance and reverse tolerance to haloperidol catalepsy induced by the difference of administration interval in mice. Jpn J Pharmacol 32:1186–1188

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Uchimura H, Hirano M, Kim JS, Yokoo H, Shimomura M, Nakahara T, Inoue K, Oomagari K (1983) Differential effects of acute and chronic administration of haloperidol on homovanillic acid levels in discrete dopaminergic areas of rat brain. Eur J Pharmacol 89:27–33

    Article  PubMed  CAS  Google Scholar 

  • Mefford IN, Roth KA, Agren H, Barchas JD (1988) Enhancement of dopamine metabolism in rat brain frontal cortex: a common effect of chronically administered antipsychotic drugs. Brain Res 475:380–384

    Article  PubMed  CAS  Google Scholar 

  • Meil W, See RE (1994) Single pre-exposure to fluphenazine produces persisting behavioral sensitization accompanied by tolerance to fluphenazine-induced striatal dopamine overflow in rats. Pharmacol Biochem Behav 48(3):605–612

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS, Anlezark GM, Marsden CD (1977) Acute dystonia as an idiosyncratic response to neuroleptics in baboons. Brain 100:313–326

    Article  PubMed  CAS  Google Scholar 

  • Melier E, Friedhoff AJ, Friedman E (1980) Differential effects of acute and chronic haloperidol treatment on striatal and nigral 3,4-dihydroxyphenylacetic acid (DOPAC) levels. Life Sei 26:541–547

    Article  Google Scholar 

  • Meitzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology (Berl) 99:S18-S27

    Article  Google Scholar 

  • Messiha FS (1974) A study of biogenic amine metabolites in the cerebrospinal fluid and urine of monkeys with chlorpromazine-induced dyskinesia. J Neurol Sei 21:39- 46

    Article  CAS  Google Scholar 

  • Moghaddam B (1994) Preferential activation of cortical dopamine neurotransmission by clozapine: functional significance. J Clin Psychiatry 55(9):27–29

    PubMed  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54:1755–1760

    Article  PubMed  CAS  Google Scholar 

  • Nicolaou NM (1980) Acute and chronic effects of neuroleptics and acute effects of apomorphine and amphetamine on dopamine turnover in corpus striatum and substantia nigra of the rat brain. Eur J Pharmacol 64:123–132

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Iurlo M, Andersson JL, Kimura K, Svensson TH (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in the rat medial prefrontal cortex. Psychopharmacology (Berl) 115:147–156

    Article  CAS  Google Scholar 

  • Nordstrom A, Farde L, Wiesel F, Forslund, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Roth RH (1977) Presynaptic dopamine receptors. Development of supersensitivity following treatment with fluphenazine decanoate. Naunyn Schmiedebergs Arch Parmacol 300:247–254

    CAS  Google Scholar 

  • Ogren SV, Hall H, Kohler C, Magnusson O, Sjostrand SE (1986) The selective dopamine D2 receptor antagonist raclopride discriminates between dopamine-mediated motor functions. Psychopharmacology (Berl) 90:287–294

    Article  CAS  Google Scholar 

  • Parkes JD, Bedard P, Marsden CD (1976) Chorea and torsion in Parkinsonism. Lancet 1:155

    Article  Google Scholar 

  • Pehek EA, Meltzer HY, Yamamoto BK (1993) The atypical antipsychotic drug amperozide enhances rat cortical and striatal dopamine efflux. Eur J Pharmacol 240:107–109

    Article  PubMed  CAS  Google Scholar 

  • Post RM (1980) Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. Life Sci 26:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Weiss SRB (1988) Sensitization and kindling: implications for the evolution of psychiatric symptomatology. In: Kalivas PW, Barnes CD (eds) Sensitization in the nervous system. Telford, Caldwell, pp 257–292

    Google Scholar 

  • Rao TS, Wood PL (1990) Haloperidol decanoate administration induces differential tolerance to striatal and pyriform cortical dopamine metabolism. Neurosci Res Commun 7(2):83–88

    CAS  Google Scholar 

  • Reynolds GP (1983) Increased concentrations and lateral asymmetry of amygdale dopamine in schizophrenia. Nature 305:527–529

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP (1989) Beyond the dopamine hypothesis: the neurochemical pathology of schizophrenia. Br J Psychiatry 155:305–316

    PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198

    Article  CAS  Google Scholar 

  • Rupniak NMJ, Jenner P, Marsden CD (1986) Acute dystonia induced by neuroleptic drugs. Psychopharmacology (Berl) 88:403–419

    Article  CAS  Google Scholar 

  • Saller CF, Salama AI (1985) Alterations in dopamine metabolism after chronic administration of haloperidol. Possible role of increased autoreceptor sensitivity. Neuropharmacology 24:123–129

    Article  PubMed  CAS  Google Scholar 

  • Saller CF, Salama AI (1993) Seroquel: biochemical profile of a potential atypical antipsychotic. Psychopharmacology (Berl) 112:285–292

    Article  CAS  Google Scholar 

  • Santiago M, Westerink BHC (1991) The regulation of dopamine release from nigrostriatal neurons in conscious rats: the role of somatodendritic autoreceptors. Eur J Pharmacol 204:79–85

    Article  PubMed  CAS  Google Scholar 

  • Sayers AC, Burki HR, Ruch W, Asper H (1975) Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacologia 41:97–104

    Article  PubMed  CAS  Google Scholar 

  • Scatton B (1977) Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration. Eur J Pharmacol 46:363- 369

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Garrett C, Julou L (1975) Acute and subacute effects of neuroleptics on dopamine synthesis and release in the rat striatum. Naunyn Schmiedebergs Arch Pharmacol 289:419–434

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Glowinski J, Julou L (1976) Dopamine metabolism in the mesolimbic and mesocortical dopaminergic systems after single or repeated administration of neuroleptics. Brain Res 109:184–189

    Article  PubMed  CAS  Google Scholar 

  • See RE (1991) Striatal dopamine metabolism increases during long-term haloperidol administration in rats but shows tolerance to acute challenge with raclopride. Neurosci Lett 129:265–268

    Article  PubMed  CAS  Google Scholar 

  • See RE (1993) Assessment of striatal extracellular dopamine and dopamine metabolites in haloperidol-treated rats exhibiting oral dyskinesia. Neuropsy- chopharmacology 9:101–109

    CAS  Google Scholar 

  • See RE, Chapman MA (1994) The consequences of long-term antipsychotic drug administration on basal ganglia neuronal function in laboratory animals. Crit Rev Neurobiol 8(l/2):85–124

    PubMed  CAS  Google Scholar 

  • See RE, Ellison G (1990) Intermittent and continuous haloperidol regimens produce different types of oral dyskinesias in rats. Psychopharmacology (Berl) 100:404- 412

    Article  CAS  Google Scholar 

  • See RE, Murray CE (1992) Changes in striatal dopamine release and metabolism during and after subchronic haloperidol administration in rats. Neurosci Lett 142:100–104

    Article  PubMed  CAS  Google Scholar 

  • See RE, Sorg BA, Chapman MA, Kalivas PW (1991) In vivo assessment of release and metabolism of dopamine in the ventrolateral striatum of awake rats following administration of dopamine Dx and D2 receptor agonists and antagonists. Neuropharmacology 30:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • See RE, Chapman MA, Meshul CK (1992a) Comparison of chronic intermittent haloperidol and raclopride effects on striatal dopamine release and synaptic ultra- structure in rats. Synapse 12:147–154

    Article  PubMed  CAS  Google Scholar 

  • See RE, Chapman MA, Murray CE, Aravagiri M (1992b) Regional differences in chronic neuroleptic effects on extracellular dopamine activity. Brain Res Bull 29:473–478

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7:261- 284

    CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Schukitt MA (1983) Animal models of stimulant-induced psychosis. In: Creese I (ed) Stimulants: neurochemical, behavioral, and clinical perspectives. Raven, New York, pp 131–167

    Google Scholar 

  • Sharma RP, Javaid JI, Janicak PG, Davis JM, Faull K (1993) Homovanillic acid in the cerebrospinal fluid: patterns of response after four weeks of neuroleptic treatment. Biol Psychiatry 34:128–134

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Martres MP, Giros B, Bouthenet ML, Schwartz JC (1992) The third dopamine receptor (D3) as a novel target for antipsychotics. Biochem Pharmacol 43(4):659–666

    Article  PubMed  CAS  Google Scholar 

  • Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4:289–312

    PubMed  CAS  Google Scholar 

  • Stewart J, Vezina P (1989) Microinjections of SCH23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res 495:401–406

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, SCH23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther 256:530–536

    PubMed  CAS  Google Scholar 

  • Umeda Y, Sumi T (1990) Decrease in the evoked release of endogenous dopamine and dihydroxyphenylacetic acid from rat striatal slices after withdrawal from repeated haloperidol. Eur J Pharmacol 191:149–155

    Article  PubMed  CAS  Google Scholar 

  • Vezina P, Stewart J (1989) The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and dopamine. Brain Res 499:108–120

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  • Weiss B, Santelli S (1978) Dyskinesias evoked in monkeys by weekly administration of haloperidol. Science 200:799–801

    Article  PubMed  CAS  Google Scholar 

  • Westerink BHC, deVries JB (1989) On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence for mediation by autoreceptors localized on nerve terminals. Neurosci Lett 99:197–202

    Article  PubMed  CAS  Google Scholar 

  • Wheeler SC, Roth RH (1980) Tolerance to fluphenazine and supersensitivity to apomorphine in central dopaminergic systems after chronic fluphenazine decanoate treatment. Naunyn Schmiedebergs Arch Pharmacol 312:151–159

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221:1054–1057

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Yokoo H, Nishi, S (1993) Chronic treatment with haloperidol modifies the sensitivity of autoreceptors that modulate dopamine release in rat striatum. Eur J Pharmacol 232:1–6

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Cooperman MA (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14(7):4159–4166

    PubMed  CAS  Google Scholar 

  • Zetterstrom T, Sharp T, Ungerstedt U (1985) Effect of neuroleptic drugs on striatal dopamine release and metabolism in the awake rat studied by intracerebral dialysis. Eur J Pharmacol 106:27–37

    Article  Google Scholar 

  • Zhang W, Tilson H, Stachowiak MK, Hong JS (1989) Repeated haloperidol administration changes basal release of striatal dopamine and subsequent response to haloperidol challenge. Brain Res 484:389–392

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

See, R.E., Kalivas, P.W. (1996). Tolerance and Sensitization to the Effects of Antipsychotic Drugs on Dopamine Transmission. In: Csernansky, J.G. (eds) Antipsychotics. Handbook of Experimental Pharmacology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61007-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61007-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64653-9

  • Online ISBN: 978-3-642-61007-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics