Skip to main content

Rheumatic Disease Group

  • Chapter

Abstract

In the recent past, advances in both basic and clinical research have considerably contributed to our understanding of the cellular and molecular events that lead to autoimmune disease. The importance of genetic susceptibility [1], i.e., particular alleles of major histocompatibility complex (MHC) class II molecules [2], and environmental factors, i.e., molecular mimicry of autoantigens by microbes [3] and microbial super- antigens [4], as well as the central role of T cells [5] in the pathogenesis of autoimmune disease is well appreciated, and modern immune-based therapy would thus ideally be directed towards early events in the pathological process. Results obtained using animal models of antigen-induced autoimmune disease, e.g., collagen-induced arthritis and experimental allergic encephalomyelitis, have resulted in optimism that this will eventually be possible. It must be borne in mind, however, that in this type of experimental animal model it is simple to intervene in the development of autoimmune disease, since the induction events (immunization with defined autoantigens) are designed by the investigator. In contrast, in autoimmune disorders of the rheumatic disease group, including lupus erythematosus (LE) systemic sclerosis, dermatomyositis (DM), and polyarteritis nodosa (PAN), we do not know whether a specific autoantigen initiated the disease, nor do we know the time point at which the antigenic challenge occurred. The processes resulting in autoimmune disease begin well before we see the patient, and we as clinicians are faced only with late-term manifestations of the immunologic events that lead to clinical disease. Thus the current therapy of these diseases is essentially limited to chemical immunosuppresssion with corticosteroids and cvtotoxic drugs, such as azathioprine, cyclophosphamide, and methotrexate. The introduction of cyclosporin represents major progress compared with substances formerly used in terms of cellular selectivity, inasmuch as cyclosporine does not depress bone marrow hemopoesis and acts selectively on the production of well-defined cytokines [6]. However, significant side effects occur, and the lymphokines in question are involved in a number of immune reactions other than the targeted process [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merriman TR, Todd JA (1995) Genetics and autoimmune disease. Gun Opin Immunol 7:786–792.

    Article  CAS  Google Scholar 

  2. Trüeb RM (1995) Autoimmune-disease-associated MHC class-II molecules, Hautarzt 46: 225–227.

    Article  PubMed  Google Scholar 

  3. Fujinami RS, Oldstone MBA (1985) Amino acid homology and virus: mechanisms for autoimmunity. Science 230:1043.

    Article  PubMed  CAS  Google Scholar 

  4. Friedman SM, TumangJR, Crow MK (1993) Microbial superantigens as etiopathogenic agents in autoimmunity. Rheum Dis Glin North Am 19:207–222.

    CAS  Google Scholar 

  5. Miller JFAP, Flavell RA (1994) T-cell tolerance and autoimmunity in transgenic models of central and peripheral tolerance. Curr Opin Immunol 6:892–899.

    Article  PubMed  CAS  Google Scholar 

  6. Fairley JA (1990) Intracellular targets of cyclosporine. J Am Acad Dermatol 23:1329–1334.

    Article  PubMed  CAS  Google Scholar 

  7. Valdimarsson H (1990) Immunity during cyclosporine therapy. J Am Acad Dermatol 23: 1294–1300.

    Article  PubMed  CAS  Google Scholar 

  8. David KM, Thornton JC, Davis B et al. (1984) Morbidity and mortality in patients with subacute cutaneous lupus erythematosus. J Invest Dermatol 82:408.

    Google Scholar 

  9. Urowitz MB (1993) Is aggressive therapy necessary for systemic lupus erythematosus? Rheum Dis Clin North Am 19:263–270.

    PubMed  CAS  Google Scholar 

  10. The Canadia Hydroxychloroquine Study Group (1991) A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N Engl J Med 324:150–154.

    Article  Google Scholar 

  11. Ruzicka T, Goerz G (1991) Daps one in the treatment of lupus erythematosus. Br J Dermatol 104:53–56.

    Article  Google Scholar 

  12. Green SG, Piette WW (1987) Successful treatment of hypertrophic lupus erythematosus with isotretinoin. J Am Acad Dermatol 17:364–368.

    Article  PubMed  CAS  Google Scholar 

  13. Callen JP, Spencer LV, Burruss et al. (1991) Azathioprine: an effective, cortu osteroid-sparing therapy for patients with recalcitrant cutaneous lupus erythematosus or with recalcitrant cutaneous leukocytoclastic vasculitis. Arch Dermatol 127:515–522.

    Article  PubMed  CAS  Google Scholar 

  14. Nicholas JF, Thivolet J, Kanitakis J et al. (1990) Response of discoid and suDacute cutaneous lupus erythematosus to recombinant interferon alpha 2A, J Invest Dermatol 95 [Suppl]: 142S–145S.

    Article  Google Scholar 

  15. Martinez J, de Misa RF, Torrelo A et al. (1992) Low-dose intralesional interferon alpha for discoid lupus erythematosus.J Am Acad Dermtol 26:494–496

    Article  CAS  Google Scholar 

  16. Hiepe F, Volk HD, Apostoloff F et al. (1991) Treatment of severe systemic lupus erythematosus with anti-CD4 monoclonal antibody. Lancet 338:1 529–1530.

    Article  Google Scholar 

  17. Prinz JG, Meurer M, Reiter C et al. (1996) Treatment of severe cutaneous lupus erythematosus with a chimeric CD4 monoclonal antibody, cM 1412. J Am Acad Dermatol 34:244–252.

    Article  PubMed  CAS  Google Scholar 

  18. Silman AJ (1991) Epidemiology of scleroderma Ann Rheum Dis 50:846–853.

    Article  Google Scholar 

  19. Fiocco U, Rosada M, Cozzi 1 et al f 1993) Early phenotypic activation of circulating helper memory T cells in scleroderma; correlation with disease activity. Ann Rheum Dis 52:272–277.

    Article  PubMed  CAS  Google Scholar 

  20. Zillikens D, Blum C, Dummer R et al. (1992) Serum levels of soluble interleukin 2 receptor in systemic and circumscribed scleroderma. Dermatology 184:233–234

    Article  PubMed  CAS  Google Scholar 

  21. Tuffanelli DL (1989) Systemic scleroderma. Med Clin North Am 73:1167–1180.

    PubMed  CAS  Google Scholar 

  22. Pandolfi A, Florita M, Altoniaiv G (1989) IncreaM-d plasma levels of platek t-derived growth factor activity in patients with with progressive systemic sclerosis.Proc Soc Exp Biol Med 191:1–4

    PubMed  CAS  Google Scholar 

  23. Border WA, Ruoslahti F (1992) Transforming growthh factor beta ¡n disease:the dark side of tissue repair.J Clin Invest 90:1–7

    Article  PubMed  CAS  Google Scholar 

  24. Krieg T, Meurer M (1988) Systemic scleroderma. Clinical and pathophysiologic aspects. J Am Acad Dermatol 18:457–481.

    Article  CAS  Google Scholar 

  25. Steinberg AD, Krieg AM, Takashi T, Gourley MF (1992) Timing of immunosuppression in the natural history of autoimmune disease. J Autoimmunity 5 [Suppl A]: 197–203

    Article  Google Scholar 

  26. Sollberg S, Hunzelmann N, Roux M, Krieg T (1994) Therapy of systemic sclerosis. Z Haut Geschlechtskr 69:6–14.

    Google Scholar 

  27. Clements PJ, Lachenbruch PA, Sterz M et al. (1994) Cyclosporine in systemic sclerosis. Results of a forty-eight-week open safety study in ten patients. Arthritis Rheum 37:30–32.

    Google Scholar 

  28. Worle B, Hein R, Krieg T, Meurer M (1990) Cyclosporin in localized and systemic scleroderma - a clinical study. Dermatology 181:215–220.

    Article  CAS  Google Scholar 

  29. Peter RU, Ruzicka T (1991) Low-dose cyclosporin A in the treatment of disabling morphea. Arch Dermatol 127:1420–1421.

    Article  PubMed  CAS  Google Scholar 

  30. Steen VD, Owens GR, Redmont G et al. (1985) The effect of D-penicillamine on pulmonary findings in systemic sclerosis. Arthritis Rheum 28:882–888.

    Article  PubMed  CAS  Google Scholar 

  31. DeClerk LS, Dequeker J, Francx L, Demedts M (1987) D-penicillamine therapy and interstitial lung disease in scleroderma: a long-term follow-up study. Arthritis Rheum 30:643–650.

    Article  Google Scholar 

  32. Wollheim F, Akesson A (1989) Treatment of systemic sclerosis in 1988. Semin Arthritis Rheum 18:181–188.

    Article  PubMed  CAS  Google Scholar 

  33. Steen VD, Blair S, Medsger TA (1986) The toxicity of D-penicillamine in systemic sclerosis. Ann Intern Med 104:699–705.

    PubMed  CAS  Google Scholar 

  34. Asboe-Hansen G (1982) Treatment of generalized scleroderma with inhibitors of collagen synthesis. Int J Dermatol 21:159–161.

    Article  PubMed  CAS  Google Scholar 

  35. Uitto J, Ryhaenen L, Tan EML (1985) Increased procollagen production by scleroderma fibroblasts in culture and its inhibition by the analogues of proline. In: Black CM, Myers AR (eds) Current topics in rheumatology: systemic sclerosis (scleroderma). Gower, London, pp 204–207.

    Google Scholar 

  36. Krieg T, Horlein D, Wiestner M (1978) Aminoterminal extension peptides from type I procollagen normalize excessive collagen synthesis of scleroderma fibroblasts. Arch Dermatol Res 263:171–180.

    Article  PubMed  CAS  Google Scholar 

  37. Bagot M, Revuz J (1990) Jessner-Kanof lesion and Borrelia infection. J Am Acad Dermatol 23:772–773.

    Article  PubMed  CAS  Google Scholar 

  38. Kulozik M, Hogg A, Lankat-Buttgereit B, Krieg T (1990) Co-localization of transforming growth factor ß2 with alphal(I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest 86:917–922.

    Article  PubMed  CAS  Google Scholar 

  39. Rossi P, Karsenty G, Roberts AB et al. (1988) A nuclear factor 1 binding site mediates the transcriptional activation of type I collagen promoter by transforming growth factor-beta. Cell 52:405–414.

    Article  PubMed  CAS  Google Scholar 

  40. McKay I A, Winyard P, Leigh IM et al. (1994) Nuclear transcription factors: potential targets for new modes of intervention in skin disease. Br J Dermatol 131:591–597.

    Article  PubMed  CAS  Google Scholar 

  41. Jimenez SA, Freundlich B, Rosenbloom J (1984) Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 74:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  42. Hein R, Behr J, Hündgen M et al. (1992) Treatment of systemic sclerosis with g-interferon. Br J Dermatol 126:496–501.

    Article  PubMed  CAS  Google Scholar 

  43. Euwer RL, Sontheimer RD (1993) Amyopathic dermatomyositis: a review. J Invest Dermatol 100 [Suppl]:124S–127S.

    Article  PubMed  CAS  Google Scholar 

  44. Sigurgeirsson B, Lindelof B, Edhag O et al. (1992) Risk of cancer in patients with dermatomyositis or polymyositis: a population based study. N Engl J Med 326:363–367.

    Article  PubMed  CAS  Google Scholar 

  45. Fafalak RG, Peterson MG, Kagen LJ (1994) Strength in polymyositis and dermatomyositis: best outcome in patients treated early. J Rheumatol 21:643–648.

    PubMed  CAS  Google Scholar 

  46. Malleson PN (1990) Controversies in juvenile dermatomyositis. J Rheumatol [Suppl] 23:1–6.

    CAS  Google Scholar 

  47. Zieglschmid-Adams ME, Pandya AG, Cohen SB, Sontheimer RD (1995) Treatment of dermatomyositis with methotrexate: presentation of ten cases and review of the literature. J Am Acad Dermatol 32:754–757.

    Article  PubMed  CAS  Google Scholar 

  48. Bohan A, Peter JB, Bowman RL, Pearson CM (1977) Computer-assisted analysis of 153 patients with polymyositis and dermatomyositis. Medecine 56:255–286.

    CAS  Google Scholar 

  49. Grau JM, Herrero C, Casademont J et al. (1994) Cyclosporine A as first choice therapy for dermatomyositis. J Rheumatol 21:381–382.

    PubMed  CAS  Google Scholar 

  50. Cherin P, Herson S, Wechsler B et al. (1991) Efficacy of intravenous gammaglobulin therapy in chronic refractory polymyositis and dermatomvositisian open study with 20 adult patients. Am J Med 91:162–168.

    Article  PubMed  CAS  Google Scholar 

  51. Dalakas MC, Ilia I, Dambrosia JM et al. (1993) A controlled trial of high dose intravenous immune globulin infusions as treatment for dermatomyositis. N Engl J Med 329:1993–2000.

    Article  PubMed  CAS  Google Scholar 

  52. Engel AG, Arahata K (1984) Monoclonal antibody analysis of mononuclear cells in myopathies. II. Phenotypes of autoinvasive cells in polymyositis and inclusion body myositis. Ann Neurol 16:209–215.

    CAS  Google Scholar 

  53. Emslie-Smith AM, Engel AG (1990) Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann Neurol 27:343–356.

    Article  PubMed  CAS  Google Scholar 

  54. Basta M, Dalakas MC (1994) High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 94:1729–1735.

    Article  PubMed  CAS  Google Scholar 

  55. Lutz HU, Stammler P, Jelezarova E et al. (1996) High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 88:184–193.

    PubMed  CAS  Google Scholar 

  56. Braverman IM (1981) The angiitides. Skin signs of systemic disease, 2nd edn. Saunders, Philadelphia, pp 378–452

    Google Scholar 

  57. Jennette JC, Falk RJ, Andrassy K et al. (1994) Nomenclature of systemic vasculitides. Proposal of an International Consus Conference. Arthritis Rheum 37:187–192.

    CAS  Google Scholar 

  58. Moreland LW, Ball GV (1990) Cutaneous Polyarteriitis nodosa. Am J Med 88:426–430.

    Article  PubMed  CAS  Google Scholar 

  59. Citron BP, Halpern M, McCarron M et al. (1970) Necrotizing angiitis associated with drug abuse. N Engl J Med 283:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  60. Calabrese LH (1991) Vasculitis and infection with the human immunodeficiency virus. Rheum Dis Clin North Am 17:131–147.

    PubMed  CAS  Google Scholar 

  61. Finkel TH, Toeroek TJ, Ferguson PJ et al. (1994) Chronic parvovirus B19 infec lion and systemic necrotising vasculitis: opportunistic infection or aetiological agent? Lancet 343:1255–1258.

    Article  PubMed  CAS  Google Scholar 

  62. Komadina KH, Houk RW (1989) Polyarteritis nodosa presenting as recurrent pneumonia following splenectomy for hairy-cell leukemia. Semin Arthritis Rheum 18:252–257.

    Article  PubMed  CAS  Google Scholar 

  63. Gudbjsrnsson B, HSllgren R (1990) Cutaneous polyarteritis nodosa associated with Crohn’s disease. Report and review of the literature. I Rheumatol 17:386–390.

    Google Scholar 

  64. Chiu G, Rajapakse CNA (1991) Cutaneous polyarteritis nodosa and ulcerative colitis. J Rheumatol 18:769–770.

    PubMed  CAS  Google Scholar 

  65. Trepo CG, Zuckerman AJ, Bird RC, Prince AM (1974) The role of circulating hepatitis B antigen/antibody immune complexes in the pathogenesis of vascular and hepatic manifestations in polyarteritis nodosa. J Clin Pathol 27:863–868.

    Article  PubMed  CAS  Google Scholar 

  66. Van de Pette JEW, Jarvis JM, Wilton MA, MacDonald DM (1984) Cutaneous periarteritis nodosa. Hepatitis B surface antigen containing immune-complexes and polymorphonucle- ar-leukocyte lysosomal enzyme release. Arch Dermatol 120:109–111.

    Google Scholar 

  67. Sheth AP, Olson JC, Esterlv NB (1994) Cutaneous polyarteritis nodosa of childhood. J Am Acad Dermatol 31:561–566.

    Article  PubMed  CAS  Google Scholar 

  68. Leib ES, Restivo C, Paulus HE (1979) Immunosuppressive and corticosteroid therapy of polyarteritis nodosa. Am J Med 67:941–947.

    Article  PubMed  CAS  Google Scholar 

  69. Fortin PR, Larson MG, Waiters AK et al. (1995) Prognostic factors m systemic necrotizing vasculitis of the polyarteritis nodosa group - a review of 45 cases. J Rheumatol 22:78–84.

    PubMed  CAS  Google Scholar 

  70. CalderonMJ, LandaN, Aguirre A, Diaz-Perez JL (1993) Successful treatment of cutaneous PAN with pentoxifylline. Br J Dermatol 128:706–708.

    Article  PubMed  CAS  Google Scholar 

  71. Chen K (1989) Cutaneous polyarteritis nodosa a clinical and histopathological study of 20 cases. J Dermatol 16:429–442.

    PubMed  CAS  Google Scholar 

  72. Jorizzo L, White WL, Wise CM et al. (1991) l ow-dose weekly methotrexate for unusual neutrophilic vascular reactions: cutaneous polyarteritis nodosa and Behet’s disease. J Am Acad Dermatol 24:973–978.

    Article  PubMed  CAS  Google Scholar 

  73. Guillevin L, Lhote F, Sauvaget F et al. (1994) Treatment of polyarteritis nodosa related to hepatitis B virus with interferon-alpha and plasma exchanges. Ann Rheum Dis 53:334–337.

    Article  PubMed  CAS  Google Scholar 

  74. Carpenter MT, West SG (1994) Polyarteritis nodosa in hairy cell leukemia: treatment with interferon-alpha. J Rheumatol 21:1150–1152.

    PubMed  CAS  Google Scholar 

  75. Gleichmann E, van Elven EH, van der Veen JP (1982) A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell cooperation. Preferential formation of autoantibodies characteristic for SLE. Eur J Immunol 12:152–159.

    CAS  Google Scholar 

  76. Strom TB, Anderson PL, Rubin-Kelley VE et al. (1990) Immunotoxins and cytokine fusion proteins. Semin Immunol 2:467–479.

    PubMed  CAS  Google Scholar 

  77. Ranges GE, Sriram S, Cooper SM (1985) Prevention of type III collagen-induced arthritis by in vivo treatment with anti-L3T4. J Exp Med 162:1105–1110.

    Article  PubMed  CAS  Google Scholar 

  78. Wofsy D, Seaman WE (1985) Successful treatment of autoimmunity in NZB/NZW Fl mice with monoclonal antibody to L3T4. J Exp Med 161:378–391.

    Article  PubMed  CAS  Google Scholar 

  79. Wofsy D, Seaman WE (1987) Reversal of advanced murine lupus in NZB/NZW Fl mice by treatment with monoclonal antibody to L3T4. J Immunol 138:3247–3251.

    PubMed  CAS  Google Scholar 

  80. Burmester GR, Emmrich F (1993) Anti-CD4 therapy in rheumatoid arthritis. Clin Exp Rheumatol 11 [Suppl 9]:5139–5145.

    Google Scholar 

  81. Van der Lübbe PA, Reiter C, Breedveld FC et al. (1993) Chimeric CD4 monoclonal antibody cM-T412 as a therapeutic approach to rheumatoid arthritis. Arthritis Rheum 36:1375–1379.

    Article  PubMed  Google Scholar 

  82. Prinz JC, Meurer M, Dadonna P et al. (1991) Chimeric CD4 monoclonal antibody in treatment of generalized pustular psoriasis. Lancet 338:320–321.

    Article  PubMed  CAS  Google Scholar 

  83. Thivolet J, Nicolas JF (1994) Immunointervention in psoriasis with anti-CD4 antibodies. Int J Dermatol 33:327–332.

    Article  PubMed  CAS  Google Scholar 

  84. Benjamin RJ, Waldmann H (1986) Induction of tolerance by monoclonal antibody therapy. Nature 320:449–451.

    Article  PubMed  CAS  Google Scholar 

  85. Waldmann H, Qin S, Cobbold S (1992) Monoclonal antibodies as agents to reinduce tolerance in autoimmunity. J Autoimmun 5 [Suppl A]:93–102

    Article  PubMed  Google Scholar 

  86. Fathman CG (1992) Immunotherapy of rheumatic diseases based on understanding genetic predisposition to the development of these diseases. Rheum Dis Clin North Am 18:915–926.

    PubMed  CAS  Google Scholar 

  87. Aichele P, Kyburz D, Ohashi P et al. (1994) Peptide-induced T cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sei USA 91:444–448.

    Article  CAS  Google Scholar 

  88. Vandenbark AA, Chou YK, Bourdette DN et al. (1992) T cell receptor peptide therapy for autoimmune disease. J Autoimmun 5 [Suppl A]:83–92

    Article  PubMed  Google Scholar 

  89. Kumar V, Sercarz EE (1993) The involvement of T cell receptor for peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J Exp Med 178:909–916.

    Article  PubMed  CAS  Google Scholar 

  90. Trentham DE, Dynesisus-Trentham RA, Orav EJ et al. (1993) Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261:1727–1730.

    Article  PubMed  CAS  Google Scholar 

  91. Weiner HL, Friedman A, Miller A et al. (1994) Oral tolerance: immunologic mechanisms of treatment of animal and human organ-specific autoimmune diseases by oral admninistration of autoantigens. Annu Rev Immunol 12:809–837.

    Article  PubMed  CAS  Google Scholar 

  92. Chen Y, Kuchroo VK, Inobe J et al. (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265:1237–1240.

    Article  PubMed  CAS  Google Scholar 

  93. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T-cell antigen receptor occupancy. Annu Rev Immunol 7:445–480.

    Article  PubMed  CAS  Google Scholar 

  94. Clark EA, Ledbetter JA (1994) How B and T cells talk to each other. Nature 367:425–428.

    Article  PubMed  CAS  Google Scholar 

  95. Harlan DM, Hengartner H, Huang ML et al. (1990) Mice expressing both B7 and viral glycoprotein on pancreatic beta cells along glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness. Proc Nat Acad Sei USA 248:1349–1356.

    Google Scholar 

  96. Guerder S, Meyerhoff J, Flavell R (1994) The role of the T cell costimulator B7–1 in autoimmunity and the induction and maintenance of tolerance to peripheral antigen. Immunity 1: 155–166.

    Article  PubMed  CAS  Google Scholar 

  97. Boussiotis VA, Gribben JG, Freeman GJ et al. (1994) Blockade of the CD28 costimulatory pathway: a means to induce tolerance. Curr Opin Immunol 6:797–807.

    Article  PubMed  CAS  Google Scholar 

  98. Durie FH, Fava RA, Foy RM et al. (1993) Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261:1328–1330.

    Article  PubMed  CAS  Google Scholar 

  99. Finck BK, Linsley PS, Wofsy D (1994) Treatment of murine lupus with CTLA4Ig. Science 265:1225–1227.

    Article  PubMed  CAS  Google Scholar 

  100. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu Rev Immunol 7:145–173.

    Article  PubMed  CAS  Google Scholar 

  101. Powrie F, Correa-Oliveira R, Mauze S et al. (1994) Regulatory interactions between DC45RBhigh and CD45RBlow CD4’ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179:589–600.

    Article  PubMed  CAS  Google Scholar 

  102. Racke MK, Bonomo A, Scott DE et al. (1994) Cytokme-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180:1961–1966.

    Article  PubMed  CAS  Google Scholar 

  103. Capon DJ, Chamow SM, Mordenti I et al. (1989) Designing CD4 immunoadhesms for AIDS therapy. Nature 337:525–531.

    Article  PubMed  CAS  Google Scholar 

  104. Traunecker A, Schneider J, Kiefer H et al. (1989) Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature 339:68–70.

    Article  PubMed  CAS  Google Scholar 

  105. Van Zee KJ, Kohno T, Fischer E et al. (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor a in vitro and in vivo. Proc Natl Acad Sei USA 89:4845–4849.

    Article  Google Scholar 

  106. Ozmen L, Roman D, Fountoulakis M et al. (1995) Experimental therapy OF systemic lupus erythematosus: the treatment of NZB/W mice with mouse soluble interferon-gamma receptor inhibits the onset of glomerulonephritis. Eur I Immunol 25:6–12.

    Article  CAS  Google Scholar 

  107. Kolls J, Peppel K, Silva M et al. (1994) Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc Natl Acad Sei USA 91:215–219.

    Article  CAS  Google Scholar 

  108. Trüeb RM, Brown G, van Huffei C et al. (1995) Expression of an adenovirally encoded LT-ß inhibitor prevents clearance of Listeria monocytogenes in mice. J Inflamm 45:239–247.

    PubMed  Google Scholar 

  109. Kolls JK, Lei D, Nelson D et al. (1995) Adenovirus-mediated blockade of tumor necrosis factor in mice protects against endotoxic shock yet impairs pulmonary host defense. J Infect Dis 171:570–575.

    Article  PubMed  CAS  Google Scholar 

  110. Setoguchi Y, Jaffe HA, Danel (. et al. (1994) Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors. J Invest Dermatol 102:415–421.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trüeb, R.M. (1997). Rheumatic Disease Group. In: Burg, G., Dummer, R.G. (eds) Strategies for Immunointerventions in Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60752-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60752-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64539-6

  • Online ISBN: 978-3-642-60752-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics